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ABSTRACT  

Ecosystem of arid and semiarid regions of the world, much of the country lies in the sensitive 
and fragile environment Canvases are that factors in the extinction and destruction are easily 
destroyed in this paper, artificial neural networks (ANNs) are introduced to obtain improved 
regional low-flow estimates at ungauged sites. A multilayer perceptron (MLP) network is used 
to identify the functional relationship between low-flow quantiles and the physiographic 
variables. Each ANN is trained using the Levenberg-Marquardt algorithm. To improve the 
generalization ability of a single ANN, several ANNs trained for the same task are used as an 
ensemble. The bootstrap aggregation (or bagging) approach is used to generate individual 
networks in the ensemble. The stacked generalization (or stacking) technique is adopted to 
combine the member networks of an ANN ensemble. The proposed approaches are applied to 
selected catchments in the Lorestan province, Iran, to obtain estimates for several 
representative low-flow quantiles of summer and winter time. The jackknife validation 
procedure is used to evaluate the performance of the proposed models. The ANN-based 
approaches are compared with the traditional parametric regression models. The results 
indicate that both the single and ensemble ANN models provide superior estimates than these 
of the traditional regression models. The ANN ensemble approaches provide better 
generalization ability than the single ANN models.. 
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1. Introduction 

Ecosystem of arid and semiarid regions 
of the world, much of the country lies in the 
sensitive and fragile environment. Canvases 
are these factors in the extinction and 
destruction which are easily destroyed. A 
large number of engineering activities 
require the availability of reliable low-flow 
frequency estimates. Such activities include 
fish habitat monitoring, water quantity and 
quality management, and environmental 
impact assessment. For a site with a 

sufficient amount of historical stream flow 
records, two traditional approaches can be 
used to obtain low-flow quantile estimates. 
The first approach is based on the standard 
procedure for hydro- logical frequency 
monitoring and analysis, which involves 
fitting a probabilistic dis-tribution to the 
observed low-flow data [see, e.g., Tasker, 
1987]. In the second approach, flow 
duration curves (FDC) depicting the 
frequency at which a given flow is equaled 
or exceeded, are constructed from the 
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available flow record, Smakhtin (2001) For 
ungauged sites, where no historical stream 
flow record is available, low-flow statistics 
are frequently estimated using regional 
regression techniques, Vogel and Kroll, 
(1992) and (Hu and Tsoukalas 2003). The 
most used regional regression model has the 
following generalized form Thomas and 
Benson, 1970, (Thomas and Benson 1975): 
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Where Qd, T is the d-day, T-year low-flow 
quantile at the site of interest (d, duration; 
T, return period); xi is the i thphysiographic 
or climatic characteristic used for quantile 
estimation; qi is the ith model parameter; n is 
the total number of site characteristics used 
in the model; and a is the multiplicative 
error term. Solving equation (1) using linear 
regression techniques generally requires 
linearizing the power form model by a 
logarithmic transformation to the form (2) 
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Parameters of equation (2) can be 
estimated using the ordinary, weighed or 
generalized least squares techniques. other 
approaches have been attempted for the 
prediction of low-flow chara-cteristics at 
ungauged basins� Such approaches include 
the drainage area ratio method based on the 
establishment of a linear drainage area 
discharge relationship, spatial interpolation 
and regional mapping techniques which 
assume the existence of a clear relationship 
between the flow field and explanatory 
physiographic variables, and the use of 
regional prediction curves which can be 
established by standardizing flows at gauged 
sites by a scale index and then combining the 
information into a single regional curve. It is 
also possible to synthetically generate a 

large number of stream flow time series 
based on records available at gauging stations 
and then proceed with the estimation of the 
regional low-flow characteristics. For a 
comprehensive review of methods of low-
flow estimation at ungauged sites the reader 
is referred to Smakhtin (2001) and Ouarda 
et al� (2008). 

