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ABSTRACT 

The present study investigated NO3- and Br- contamination in groundwater of Arak aquifer, 
Markazi province, Iran. Correlation and factor analyzes were used to detect interrelations and 
sources of NO3- and Br- ion concentration and other physicochemical variables. No correlation was 
observed between NO3- and others contents, but a positive correlation was identified between Br- 
and other major variables such as EC, TDS, Cl- and SO42- in the groundwater. The results showed 
that groundwater samples of two areas of Arak aquifer were severely contaminated by NO3- (up to 
50 mg/L) and Br- (up to 0.5mg/L), which exceeded the WHO and EU provisional guideline values. 
Nitrate showed an anthropogenic source that originated from sewage water from domestic and 
industrial activities. Bromide originated from palaeo-salty water of Mighan Lake with a geogenic 
source.   
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1. Introductione determination 

  Sewage water is considered as a 
significant source of NO3

- and Br- into the 
groundwater. Groundwater NO3

- contamina-
tion is a threat to human health (Bryan and 
Loscalzo, 2011; Johnson et al., 2010). Nitrate 
has been listed as one of the most common 
groundwater contaminants by the WHO 
(2011). High nitrate levels in water can result 
in blue baby syndrome. Ingestion of water 
with elevated nitrate levels can also cause 
spontaneous abortions and non-Hodgkin’s 
lymphoma (Nolan and Hitt, 2006; Nolan, 
2001) and an MCL of 50 mg/L has been set 
by EU (1998). Nitrate contamination of 
aquifers has been an important issue in 
hydrogeology and hydrochemistry over the 
last two decades. Nitrate in groundwater 

originates largely from diffuse (non-point) 
sources in relation to diverse agricultural and 
domestic practices, as well as from point 
sources such as sewage effluents (Canter, 
1997; Fogg et al., 1998; Gu et al., 2013; Baily 
et al., 2012; Pastén-Zapata et al., 2014). In 
particular, aquifers in urban area are highly 
vulnerable to nitrate contamination due to the 
widespread application of sewage waters 
(Panno et al., 2006; Jin et al., 2012; Brandao 
et al., 2014). 

Bromide is one of the halogen elements 
found in trace amounts in all ground water. 
Bromide occurs as the free Br- ion in most 
natural waters and it only forms significant 
complex ions under hypersaline conditions. 
Bromide is corrosive to human tissue in a 
liquid state and its vapors irritate eyes and 
throat. Bromide vapors are very toxic with 
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inhalation (Carpenter, 1978). Inorganic Br- is 
found in nature, they occur naturally and 
humans have added too much through the 
years. Through food and drinking water, 
humans absorb high doses of inorganic Br-. 
These Br- can damage the nervous system and 
the thyroid gland. The geochemistry of Br- is 
similar to that of Cl- but distinctive difference 
makes it a valuable tracer in groundwater 
studies (Shouakar-Stash et al., 2007; Heeb et 
al., 2014). In dilute natural waters, the main 
control on the geochemistry of Br- is likely to 
be the source of salinity. The hydrogeo-
chemistry of Br- is very similar to that of Cl-. 
Bromide has a molar Br-/Cl- ratio of 1.57 10-3. 
In marine aerosol, however, the ratio is 
generally slightly higher than sea water due to 
some enrichment near the sea surface. The 
general geochemistry of Br- in groundwater 
has been covered by Rittenhouse (1967), 
Carpenter (1978), Edmunds (1996), Davis et 
al. (1998) and others. Characteristics of Br-, 
as reported by these authors, include the 
following. (1) Almost all Br- from natural 
sources found in groundwater is in the form 
of the simple negative monovalent ion, Br-. 
(2) Inorganic compounds of both Cl- and Br- 
are highly soluble. However, because those of 
Br- are most soluble, evaporation to partial 
dryness will leave residual brine rich in Br- 
after Cl- solids start to precipitate. (3) 
Bromide, like Cl-, is normally conservative in 
a groundwater system; however, some of the 
Br- will adsorb on organic solids (Gerritse and 
George, 1988; Reeve, 2002; Brindha and Elango, 
2013) and on mineral surfaces in water having 
a low pH (Seaman et al., 1996). (4) Human 
activity has introduced a large number of 
compounds of Br- into aquifers (Andreae et 
al., 1996). 

