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ABSTRACT 

Practical concept of velocity distribution of pressure flow in the bends is interesting and hence, the 
professional engineering design has been investigated in the current study. This paper shows that 
velocity distribution in the bends can be analyzed in terms of the probability distributions. The 
concept of entropy based on the probability is an applied and new approach to achieve velocity 
profiles in bends, presented by the probability distribution and tsallis entropy maximization under 
the importing constraints. Due to the lack of a specific equation of velocity distribution in the bends, 
the particular equation in the various band sections was obtained through the numerical simulation 
of three dimensional flow in the 90-degree bend (via Fluent). In this simulation, flow regime was 
laminar and the Reynolds number was in the range of 100 to 2000. Then, for m=2, the velocity 
distribution function was obtained. Studies showed that the proposed model for the mentioned range 
of Reynolds numbers is in a good agreement with other study results. The calculated error values 
indicated a reasonable accuracy. The model can directly calculate the velocity at each point of the 
spatial position. The calculated values were also compared with the results obtained from the 
velocity distribution based on the Shannon entropy. The results showed a reliable estimate of the 
velocity profiles. 

Keywords 

Velocity distribution; Bend; Tsallis entropy; Reynolds number 

1. Introduction 

Flow in bends and arcs is a main component 
in the water conveyance structures and 
structures related to the dams. Secondary and 
spiral flows in bends have a more complicated 
flow pattern than the flow in direct channels 
and this complexity is of utmost importance to 
be studied in this field. Bovendeerd et al. 
(1978) investigated the velocity profiles and the 
flow velocity contour in 90-degree bends using 
the finite element method. They used the 
laminar parabolic profile as the input condition 
and coherent definition of the flow field around 
the bend, the intensity of secondary motions 

and velocity axial profile presented in several 
sections. Van De Vosse et al. (1989) modeled 
the velocity profile in a three dimensional 
pressure flow at a 90-degree bend using the 
finite element method (Galerkin) considering 
different angles and compared the results with 
experimental ones and observed an acceptable 
agreement. Nakayama et al. (2003) carried out 
experimental investigation on the 180-degree 
duct and surveyed the results measured in 
separated areas and distribution of Reynolds 
stresses in the flow direction. Sparrow et al. 
(2009) examined the separation of the wedge-
shaped ducts and concluded that it is affected 
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by the Reynolds number and to change the 
separation diameter dimensionless parameter to 
diameter, against Reynolds number and 
considering the different divergence angles, 
they presented curves. Sadeghfam and Akhtari 
(2012) studied flow separation in the bends at 
different refraction angles by the Fluent 
numerical model and provided relations and 
graphs for the length and thickness of the 
separated area. 

Previous studies have shown that the entropy 
can be an effective tool to provide a new way of 
hydrology and water resources research (Singh, 
1997). Chiu (1978, 1988, 1989) obtained a 
velocity distribution equation in narrow 
channels by applying entropy concept and 
principle of maximization of entropy (Shannon, 
1948). A new coordinates system,   , were 

formed as Isovel of primary flow and their 
vertical directions by Chiu et al. Tsallis (1988) 
provided a generalization of measurement 
entropy Boltzmann-Gibbs. Tsallis entropy is a 
generalization of Shannon entropy and includes 
additional parameters that can be used to create 
more or less sensitive to the shape of the 
probability distribution (Maszczyk and Dush, 
2008). Araujo and Chaudhry (1998) investigat-
ed velocity distribution with measured longitu-
dinal data and found that the entropy model 
acted better than the logarithmic model, not 
only in general terms but also in all regions of 
the flow, especially near the bottom of the 
channel. Moramarco et al. (2004) developed a 
simple method to reconstruct the velocity 
profile in a section of the river, which was 
based on the assumption that Chiu velocity 
distribution can be applied locally. They 
showed that the shape of the observed velocity 
profiles for severe flood events can be 
estimated using the simplified proposed 
method. Luo and Singh (2011) developed a new 
velocity distribution equation for open channel 
flow using the concept of tsallis entropy. To 