Artificial neural networks (ANNs) are 
biologically inspired computing and modeling 
tools. One of the major benefits of ANNs is 
their capability to approximate arbitrary 
functions given sufficient parameters and 
training samples� ANNs have been 
successfully applied to solve a wide range of 
hydrological and water resources problems. 
Examples of such applications include 
rainfall-runoff modeling Modarres (2008), 
and Hu and Tsoukalas (2003), flood routing 
modeling (Peters et al. 2006), stream flow 
prediction (Moradkhani et al. 2004), ice 
dynamics modeling (Seidou 2006) and 
precipitation estimation (Hu and Tsoukalas 
2003) and (McCuen 2005). Tsoukalas (2003) 
and Rao (2000) provided a comprehensive 
review of the ANN application in hydrology� 

Recently, the use of ANNs for hydrological 
regionalization has been attracting increasing 
attention. As an alternative to regressive 
methods, single ANN and ANN ensemble 
models were introduced by Shu and Burn 
(2004) for regional flood estimation at 
ungauged sites. The application to selected 
catchments in the United Kingdom (UK) 
indicates that the nonlinearity introduced by 
the ANN models allows them to outperform 
parametric regression methods� 

The generalization ability of a single 
ANN can be improved by using a properly 
designed ANN ensemble� Dawson et al. 
(2006) applied ANNs to index flood and flood 
quantile estimation for 870 catchments across 
the UK� The results obtained from the ANNs 
are comparable in accuracy with those 
obtained by the Flood Estimation Handbook 
(FEH) (Peng 2010) models. Shu and Ouarda 
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(2008) applied the adaptive neurofuzzy 
inference system (ANFIS) and ANN 
approaches for regional flood frequency 
Monitoring and analysis, and the results 
indicated that both approaches show a better 
generalization ability than the parametric 
regression methods. Shu and Ouarda (2007) 
also developed a canonical correlation 
analysis (CCA) based single ANN and ANN 
ensemble models for improved regional 
flood estimation at ungauged sites� Despite 
the increasing popu-larity of ANN-based 
methodologies, they have never been applied 
to the regional frequency prediction of low-
flow characteristics. A relatively limited 
number of publications dealt with drought 
forecasting and drought risk assessment 
based on ANNs (McCuen 2005), (Mishra et 
al. 2007), (Morid et al. 2007), and (Ochoa-
Rivera 2008). It is the intent of this paper to 
apply ANN modeling techniques to regional 
low-flow estimation at ungauged sites. 
Specifics regarding the design and 
implementation of ANNs are discussed. Two 
ensemble techniques, bagging and stacking, 
are introduced to improve ANN generalization 
ability. The ANN models are also compared 
with the traditional regression models for 
low-flow estimation based on data from the 
province of Lorestan, Iran� 

The remainder of this paper is organized as 
follows: In section 2, a general introduction to 
the single and ensemble ANNs for regional 
low-flow monitoring is provided� In section 
3, a description of the study area is 
provided. In section 4, the details con-
cerning the config-uration of the single and 
ensemble ANNs, the estimation models to 
be compared, and the evaluation metho-
dology are presented. In section 5, the results 
obtained by applying the proposed approaches 
are presented and discussed. Finally, in 
section 6� the conclusions of this work and 
recommendations for further research are 
presented. 

2. General Background on the Use of 

Single and Ensemble ANN Models for 

Regional Low-Flow Monitoring 

2.1. Single ANN Model 

Among the various types of ANNs that have 
been developed over the years, multi-layer 
perceptrons (MLPs) (also known as 
multilayer feed-forward networks) originally 
proposed by peng et al [13] are the most 
commonly used and well- researched class of 
ANNs. A typical MLP has an input layer, at 
least one hidden layer� and an output layers. 
The layers are interconnected through 
weighted links from lower layer to higher 
layer, without lateral or feedback connec-
tions. The input layer receives values of the 
input variables for a given problem. There 
could be one or more hidden layers lying 
between the input and output layer. The 
output layer provides the ANN prediction 
and represents model output. Transfer 
functions used in the neurons of the hidden 
and output layers, which introduce non-
linearity to the network, play an important 
role in determining the behavior of an ANN� 
For the problem of low-flow quantile 
estimation at ungauged sites, an ANN model 
is used to approximate the functional 
relationship between the physiographical 
variables and the hydrologic variables 
which act as the input and output, respect-
ively of an ANN. Parameters in an ANN� 
which are called weights in the ANN literature, 
are determined through super-vised training. A 
bias unit helps convergence of the weights 
to an acceptable solution, and it can be 
thought of as a unit which is connected to 
the hidden and output layer and has a 
constant output of 1. An extra degree of 
freedom in the weight space is introduced 
by adding a bias unit. Once a network is 
trained and tested it can be given new input 
information to predict the output� During the 
training process, network parameters must be 
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optimized until the prediction error made by 
the network is minimized and the network 
reaches the specified level of accuracy. The 
error of a particular configuration of the 
network can be computed by comparing the 
ANN generated results with the desired 
outputs. The differences are combined 
together by an error function to give the 
network error. A MLP can be trained in either 
an incremental or batch style. In incremental 
training, network parameters are updated each 
time a training case is presented to the 
network. In batch training, network 
parameters are not updated until all the 
training cases are presented. Although it is 
arguable which training style results into 
better generalization ability, the sequential 
mode generally has a higher speed of 
learning (Hu Tsoukalas 2003)� 