The objective of this work was to assess 
the influence of the natural and anthropogenic 
activities on the groundwater quality of the 
Arak aquifer using hydrochemical methods 

and factor analysis on 36 samples. In order to 
interpret the complex groundwater hydro-
chemistry of Arak aquifer, the origin and 
interconnection of these water types were first 
explained in relation to the shallow ground-
water and mixing with palaeo-saltwater and 
human intervention. Then, factor analysis was 
used to identify the major natural and 
anthropogenic processes occurring in the 
entire plain by extracting several factors. 

2. Study area 

The Mighan Lake is located in the Arak 
region, central part of Markazi province 
(Fig.1). The pre-Neogene basement in the 
lake ranges in age from Mesozoic to Pliocene 
and comprises metamorphic (slate, metamor-
phic sandstone and crystalline limestone) in 
the southern part of the lake and carbonate in 
the eastern part. Paleogene assemblages 
consist of the clastic and tuff deposits and 
volcanic rocks in the northern part of the lake. 
The Neogene sedimentary sequences around 
the Mighan Lake are shale, marl and volcanic 
conglomerate. The Mighan Lake, which is 
located 1700 m above the sea level, has an 
area of about 5500 km2 and is a closed basin. 
The mean annual temperature and precipita-
tion are 14o C and 350 mm, respectively. This 
lake is fed by fresh water from the whole 
margins. The lake water chemistry is 
dominated with Na+, Mg2+ , Cl- , SO42- ions 
and also contains smaller amounts of Ca2+ , 
K+ and HCO3

- ions (Zamani, 1999). Bedrock 
of these formations is composed of the 
crystalline limestone with low metamorphism 
rocks. The study area is situated in the alluvial 
plain and the aquifer is directly fed by the 
stream water coming from different reliefs 
surrounding the depression inter-mountainous 
of Mighan Lake. The plain hosts a large 
number of water–wells with depths varying 
from 70 to 150 m. Most of these wells supply 
water for drinking and agriculture needs. 
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isometric Logratio, the influence of different 
units of measurement was eliminated. Thus, 
each variable obtained equal weight in the 
statistical analyses. 

3.3. Multivariate statistical analysis using 
factor analysis 

Factor analysis is a mathematical procedu-
re that uses an orthogonal transformation to 
convert a set of observations of possibly 
correlated variables into a set of linearly 
uncorrelated variables called factors. The 
number of factors is less than or equal to the 
number of original variables. This transforma-
tion is defined in such a way that the first 
factor accounts for as much of the variability 
in the data as possible, and each succeeding 
factor in turn has the highest variance possible 
under the constraint that it be orthogonal to 
(i.e., uncorrelated with) the preceding factors 
(Jolliffe, 2002). As a multivariate analysis 
method, factor analysis can provide a power-
ful tool for analyzing the complex high 
dimensional hydrochemical data sets of 
groundwater. It has been successfully applied 
to clarify the contributions of hydrogeological 
and hydrogeochemical processes to ground-
water quality and identify the influence of 
ecological pollution on the environment (Kim 
et al., 2005; Panda et al., 2006), to distinguish 
natural and anthropogenic sources affecting 
groundwater quality in aquifers (Jiang et al., 
2009; Zhao et al., 2010) and to assess the 
impact of anthropogenic activities on 
groundwater quality in a lowland plain (Güler 
et al., 2012). Factor analysis was performed to 
evaluate the correlations among the multivari-
ate variables. The factor analysis was 
develop-ed in geochemical and environmental 
studies to quantify the correlations among 
complex variables (Gooverts, 1998). The 
Statistica software was used to analyze the 
high dimensional groundwater quality data of 
the samples. Factor analysis was chosen and 

used to identify the contributions of different 
natural and anthropogenic factors that 
influence the groundwater hydrochemistry of 
the study area. The chosen variables for factor 
analysis were EC, pH, TDS, HCO3