reduce many of the parameters in the 
coordinate system, Marini et al. (2010) devel-
oped a new method for the obtained two-
dimensional velocity distribution. In their 
studies, the cumulative distribution function 
under x-y coordinate system was assumed. 
Bonakdari and Moazamnia (2013) predicted the 
velocity distribution and discharge in sewers 
using the Shannon entropy and measured data 
from a real measurement site of sewers used for 
testing and application of theory and showed 
that the model was capable of modeling and 
simulation of the velocity distribution from the 
channel bed to the free surface. In this study, a 
general formula for velocity in ends using the 
principle of entropy maximization and 
integration of the changes was derived. 
Obtained equation has fewer parameters and 
simple calculations and the predicted values of 
the cross-section velocities are in a very good 
agreement with the field data. 

2. Numerical modeling and laboratory 
results 

In this study, in order to obtain the 
cumulative probability distribution function, 3D 
pressure flow was numerically modeled in the 
bends and for validating the numerical 
simulation, experimental results of Olsen et al. 
(1971) were used. The 90-degree bend in this 
study, had two arms. The inlet and outlet arm 
lengths were 300 and 150 mm, respectively 
with a diameter of 8 mm. in addition, the 
curvature radius of the bend was 24 mm. Due to 
the small size of the survey results and in order 
to eliminate the effect of the dimension, the 
results were presented using the dimensionless 
parameters. In the flow analysis, steady and 
laminar flow conditions were assumed. Bend 
geometry and its mesh was provided by pre-
processor of the Gambit software. Figure 1 
shows the geometry of the 90-degree bend as an 
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example. In this figure, area A is the inlet 
boundary with a velocity inlet type, area B is 
the wall and due to pressure development, area 
C is the pressure outlet of the outlet section. 

 
Figure 1. Boundary conditions and geometry of the 

90-degree bend 

The hexagonal and map mesh types were 
used in this study. The number of mesh grids 
for the 90-degree bend was 114114 that was 
determined using Gambit preprocessor softw-
are. The numerical solution was used to obtain 
the geometry of the flow field by the Fluent and 
Gambit softwares. In addition, the Standard 
scheme was used for discreting the pressure, 
Quick scheme was used for discreting the 
momentum and turbulence equations and also  
the Simple algorithms wee used for velocity 
and pressure coupling. 

3. Concept and theory of the entropy 

Entropy, as the second law of thermo-
dynamics, is the macroscopic properties of a 
system that measures partial irregularities in the 
system. In information theory, Shannon (1948) 
has formulated the concept of the theory as a 
measure of information or uncertainty associ-
ated with the random variable or its probability 
distribution. In the next decades, principle of 
maximum entropy for obtaining the probability 
distribution of the random variable under given 
information in terms of constraints was 
expressed by Jeans (1957). The entropy can be 
considered as a useful property of a probability 
distribution and is widely applied in the 
environmental engineering and water, including 

geology, hydrology, and hydraulic. Recent 
application of the entropy theory in hydrology 
and water resources has been reviewed and 
discussed by Singh (1997). Application of the 
entropy concept in the hydraulics has been 
suggested by Chiu (1987, 1988, 1991) and a 
simple method to derive an equation for the 
velocity distribution using the concept of 
probability and entropy maximization principle 
was presented. This method can describe the 
velocity changes in the vertical and lateral 
directions, with maximum velocity occurs on or 
below the surface. 