There are also other training algorithms 
collectively known as second-order training 
algorithms that can significantly increase 
training speed. These methods include the 
conjugate gradient algorithm, the quasi 
Newton algorithm and the Levenberg-
Marquardt (LM) algorithm (Burney 2004)�
Among these algorithms, the LM algorithm 
(Hagan and Menhaj 1994) is considered to be 
the most efficient for training median sized 
artificial neural networks and works 
extremely well in practice (Burney 2004). The 
LM algorithm is a variation of the Gauss-
Newton algorithm, and it is developed to 
approach second-order training speed without 
having to compute the Hessian matrix. The 
new configuration of weight w in step n 
using LM algorithm is computed as: 
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where the Jacobian matrix J contains the 
first derivatives of the network errors with 
respect to weights and biases, i is the 
identity matrix, and e is a vector of network 
errors which is the difference between the 

actual and the desired value of the network 
output. Learning parameter m is modified 
based on the development of the error 
function e. More specifically, m is 
multiplied by the decay rate b (0 < b < 1) if 
e decreases in a new step, whereas m is 
divided by b if E increases in a new step. 
The LM algorithm is selected in this paper 
to train the ANNs, and the parameters of the 
algorithm are discussed in section 4.2. 

2.2. ANN Ensemble Model 

An ANN ensemble consists of a set of 
ANNs which are trained for the same task. 
Theoretical work by Hu and Tsoukalas 
(2003) suggested that the generalization 
ability of a single ANN can be significantly 
improved using an ensemble of ANNs with 
a plurality consensus scheme for a classi-
fication problem in which the final 
classification results are determined by the 
majority of the networks. McCuen (2005) 
proved that the generalization ability of an 
ensemble is largely controlled by two 
factors: the average generalization ability 
and the average ambiguity of the ensemble 
members. There are also several practical 
works, such as Shu et al (2008), Dawson et 
al (2006), which showed that the per-
formance of a single ANN can be improved 
by using appropriately selected ensemble 
techniques. Generally two major steps are 
involved in creating an ANN ensemble. The 
first step is to generate individual ensemble 
members, and the second step is to combine 
the prediction from the ensemble members 
to produce a unique output. Opitz and 
Maclin (1999) provided a review of the 
popular ensemble methods. Shu and Burn 
(2004) conducted a comprehensive eva-
luation of six ANN ensemble techniques for 
hydrological application. Shu and Ouarda 
(2007) applied bagging and averaging 
ensemble techniques to improve ANN per-
formance for regional flood estimation at 
ungauged sites.  
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Two widely used methods for creating 
ensemble members are bagging (Burney et 
al. 2004) and boosting (Hu Tsoukalas 2003) 
and, (Seidou 2006). Both of these methods rely 
on resampling algorithms to obtain different 
training sets for the component predictors. 
Bagging (Burney et al. 2004) is an acronym 
for ‘‘bootstrap aggregation,’’ and it is based 
on bootstrap statistical resampling technique 
(Hu and Tsoukalas, 2003). In bagging, each 
ANN is trained independently on a training 
set sampled with replacement from the 
original data set. Suppose there are m 
instances in the training set T. The training 
set of a member network, TB� is generated 
by sampling with replacement m times from 
the original training set T. Each instance of 
the original data set has a probability of 1/m 
to be selected. There could be a number of 
instances that are repeated several times in 
TB� while others may be left out. The 
probability that an instance from T will not 
be part of a bootstrap resample training set 
is (1 - 1/m) m, which is close to 0.37 for a 
large sample� The boosting algorithm was 
originally proposed by Schapiro (1990). The 
algorithm generates a series of ensemble 
members which are trained with different 
distributions of the original training data. 
The algorithm starts by training the first 
predictor with the original training set. Then 
the training set of a new predictor is 
sampled from the original data set based on 
a performance adjusted distribution. The 
dis-tribution ensures that high probabilities 
of being sampled are assigned to the 
training cases for which the predicted values 
obtained from the previous predictor differ 
significantly from their desired values. Thus 
training cases which failed to be correctly 
predicted by the previous predictor will have 
a greater chance of appearing in the new 
training set than those correctly predicted. 
Thus, the sequentially generated predictors 
by the boosting algorithm are specialized in 
different parts of the observation space.  