-, NO3
-, Cl-

, F-, SO4
2-, Br-, B-, Si4+, Na+, K+, Ca2+ and 

Mg2+. The detailed factor analysis, advantage 
and application of factor analysis have been 
described in many previous studies (Helena et 
al., 2000; Jiang et al., 2009; Güler et al., 
2012). In order to investigate the effects of 
heterogeneous geochemical processes and 
anthropogenic activities of the Arak aquifer, 
the spatial distributions of factor scores (FS) 
were interpolated using symbolic method. In 
factor analysis, the response variable was 
continuous and unbounded, i. e. the predicted 
response variable can take any value. Howev-
er, values outside the [0, 1] range are 
inappropriate. Thus, factor analysis is inappr-
opriate for studies wherein the response 
variable is binary (present or absent), because 
the predicted response must be in the [0, 1] 
interval. In order to constrain the values of the 
predicted response variable within the unit 
interval [0, 1], Cox and Snell (1989) 
recommended to use a logistic model. Hence, 
the logistic function has been used to fuzzy 
FSs (FFS) of each sample per indicator factor, 
thus (Eq. 2): 

FFS= eFs /1+eFs                                                  (2) 

where Fs is the factor score of each sample 
obtained in the factor analysis. The FFS is, 
therefore, a fuzzy weight of each sample for 
each indicator factor. In this way, the weights 
of different classes of evidential maps are 
calculated based on the FSs of samples per 
indicator factor obtained in the factor analys-
is. 

4. Results and discussion 

4.1. Hydrochemical study 



Journal of Water Sciences Research, Vol. 8, No. 1, Spring 2016, 13-30 

17 

Table 1 summarizes the descriptive 
statistics of 15 physicochemical variables for 
a total of 36 groundwater samples within the 
WHO (2011) guidelines for drinking water. 
The ilr transformation (Eq. 1) in Filzmoser et 
al. (2009a) was used to open the raw data. 
The histograms for the raw data and ilr 
transformed Br- and SO4

2- data are shown in 
Fig. 2. They suggested that the raw datasets 
have right-skewed distributions, and Logratio 
transformed datasets are symmetrically 
distributed. The Logratio transformation can 
reduce the effects of outliers to some extent 
and make the data more symmetrically 
distributed than those of the raw data. The 
mean and median concentrations of the major 
ions in the Arak aquifers were within the 
WHO (2011) guidelines for drinking water. 
The maximum NO3

- and Br- concentrations of 
166 mg/L and 1.6 mg/L, respectively, were 
however higher than their respective WHO 
(2011) and EU (1998) standards of 50 mg/L 
and 0.01 mg/L, respectively. Nitrate and  Br-

concentrations in alluvial groundwater ranged 
widely from 14 to 166 mg/L and 0.20 to 1.6 
mg/L, respectively with a very high mean 
value (72mg/L and 0.58 mg/L; Table 1), 
indicating a significant NO3

- and Br- 
contamination in the study area. Seventy-two 
percent (Fig. 3) and all of the samples (Fig. 4) 
showed NO3

- and Br- concentrations 
exceeding WHO (2011) and EU (1998) 
standards, respectively.  These are isolated 
cases resulting from contamination from 
surface point sources such as domestic 
sewage. The mean and median EC values of 
1615 µS/cm and 1196 µS/cm, respectively 
correspond to total dissolved solid concentra-
tions of 789 mg/L and 586 mg/L, respectively 
which were below the WHO (1984) guideline 

value of 1000 mg/L. Maximum concentrat-
ions of some of the major ions such as Na+ 
and Cl- were higher than the WHO (2011) 
recommended values for taste purposes. 
However, the low mean and median values of 
the concentrations of these ions imply that 
most of the locations sampled have concentra-
tions lower than the recommended maximum 
values for domestic usage. The pH was 
neutrality but it was well within the accepta-
ble range. The aquifer of the Arak formation, 
which is mostly a sedimentary aquifer, 
therefore produced a groundwater of accept-
able quality for most uses. High Br- in groun-
dwater in the area has two major sources: 
rock-water interactions and salt lake water 
intrusion. In the Arak aquifer, salinity is very 
high and might be associated with the 
combined effects of salt water intrusion and 
rock-water interactions in the area. Mean and 
median NO3