3.1. Shannon entropy 

Shannon (1948) developed entropy theory to 
describe the uncertainty of information in the 
field of communication, which now is as a 
useful characteristic of a probability distribu-
tion of each item determined. In the probability 
theory, a random variable value shows possible 
from an experiment that is variable 
(uncertainty). Shannon defined a quantitative 
measure of the uncertainty associated with a 
probability distribution of the random variable 
in terms of entropy. Shannon entropy is called 
the entropy information and can be expressed 
as follows: 


N

i
ii ppH log                                      (1) 

     where ip  is the probability of a random 

variable, and N is the total number of values. 
Shannon entropy in hydraulic engineering 

can be developed to continuous random 
variables. For a random variable X, throughout 
the rang ( ,  ) is continuous, Shannon 

entropy is expressed as follows: 

 





N

i

dxxpxpH )(log)(         (2) 

where p(x) is the probability density function 
of a continuous random variable x. 
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3.2. Tsallis entropy 

Entropy of a system can be related to its 
energy production. Since the energy is directly 
proportional to the energy in a system, when 
the energy is minimized, energy production is 
minimal. Entropy principles show that an open 
system in which matter and energy can enter or 
leave the system, minimum entropy production 
can be achieved at equilibrium (Chiu, 1988). 
Tsallis (1988) proposed a general form of the 
Shannon entropy as follows: 




 





1

1
})]([1{

1

1

m
dsxf

m
H m     






 })]([1){( 1dxxfxf m         (3) 

where m is a real number, and when m>0, 
entropy becomes a convex function. For m=1, 
the above equation converts to the Shannon 
entropy. Similar to the Shannon entropy, tsallis 
entropy can be combined with principle of 
maximum entropy to achieve the probability 
distribution of a given random variable and is 
possible in many cases to give more accurate 
results than the Shannon entropy.  

3.3. Constraints 

Flow in a channel satisfies the conservation 
of mass, momentum and energy laws and these 
laws can be employed to define constraints that 
the velocity distribution must obey. Therefore, 
the constraints are defined as follows. Integra-
tion of the probability density function of 
velocity must always be unity, so the first 
constraint is expressed as follows: 

 
max

01 1)(
u

duufC             (4) 

The second constraint, 2C , is achieved by 

using mass conservation: 

 
max

02 )(
u

uduuufC             (5) 

where u  is the cross-sectional mean velocity 

or Q/A, Q is the discharge passing through a 

cross-sectional area A. 

The third constraint, 3C , is obtained from 

the conservation of momentum law: 

 
max

0

22
3 )(

u
uduufuC            (6) 

where  is the momentum distribution 

coefficient. 

The fourth constraint, 4C , is achieved from 

the energy conservation law: 

 
max

0

33
4 )(

u
uduufuC          (7) 

where α is the energy distribution 

coefficient. 

4. Probability Cumulative distribution 
function 

Analysis of the flow in the Reynolds number 
range of 100 to 2000 (step 100) was performed 
and after reaching the convergence, flow 
velocity profile at angles of 90-degree (bend 
outlet) and 45 degrees (bend center) was 
extracted. It is noted that validating the 
numerical model by comparing the 
experimental results of the Olsen et al. (1971) 
at Reynolds number 300 has been made. The 
following figure shows that there is an 
acceptable agreement between the results of the 
numerical modeling and the experimental 
results. In this figure, the horizontal axis 
represents the normalized diameter of the tube 
so that a zero value represents the inner wall 
and 1 represents the outer wall. The vertical 
axis in Fig. 2 shows the dimensionless 
parameters (axial velocity/average velocity).  
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Figure 2. Comparison of numerical modeling velocity profiles and experimental results of (Olsen et al) at Reynolds 

number 300

Then, the cumulative probability distribution 
function for each Reynolds number in the 
mentioned range has been calculated by using 
the results of the numerical modeling. Finally, 
the polynomial equation (following equation) 
with an acceptable regression coefficient was 
used for both 90 and 45-degree sections. In this 
equation, r represents the radius of the pipe 
section (variable parameters) and r0 is the 
radius of the cross section. Thus, r/r0 is a 

dimensionless parameter and ranges from +1 to 
-1. F(u) is the velocity cumulative probability 
distribution function. In Table 1, the 
coefficients of the equation and the regression 
coefficient for the velocity cumulative 
distribution function are given.  