A number of authors, such as Zaidman et 
al. (2003), have shown that bagging is an 
effective approach to improve model 
generalization ability for both regression 
and classification problems. Shu, et al 
(2008) showed that boosting could generate 
better results than bagging in many situations. 
However, boosting is very sensitive to the 
outliers (Burney et al. 2004). Due to this 
major drawback of the boosting algorithm, the 
bagging algorithm is used in the present 
paper to generate the individual ensemble 
networks. Simple averaging is the most 
used method for combining members of an 
ANN ensemble (Zaidman et al. 2003). 
Stacked generalization is a more 
complicated approach that has generated 
significant interest among researchers 
during the recent years. Suppose that K 
member networks are generated, and the ith 
training case has a desired value yi and 
obtains a predicted value yik from the kth 
network. Combining the networks using 
simple averaging is defined as: 
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This method of combination has the 
benefits of easy implementation and 
improved performance (Peng et al. 2010) and 
(Burney et al. 2004). Stacked generalizability 
or stacking (Vogel and Kroll 1992) 
improves the generalization ability of a 
classification or regression model by using a 
two-layer architecture. In stacking, the way 
that the outputs from the predictors or 
classifiers at level 0 are combined needs not 
to be linear but through a level 1 generalizer 
which is also trained to minimize an error 
function. Suppose there are K predictors (in 
our case the ANNs) at level 0, and the data 
set used for training the level 1 generalizer 
has a size of n. The purpose of level 1 
training is to find the coefficients 

Kc...,,c,c
���

21  to minimize the following 
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function suggested by Breiman (Burney et 
al. 2004) for a regression problem: 
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where pattern i has a desired output yi and 
the prediction from the kth level 0 predictor 
is iy

�
 k. After the coefficients Kc...,,c,c
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are identified, the ensemble prediction for 
the jth pattern can be constructed by: 
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Equation (6) minimizes the squared 
absolute differences between the observed 
and predicted values. However, this process, 
when used to determine the coefficients, 
may be dominated by those patterns with a 
large error. A better option was suggested 
by Shu and Burn [2004] and consists in 
minimizing the squared relative difference: 
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This option was adopted in the present 
paper Hu and Tsoukalas (2003) and Shu and 
Burn (2004) compared the two approaches for 
combining ensemble members. The results 
of these two studies indicated that stacked 
generalization provides better estimation 
than averaging. 

2.3. Study Area 

The ANN approaches proposed in this 
paper are applied to the hydrometric station 
network of the southern part of the Lorestan 
province, Iran. Due to the strong seasonal 
variation in the flow regime of the region of 
study, it is more appropriate to study winter 
and summer low flows separately. In the 
present paper, low-flow quantiles QT,d 
corresponding to return periods of T=2, 5 
and 10 years and durations of d=7 and 30 
days are examined for the winter and for the 

summer time. These quantiles are commonly 
used in Canada for the purpose of water 
quality control and fish habitat protection. 
To ensure the quality of the low-flow study, 
catchments selected from the 30 hydro-
metric stations managed. 