- concentrations in the Arak 
aquifer were higher than the WHO (2011) 
values. There were, however, isolated cases of 
extremely high values, which result 
predominantly from contamination from 
domestic sewage and agricultural chemicals 
in the area. The hydrochemical processes in 
the study area also can be illustrated by the 
relationships between TDS and some 
constituents (e.g., NO3

- and Br-), likely in 
relation to the inputs of saline waters (Fig. 5). 
Fig. 5 shows that TDS was negatively 
correlated with NO3

- concentration. In 
contrast, the relationship between TDS and 
Br- was positively correlated. Positive 
relationships between TDS and Br- values 
reveals that the hydrochemistry of alluvial 
groundwater in the study area was controlled 
by saline water processes. 
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Table 1. Descriptive statistics for 15 physicochemical variables for alluvial groundwater in the Arak area 
  

Mean 
Geometric- 

Mean 
Median Minimum Maximum Skewness 

Skewness 
logratio 

EC 1615 1340. 1196 528 5070 1.84 0.79 

pH 7.36 7.35 7.35 6.70 7.90 -0.02 -0.13 

TDS 789 658 586 263 2500 1.84 0.74 

Ca2+ 103. 86 88 21 317 1.66 -0.07 

Mg2+ 66 51 47 10 402 3.78 0.82 

Na+ 237 153 142 23. 1005 1.87 0.34 

K+ 0.46 0.13 0.07 0.07 3.70 2.71 1.58 

HCO3
- 428. 315 277 128 2782 3.66 1.79 

Cl- 260 175. 171 7.09 840 1.35 -0.81 

SO4
2- 276 199 183 50 1475 2.83 0.85 

F- 0.57 0.52 0.53 0.19 1.08 0.39 -0.26 

Si4+ 8.43 8.05 8.47 3.87 14 0.30 -0.59 

Br- 0.58 0.53 0.50 0.20 1.60 1.68 -0.06 

B- 0.46 0.239 0.26 0.07 3.230 3.16 0.63 

NO3
- 72 61 64 14 166 0.49 -0.65 
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Fig. 3. NO3
- concentration in 36 boreholes for alluvial groundwater in the Arak area (for sample no. refer to Fig.1) 

 

 

 

Fig. 4. Br- concentration in 36 boreholes for alluvial groundwater in the Arak area (for sample no. refer to Fig.1) 
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Fig.7. Relationship between SO4

2- and Cl- with NO3
- and Br-

4.2. Correlation between the variables 

Table 2 shows the correlation matrix of the 
15 variables. Positive and relatively strong 
correlations can be observed between these 
pairs: SO4

2- and Na+ (0.54), SO4
2- and Mg2+ 

(0.45), SO4
2- and Br- (0.31), Cl- and Na+ (0.70) 

and Cl- and Br- (0.35). Most of these ions 
have known mineral sources such as 
mirablite, glauberite in and around the 
Mighan Lake (Ghadimi and Ghomi, 2012). 
Therefore, these associations can be explained 
by palaeo-saltwater intrusion (Ghadimi and 
Ghomi, 2012). The strong positive correlation 
between HCO3

- and Mg2+ (0.57), HCO3
- and 

K+(0.55), HCO3
- and Na+(0.46) indicated that 

they are likely derived from the dissolution of 
carbonate (Jiang et al., 2009) as well as the 
cation exchange in the aquifer. In general, the 
mineral contents found in groundwater 
samples often come from the dissolution of 
mineral materials predominant in the 
sediments (Ghadimi and Ghomi, 2012). 
Those that have no known mineral sources 
such as NO3