         45
5

4
6

3
7

2
8

1)( xpxpxpxpxpuF 

     
 0

9
1

8
2

7
3

6

/ rrx

pxpxpxp




       (8) 

Table 1.Pproperties of the velocity cumulative probability distribution function 

Regression 

coefficient 
P9 P8 P7 P6 P5 P4 P3 P2 P1 

Equation 

constants 

0.957 0.431 1.001 1.606 -1.9 -5.094 3.219 7.117 -2.313 -4.06 

45 degrees 

Section 

(bend center) 

0.9697 0.4771 0.2161 1.498 0.3065 -4.346 0.999 6.519 -1.504 -4.147 

90-degree 

Section 

(bend outlet) 
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5. Probability density function 

In the following part, the probability density 
function f(u), which can be completed by 
Tsallis entropy was determined. Using the 
principle of maximum entropy and the 
constraints imposed by Eqs. (4) to (7) using the 
Lagrange multipliers for m>0, the Tsallis 
entropy expressed by equation (1) is maximum 
as follows: 

 


 max

0 0
1})]([1{

1

)(u m duuf
m

uf
L   

 
maxmax

0 20 1 ))(()1)((
uu

uduuufduuf   

 
maxmax

0

33
30

22 ))(())((
uu

uduufuuduufu  (9) 
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


 



u
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uf
ufL

u m

100

1
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1

)]([1
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3

3

2

210
3

3
2

2 uuuduuu    (10) 

where u is the velocity at a given point, maxu  

is the maximum velocity of the cross section, u  
is mean velocity, f(u) is the probability density 

function, m is a real number, and i  is the 

Lagrange multiplier. By considering 
( )

L

f u




 

equal to zero, the probability density function 
f(u) is obtained as follows: 

1

1
3
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2
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1
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


 muuu
mm

m
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





 u
m

m
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1

[)(
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1

1
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2

2 }]  muu                  (12) 

Eq. (12) is the probability distribution of the 
minimum power and satisfies Eqs. (4) to (7) 
and is defined based on Tsallis entropy. 
According to the theory of Brabe et al. (1991), 

two constraints are sufficient for the accurate 
description of the velocity distribution: 

1

1

1* }]{
1

[)( 


 mu
m

m
uf          (13) 

Tsallis entropy function is obtained by 
substituting the probability density function in 
Tsallis entropy equation as Eq. (3) as follows: 

)(
1

1

1
1* u

mm
H  


          (14) 

6. Two-dimensional velocity distribution 
model based on Tsallis entropy 

By assuming the cumulative function, the 
next step is to calculate the distribution of the 
velocity profiles using a probability density 
function based on entropy. To obtain a general 
case, consider density function in the two-
dimensional form as (z,y), where y is the depth 
of the channel and z is the width distance from 
the center line. Because velocity is a function of 
z and y, f(u) can be written as f(u(z,y)). Since 
f(u) is derivation of the cumulative distribution 
function F(u), by accepting the partial 
derivative of F(u) with regard to z and y, the 
following equations are obtained: 




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u
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





y

u
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y

u

u

uF

y

uF
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)()(
       

y

u
u

m

m m





 1

1

1* )](
1

[                 (16) 

Equations are simplified by defining a new 
variable as follows: 

1
1* )](

1
[ 


 m

m

u
m

m
K            (17) 
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Partial derivatives of K calculated by 
considering z and y are as follows: 

z

u
u

m

m

z

u

u

K

z

K m









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By comparing Eqs. (18) and (19) with Eqs. 
(15) and (16), the relation between F(u) and K 
can be formed as follows: 

z

uF

z

K






 )(

1                (20) 

y

uF

y

K






 )(

1                (21) 

Eqs. (20) and (21) are as a system of liner 
differential equations that can be solved using 
the Leibnitz rule: 

)0,0(),(
),(

)0,0(
KyzKdy

y

K
dz

z

Kyz









      (22) 

Since the point with the coordinates (0,0) is 
located on the bottom of the channel, its 
velocity is u=0, K(0,0) on the right hand side of 

Eq. (22) is equal to 1
*

1
[ ( )]

m

mm

m
 

 in Eq. (17). 