1. A historical flow record of at least 10 
years is required. 

2. The gauged catchment should present a 
natural flow regime. 

3. The historical data at the gauging stations 
should pass the McCuen test of stationarity 
(McCuen 2005) and the nonparametric 
independence test by Zaidman et al 
(Zaidman et al. 2003). 

As a result, 134 and 129 sites were 
selected for the monitoring of QT, 30 and 
QT, 7, respectively, during summer. During 
winter, 135 and 133 sites were selected for 
the analysis of Q T, 30 and QT,7, res-
pectively. The locations of the selected 
hydrometric stations are shown in Figure 1. 

A set of physiographical and meteoro-
logical variables that are most suitable to 
explain the low-flow processes are used in 
this study. These variables are the basin area 
(A), the percentage of the basin area 
occupied by lakes (PLAKE), the percentage 
of the basin area covered by forest (PFOR), 
mean annual degree days below 0˚C (DJBZ), 
average summer/ autumn liquid precipitation  
(PLME), average number of days for which the 
mean temperature exceeds 27˚C (NJH27) and a 
soil characteristic: the curve number (CN). The 
value of 27˚C represents a specific regional 
hydrology and climatology threshold for 
Lorestan indicating the average of July 
maximum temperatures. The summary sta-
tistics and a brief description for these 
variables are presented in Table 1 provide 
more details concerning the description of 
these variables and the methodology used to 
build the physiographical and meteoro-
logical databases. 
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for the estimation of the winter low-flow 
quantiles, the regression equation is given by: 
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3.2. Single and Ensemble ANN Models 

Adopted in this Study 

MLP is selected as the single ANN model 
(SANN) and the base model of an ANN 
ensemble to establish the relationship 
between low-flow quantiles and catchment 
descriptors. The actual MLP adopted in this 
paper consists of an input layer, one hidden 
layer, and an output layer. Proper 
preprocessing is generally required for both 
inputs and outputs of an ANN. As a result, 
inputs are normalized so that they have 
mean of zero and standard deviations of 
one, while a logarithmic transformation is 
used for the output layer. Shu and Burn 
(2004) and Shu and Ouarda (2007) pointed 
out that if a linear transformation is used for 
the output, an ANN may concentrate the 
effort on learning patterns having large 
values. By taking logarithms, these problems 
can be mitigated, since a difference between 
two logarithmic transformed values measures 

the ratio of the original values. The added 
benefit of using logarithmic transformation for 
low-flow estimation is that quantiles 
estimated by an ANN cannot fall into 
unrealistic negative flow. The transfer 
functions for the hidden nodes and the 
output nodes use the tan-sigmoid function 
and the linear function, respectively. The 
same set of independent variables used for 
regression analysis is used as the inputs for 
the ANN models. Thus five input nodes are 
used in the ANNs for summer low-flow 
estimation, and four input nodes are used in 
the ANNs for winter low-flow estimation. 
Each ANN has one output which is the low-
flow quantile to be estimated. 

The ANN models developed in this paper 
are trained using the LM algorithm. The 
parameters are updated in the batch mode. 
The scalar parameter m in equation (3) is 
adjusted during the network training 
according to the system performance. The 
LM algorithm behaves as a gradient descent 
method with a small step size when the 
value of m is large. However, when the 
value of m is close to zero, the algorithm 
approximates the Gauss-Newton method 
(Dawson et al. 2006). The initial value for 
m is given as 0.005 in this paper. If a 
training epoch decreases the performance of 
the network, the value of m is multiplied by 
md=0.1. If a training epoch increases the 
performance of the network, the value of m 
is multiplied by mi=10$. The ANNs stop 
training when m reaches a preset parameter 
mmax=1.106. 