- could be attributed to some non-
natural processes, such as sewage effluents 
and industrial wastes (Jiang et al., 2009; 
McMahon and Bohlke, 2006; Rekha et al., 
2011; Güler et al., 2012). Both the palaeo-salt 
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water intrusion and the dissolution of 
carbonate contribute to the strong positive 
correlation of TDS values. However, the 
correlation between SO4

2-, Br-, Cl-, Na+ and 
Mg2+ suggested that palaeo-salt water 
intrusion plays a more important role. In 
addition, the occurrence of cation exchange in 
the discharge zone induced an increased 
correlation between Cl-, Ca2+ and Mg2+ and a 
decreased correlation between HCO3

- and 
Ca2+ (-0.08). The weak negative correlation 
between HCO3

- and Ca2+ also suggested that 
the dissolution of carbonate minerals is 
limited due to the limitation and 
heterogeneous distribution of carbonate rock 
in and/or around the study area. Moreover, the 
strong positive correlation of TDS, Cl- and 

Na+ (with r values ranging from 0.79 to 0.86) 
suggested that both palaeo-salt water intrusion 
and mineral precipitation/evaporation of 
mineral deposits are important factors 
contributing to the groundwater chemistry of 
the Arak aquifer. The pH showed a weak 
correlation with NO3

- (0.23), which can be 
explained by the strong acidity of the NO3

-

ion. This behavior can be partially attributed 
to the pollution, i.e. domestic and/or industrial 
waste waters. Fluorine and B- shows a 
positive and moderate correlation with some 
of the chemical variables examined, indicat-
ing that they either originate from the 
pollution or from the carbonate area (Ozsvath, 
2006; Kern et al., 2008; Ghadimi and Ghomi, 
2012).

 

 

 
Table 2. Correlation matrix of the 15 physical–chemical variables of the groundwater samples 

 

 
 EC pH TDS Ca2+ Mg2+ Na+ K+ HCO3

- Cl- SO4 
2- F- Si4+ Br- B- NO3

- 

EC 1               

pH -0.33 1              

TDS 0.99 -0.32 1             

Ca2+ 0.44 -0.09 0.47 1            

Mg2+ 0.70 -0.26 0.70 0.12 1           

Na+ 0.86 -0.19 0.86 0.29 0.49 1          

K+ 0.49 -0.36 0.53 0.23 0.25 0.44 1         

HCO3
- 0.59 -0.43 0.58 -0.08 0.57 0.46 0.55 1        

Cl- 0.79 -0.36 0.79 0.47 0.49 0.70 0.44 0.33 1       

SO4 
2- 0.58 -0.03 0.57 0.35 0.45 0.54 0.15 0.10 0.26 1      

F- 0.28 0.08 0.29 0.41 -0.03 0.39 -0.01 -0.11 0.18 0.49 1     

Si4+ 0.23 0.12 0.18 -0.27 0.38 0.19 -0.06 0.35 0.01 0.25 -0.11 1    

Br- 0.48 -0.39 0.47 0.19 0.38 0.38 0.15 0.20 0.35 0.31 0.05 0.24 1.   

B- 0.70 -0.25 0.70 0.09 0.54 0.60 0.58 0.76 0.51 0.36 0.03 0.20 0.04 1  

NO3
- -0.22 0.23 -0.20 0.26 -0.07 -0.33 -0.11 -0.15 -0.10 -0.14 -0.09 0.01 -0.24 -0.04 1 
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4.3. Factors controlling the groundwater 
chemistry 

The chemical composition of groundwater 
reflects the geologic source and contaminants 
from the anthropogenic sources. Factor 
analysis technique can highlight those groups 
of samples or outliers that are controlled by 
such factors from the more pervasive natural 
background (Thyne et al., 2004). In this 
study, Logratio data matrix was used in the 
factor analysis as described by Guler et al. 