Therefore, the right hand side of Eq. (22) is as 
follows: 

 1
*)](

1
[),()0,0(),( 

 m

m

m

m
yzKKyzK     (23) 

Definite integrals on the left hand side of Eq. 
(23) can be calculated in a general point of 

coordinates ( ,z y ) that can be identified by a 

polygonal curve that starts from the origin of 

axes (0, 0), passes through the point ( ,0z ) and 

ends at ( ,z y ). The cumulative distribution 

function F(u) is constant and equal to 0 at the 
point (0,0). Thus, using Eqs. (20) and (21) and 
integration of Eq. (22) we have: 










 dy
y

uF
dz

z

uFyz )()(
1

),(

1    

)(
)(

10 1 uFdy
y

uFy
 




           (24) 

By combining Eqs. (23) and (24) results in 
the following: 

  








),(

)0,0(

),(

)0,0( 1

)(yz yz
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w
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y
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



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1                     (25) 

  Hence K(z,y) can be obtained as follows: 

1
*1 )](

1
[)(),( 

 m

m

m

m
uFyzK        (26) 

By replacing K defined by Eq. (26) in Eq. 
(17), the velocity distribution function is 
obtained as follows: 

m

m

m

m

m

m
uF

m

m
u

1

1
*1

11

* ])
1

()([
1

1 





 


 (27) 

Therefore, the general velocity distribution 
is obtained using the tsallis entropy. Using Eq. 
(27) the velocity distribution can be obtained 
for both 1D and 2D cases. To describe the 
velocity distribution on the y axis of the 

channel, considering that maxu  occurs below the 

water surface, F(u) can be obtained with regard 
to Eq. (8).  

6.1. Velocity distribution equation based on 
the Tsallis entropy 

Velocity distribution for different m values 
and different data was calculated and for m=2, 
the best matching result was obtained. In 
general, considering of the difficulty in solving 
the equations and compared with the 
experimental data, m=2 is the best choice with a 
reasonable accuracy in the calculation of the 
velocity distribution. For m=2, two parameters 
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of 1  and V  with a simple analytical 

expression can be obtained as follows:  

)2(
12

max3
max

1 uu
u

            (28) 

max

2
max1

* 2

4

u

u 
                (29) 

With the known values maxu  and u ,  the two 

parameters are obtained easily by substitution 
Eqs. (26) and (27). The velocity distribution 
equation is as follows: 

2/12*
1

11

*

])(
4

1
)([

2 



 uFu      (30) 

where F(u) is the cumulative distribution 
function.  

6.2. Velocity distribution model based on the 
Shannon entropy 

Chiu et al. (2006) used principles of 
probability and entropy as the basis for their 
model in estimating the velocity distribution for 
flowing in open channels and with its 
development presented the model as follows: 

 )()1(1lnmax uFe
M

u
u M          (31) 

where maxu  is maximum velocity, M is 

entropy parameter and F(u) is the cumulative 
distribution function that for the desired bend, 
Eq. (8) is substituted. The cross sectional 

average velocity, meanu , based on the maximum 

velocity parameter was defined as follow: 

max)( uMumean                              (32) 

where 

Me

e
M

M

M 1

1
)( 


             (33) 

Using Eq. (31) and the experimental results 
it was shown that M is constant for any bend 
and any Reynolds number. Figures 3 and 4 
show a linear relation between maxu  and meanu  

in the channel. The ( )M  for Reynolds 

numbers 100 to 2000 in both 90 and 45-degree 
bends is constant and obtained as 0.56 and 0.5, 
respectively. M value based on the Shannon 
entropy for 90 and 45-degree bends obtained as 
0.8 and 0.1, respectively. Velocity profile at the 
90-degree bend using the obtained M was 
discussed and compared to the proposed model 
based on tsallis entropy. 