Using proper combination of nonlinear 
transfer functions in the hidden layers 
enables an ANN to approximate successfully 
any complex nonlinear relationships. How-
ever, when too many hidden neurons are 
used in the ANN, the ANN can be easily 
over trained due to excessive model degrees 
of freedom. To overcome the problem of 
overtraining in ANN modeling, the early 
stopping and weight decay approaches can 
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be used (McCuen 2005). The use of early 
stopping requires dividing the training data 
into two parts. One part is used for network 
training, and the other part is used for 
network validation. The basic idea of early 
stopping is to stop ANN training when the 
validation error reaches a desirable 
minimum. In the weight decay regularization 
algorithm, the error function, which is 
minimized during the training phase, is 
augmented with additional terms that 
penalize the complexity of the model. The 
new error function msereg with penalty has 
the following form: 

( ) mswmsemsereg γγ −+= 1 ��������������������(10) 

Where � is the performance ratio, mse is 
the typical performance function (mean 
square error) used for ANN training, and 
msw is the mean of the sum of squares of 
the network weights. Using a simple early 
stopping strategy such as randomly 
selecting the validation set is the widely 
adopted approach for preventing overfitting. 
However, Shu and Burn (2004) indicated 
that there are two major problems with early 
stopping. First, a validation set needs to be 
extracted from the training set, which may 
lead to insufficient data being available to 
successfully train an ANN. Second, how to 
optimally separate the validation set still 
remains a major challenge. Thus, the weight 
decay regularization method is adopted in 
this paper. The ANN ensemble (EANN) 
model is proposed here to improve the 
generalizability of the single ANN models. 
The member networks of the EANN are 
generated using the bagging algorithm, 
while the stacked generalization method is 
used to combine these individual networks 
to generate a unique output. A total number 
of ten ANNs are used in each ANN 
ensemble. Member networks of the 
ensemble ANN model use the same confi-
guration as the single ANN model. 

3.3. Evaluation Criteria 

A jackknife evaluation procedure 
(Modarres 2008) and Shao (Shu et al. 2008) 
is used in this paper to compute the 
goodness of fit statistics and the evaluation 
criteria necessary for the assessment of the 
performance of the various regional low-flow 
frequency models. The advantage of the 
jackknife procedure is that model accuracy 
obtained using the procedure is independent 
of the calibration data (McCuen, 2005). In 
jackknifing, the flow record of one 
catchments in the study area is held out 
from the database, thus the catchment is 
considered as ‘‘ungauged.’’ Then the 
coefficients in the regional regression models 
or weights in the ANN models are calibrated 
or trained using the data from the remaining 
sites to obtain the estimates of the 
catchment that is held out. This process is 
continued until regional estimates are 
obtained using the proposed models for all 
the sites in the study area. A set of five 
indices is used to evaluate the regional low-
flow frequency analysis models proposed in 
this paper. These indices are the Nash 
criterion (NASH), the root mean squared 
error (RMSE), the relative root mean 
squared error (RMSEr), the mean bias 
(BIAS), and the relative mean bias (BIASr). 
They are computed using the following 
equations: 
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Table 4. Jackknife Validation Results for WinterLow

 Single ANN Model
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Single ANN Model

5,30 Q2,7

0.97 0.96

31.12 38.57

39.77 40.11
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6.54 -4.66

Jackknife Validation Results for WinterLow

Single ANN Model
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0.91 0.92 
16.51 18.11 
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1.27 1.32 

. 38 -6.43 

RMSE of summer low-flow estimation using single ANN models with the number of hidden neurons 
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where n is the total number of stations being 
modeled, qi is the at-site estimate for site i, 
^qi is the estimate obtained from the regional 
low-flow model for site i, and q is the mean of 
at-site estimation of the n stations. 

4. Results and Discussions 

ANN structures need to be optimally 
designed so that the resulting ANN models 
can obtain desirable generalizability. One of 
the most challenging but important issues 
when designing a MLP is the determination 
of the number of neurons in the hidden 
layer. To illustrate this issue, the 
performance of a single ANN model is 
evaluated by sequentially increasing the 
number of hidden neurons from one to a 
relatively large number, 20 (Figures 2 and 
3). The performance measure, RMSE, is 
obtained from a tenfold cross-validation 
procedure for each ANN. From Figure 2, the 
ANNs achieve lowest RMSE when the 
number of hidden neurons of the ANNs for 
summer low-flow quantiles Q5, 30, Q2, 7 
and Q10, 7 estimation is equal to 8, 9 and 9, 
respectively. If less than 6 neurons are used in 
the hidden layer, the ANNs do not have 
sufficient complexity to fully represent the 
functional relationship between the system 
inputs and outputs. This results in the 
problem of underfitting.  