(2002) to give each variable an equal weight 
in the multivariate statistical analysis. 
Statistical software was used to perform the 
factor analysis. Rotation of factor analysis 
was carried out using the Varimax method, 
where both Kaiser criteria were used to 
determine the number of factors. In this study, 
15 variables were combined by applying the 
factor analysis to produce five significant 
factors explaining 81.80% of the variance of 
the original data set (Table 3 and Fig. 8).

 

Table 3. Factor loadings (varimax rotated) for groundwater samples of the Arak aquifer (n = 36). 

 F1 F2 F3 F4 F5 
EC 0.68 0.52 0.20 0.41 -0.03 

pH -0.38 0.21 0.23 -0.06 -0.18 

TDS 0.70 0.53 0.16 0.40 -0.04 

Ca2+ 0.12 0.54 -0.34 0.30 -0.58 

Mg2+ 0.52 0.17 0.53 0.36 -0.11 

Na+ 0.59 0.61 0.12 0.23 0.17 

K+ 0.78 0.01 -0.24 0.11 0.01 

HCO3
- 0.83 -0.14 0.30 0.11 0.14 

Cl- 0.58 0.36 -0.09 0.46 -0.17 

SO4 
2- 0.16 0.75 0.32 0.11 0.01 

F- -0.05 0.83 -0.18 -0.10 0.06 

Si4+ 0.07 0.01 0.89 0.02 0.04 

Br- 0.01 0.18 0.25 0.85 0.09 

B- 0.90 0.15 0.18 -0.08 -0.01 

NO3
- -0.08 -0.17 0.05 -0.21 -0.89 

Eigenvalue 6.30 2.02 1.53 1.32 1.08 

% Total - variance 42.04 13.53 10.20 8.81 7.21 

Cumulative - % 42.04 55.57 65.77 74.59 81.80 

 *  Significant loadings are in bold 
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Fig.8. Relationships between different factors illustrated in loading plots

 

Most of the variance in the original data set 
is contained in the factor 1 (42.04%), which is 
associated with the variables Ec, TDS, K+, 
HCO3

- and B- (Table 3). Factor 1 contains 
both classical hydrochemical variables such 
as; Mg2+, Na+ and Cl- originating from the 
natural weathering processes of sediment-
ary/evaporitic rocks (e.g., dolomite and halite) 
found in the recharge areas (Ghadimi and 
Ghomi, 2012). Factor 2 explains 13.53% of 
the variance and is mainly related to Na+, 
SO4

2- and F- elements. Factor 2 includes 
classical hydrochemical variables that indica-
te salinization processes. It is also worth 
mentioning that in the Arak aquifer, the 
highest values of Na+ and SO4

2- generally 
occur in the low gradient areas intruded by 
the salty water. In addition, high values of 
Na+ and SO4

2- are mainly confined to the area 
where evaporite dissolution (mainly 
glauberite) is the main process affecting the 
groundwater chemistry. Additionally, salty 
water trapped in the sediments or lake-spray 

probably contributes to salinization of the 
groundwater in the area (Ghadimi and Ghomi, 
2012). The silica contributes most strongly to 
the third factor that explains 10.20% of the 
total variance (with a positive loading) (Table 
3). The chemical variables with strong correl-
ations with factor 3 (Si4+) are associated with 
groundwater chemistry mainly governed by 
the silicate weathering (Ghadimi and Ghomi, 
2012). The fourth factor is concerned solely 
with Br- and represents 8.81% of the total 
variance (Table 3). Figure 6 displays the 
distribution of the factor 4 scores in the study 
area, where the highest scores are generally 
observed around the Mighan Lake and where 
saline water activities of the Lake are 
widespread. Several factors control the 
general distribution of Cl-/Br- ratios in the 
ground water. The most important factor is 
probably the distance from the recharge area 
to the nearest source of particulate Cl-, which 
most commonly is around the saline lakes 
(Tweed et al., 2011). Based on Fig. 9, 
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