7. Evaluation of the proposed model results 

In non-dimensional Figs. 5 and 6, the 
horizontal axis presents the normalized pipe 
width (diameter) (r/R) and the vertical axis 
represents the ratio of the average velocity to 
the inlet average velocity (u/umean). 

 
Fig. 3. Liner relation between average velocity and 

maximum velocity at the 45-degree bend 

 

Fig. 4. Liner relation between average velocity and 
maximum velocity at the 90-degree bend 
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Fig. 5. Velocity distribution in deviation angle of 45 degrees 

 

 
Fig. 6. Velocity distribution in deviation angle of 90 degree
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Based on the 90-degree bend model at the 

angles of 90 degree (bend outlet) and 45 

degrees (bend center) to the horizon in the 

Reynolds number range of 100 to 2000 (in step 

100), there was numerical solution and Figs. 5 

and 6 show samples of these calculations for 

the desired angles. According to the figures, by 

increasing the section angle, velocity profile 

tends toward the outer wall. A general 

comparison between the measured and 

calculated velocities for the model is shown in 

the figures, too. As can be seen from the 

figures, there is a good agreement between the 

numerical and experimental results. Tsallis 

model results fitted better to the experimental 

data, but the proposed model based on Tsallis 

entropy has the advantage that it does not 

require experimental data. As the results show, 

the velocity distribution model shows the 

location of the maximum velocity well.  

7.1 Estimating the accuracy of the model 

To assess the accuracy of the developed 
model, deviation of the measured data should 
be calculated. To calculate the difference 
between the model results and the experimental 
data, the following equation was used: 

ob

obes

u

uu 
                 (34) 

where obu  and esu  are the measured 

velocities in bend and the calculated velocities 
based on the proposed model, respectively. 
Table 2 shows the error model based on the 
measured values at 90-degree bend under the 
pressure. Both models show a high accuracy. 

Table 2. Calculation error 

1700 1500 1300 900 500 300 Models 

Reynolds

Numbers 

0.449 0.383 0.229 0.058 0.081 0.116 Tsallis 45 degrees 

Error 0.283 0.235 0.295 0.071 0. 128 0.197 Shannon 

0.1420.1410.145 0.155 0.164 0.213Tsallis90-degree 

Error 0.271 0/261 0.254 0.332 0.298 0.284 Shannon 

8. Conclusions 

Tsallis entropy concept, based on the 
probability theory was applied in this paper and 
a new equation for the velocity distribution in 
bends flow was presented. The obtained 
velocity equation is able to describe the 
velocity changes in both the vertical and lateral 
directions. In this study, the flow velocity 
profiles at 90-degree section (bend outlet) and 
45-degree section (bend center) were obtained. 
For validating the numerical simulation, the 
experimental results of Olsen et al. were used. 
The steady and laminar flow condition was 
used. Based on the analysis, the velocity 
profiles at different Reynolds numbers (100 to 
2000) were obtained. By increasing the angle of 
the bend sections, the velocity profile deviated 
toward the outer wall. There was a good 
agreement between the predicted and measured 
data. In this study, a new model for the velocity 
distribution was obtained using the Tsallis 
entropy and the probability at bend concepts. 
This method is effective in the view of accuracy 
and parameter estimation. The model was 
capable of modeling and simulating the velocity 
distribution and the obtained results showed a 
good agreement with the experimental data. In 
addition, a new equation for the cumulative 
distribution function at bends was achieved in 
this study. Both the tsallis entropy and Shannon 
entropy using this function are able to calculate 
velocity distribution profiles at different angles 
and Reynolds numbers. 
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