However, if the number of hidden 
neurons increases above 10 neurons, the 
ANN model may suffer from the problem of 
overfitting. This is caused by the large 
number of hidden neurons which leads to 
not having enough training cases to 
adequately train all the neurons in the ANN. 
From Figure 3, we can observe that the 

ANN models for winter low-flow quantile 
estimation achieve lowest RMSE when the 
numbers of hidden neurons for Q5,30, Q2,7 
and Q10,7 estimation increase to 11, 13, and 
14, respectively. The ANNs tend to underfit 
if less than 8 neurons are used in the hidden 
layer. However, if the number of hidden 
neurons increases over 15, the ANN models 
may lead to the problem of overfitting. 
Overall, the performance of the ANN 
models for both summer and winter low-
flow quantile estimation improves 
dramatically with the initial increase of the 
number of hidden neurons. For winter low-
flow quantile estimation, ANNs show more 
resistance to over fitting compared to 
summer low-flow quantile estimation. The 
SANN, EANN and the parametric regression 
models are applied to the study area for 
summer and winter low-flow quantile 
estimation. The results obtained using the 
jackknife validation procedures are 
presented in Tables 3 and 4, respectively. 
The NASH criterion is a widely used 
goodness of fit measure for hydrological 
models. The criterion indicates a perfect fit 
if it is equal to 1. Normally the model fit 
can be considered as good if the NASH 
criterion is above 0.8. All the models 
evaluated in the present paper, for both 
summer and winter low-flow quantile 
estimation, have a NASH criterion higher 
than 0.89. This indicates that all these 
approaches provide a very satisfactory fit. 
However, both SANN and EANN methods 
show better performances in the NASH 
criterion than the parametric regression 
method for the estimation of all low-flow 
quantiles evaluated in this paper. 

For the estimation of summer low-flow 
quantiles, both SANN and EANN 
approaches show a better performance in 
the RMSE and RMSEr indices than the 
regression approach. This indicates that the 
ANN based approaches provide better 
prediction accuracy in both absolute and 
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relative scale. For the winter low-flow 
quantile estimation, both the SANN and 
EANN models show better performance 
than the regression model in the RMSE 
criterion. However, the regression model 
shows better performance than the SANN 
model in the RMSEr criterion. This indicates 
that the SANN model shows a better 
performance in the absolute error and a 
lower performance in the relative error than 
the regression model for winter low-flow 
quantile estimation. The EANN approaches 
have the best performance in both RMSE 
and RMSEr indices for winter low-flow 
quantile estimation. This can be explained 
by the two level structure of the EANN 
model. The level 0 training of the EANN 
model uses mean square error with weight 
penalty as the performance function which 
can essentially improve the model 
performance in the RMSE criterion,  

Based on the BIAS index, all the 
approaches tend to overestimate low-flow 
quantiles, and the EANN and SANN 
approaches represent the least biased 
models for summer and winter low-flow 
estimation, respectively. However, the 
Monitoring based on the BIASr index 
suggests that all models underestimate low-
flow quantiles, and the EANN approach is the 
least biased model for both summer and 
winter low-flow estimation. The con-
tradictory signal sent by the BIAS and BIASr 
indices is mainly caused by scale effects. 
Sites with larger quantile values have more 
influence on the BIAS index than the 
smaller sites, while the BIASr index treats 
each site in the study area equally. The 
regional estimates of the summer low-flow 
quantiles using the SANN, EANN, and 
regression approaches are shown in Figures 
4, 5, and 6, respectively. The single and 
ensemble ANN models show a better overall 
performance according to these figures 
compared to the regression approach. For 

the sites with local estimates of the summer 
low-flow quantiles Q5, 30, Q2, 7 and Q10, 
7 in the ranges of (0, 500), (0, 500) and (0, 
400), respectively, the EANN model shows 
a significantly better performance than the 
SANN model. The ANN based approaches 
also provide less biased estimates at these 
sites compared to the regression method. At 
the five sites with quantiles Q5, 30, Q2, 7 
and Q10, 7 in the ranges of (500, 1400), 
(600, 1600) and (400, 1100) respectively, 
EANN and SANN models show a 
comparable performance. There is one 
noticeable outlier (site 076601) which is 
identified by the regression method. 
Compared to other sites with a similar 
catchment area in the database, this site has 
an unusual low mean number of days (only 
1.1) for which the temperature exceeds 
27˚C and a small curve number (27.0). 
Unlike the regression method, both single 
and ensemble ANN models lead to very 
good estimates at site 076601. There is 
another noticeable outlier (site 090601) 
which is identified by all the approaches. 
Compared to other sites with a similar 
catchment area in the database, this site has 
a very high percentage of the basin that is 
covered by forest (94%), a very low 
percentage of the basin area that is covered 
by lakes (5%) and a small value of the curve 
number (26.7).  The regional estimates of 
the winter low-flow quantiles using the 
SANN, EANN, and regression approaches 
are shown in Figures 7, 8, and 9, 
respectively. All the approaches have good 
performances at catchments with local 
estimates of the winter low-flow quantiles 
Q5, 30, Q2, 7 and Q10, 7 in the ranges of 
(0, 120), (0, 130) and (0, 100), respectively, 
although ANN based approaches show a 
better performance at these catchments. 

For the catchments with local estimates of 
the quantiles Q5,30, Q2,7 and Q10,7 in the 
ranges of (120, 400), (130, 450) and (100, 
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Table 5. Jackknife Validation Results Using Specific ANN Models 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 4. Jackknife estimation of the summer low-flow 
quantiles using the SANN approach 

Fig. 5. Jackknife estimation of the summer low-flow 
quantiles using the EANN approach 

 

 Summer Low Flow Winter Low Flow 
 Q5,30 Q2,7 Q10,7 Q5,30 Q2,7 Q10,7 

NASH 0.95 0.95 0.94 0.89 0.89 0.90 
RMSE 37.68 38.64 36.28 18.07 20.11 16.12 

RMSEr(%) 51.17 49.15 60.99 37.73 34.49 44.58 
BIAS -3.19 -5.05 -1.49 0.39 0.32 1.03 

BIASr(%) -11. 20 -10.8 -15.15 -8.57 -7.88 -8.34 
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Fig. 6. Jackknife estimation of the summer low-flow 
quantiles using the regression approach 

Fig. 7. Jackknife estimation of the winter low-flow 
quantiles using the SANN approach. 

 

 
Fig. 8. Jackknife estimation of the winter low-flow 

quantiles using the EANN approach 
9. Jackknife estimation of the winter low-flow 

quantiles using the regression approach 
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techniques, bagging and stacking, used for 
creating and combining ensemble members, 
respectively, are adapted here to build the 
ANN ensemble models. The application of 
the ANN-based models and the traditional 
regression method in the study area for low-
flow estimation for both the summer and the 
winter time shows that superior results can 
be achieved byusing both single and 
ensemble ANN models. For summer low-
flow estimation, the ensemble ANN leads to 
better estimation compared to single ANN for 
all the performance indices, and the im-
provement in the relative measures including 
RMSEr and BIASr is significant. For winter 
low-flow estimation, the ensemble ANN leads 
to better estimation compared to single ANN in 
four out of the five performance indices, and 
the improvement in RMSEr is significant. Due 
to the architecture of the staked generalization, 
two different types of performance functions 
are used in ANN ensemble models. The level 0 
and level 1 generalizers in an ANN ensemble 
use performance functions in absolute and 
relative scale, respectively. 

This kind of setup in an ANN ensemble 
makes the training process essentially a 
multi-objective search for the optimal 
parameters (weights). The advantage of this 
ANN ensemble structure is manifested in the 
application to the estimation of winter low-
flow quantiles in the study area. Compared to 
the single ANN model which shows a good 
performance in the RMSE performance 
measure and a bad performance in the RMSEr 
measure, the ANN ensemble model 
simultaneously improves the per-formances in 
both RMSE and RMSEr measures. The type of 
ANN selected in the present paper for regional 
low-flow Monitoring is MLP. Further studies 
are required to investigate the feasibility of 
other types of ANNs such as radial basis 
network and generalized regression network. 
Indeed, these types of ANNs use very 
different architectures and learning 
algorithms for networktraining and 

simulation. A multi-model ANN ensemble 
based on these types of ANNs could also be 
employed for regional low-flow estimation. 
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