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The existence of a strong and regular maintenance program in large
industries such as power plants plays a vital role in preventing significant
and irreparable damages to the system. In this article, the authors tried to
evaluate the accuracy of one of the well-known methods, i.e,, One-Class
Support Vector Machine (SVM) technique, in the field of identifying
anomalies related to the vibration data monitored in the power plant. For
this purpose, a case study was conducted on the gas turbine of Kirkuk power
plant located in Iraq. In this way, vibration monitoring was done by
employing CA 202 piezoelectric accelerometer. After the analysis, the results
indicate that the accuracy of this technique in detecting turbine vibration as
a sign of a problem in the system is equal to 12.64%. These results
emphasize the need for further research and modification of the proposed
method because using the existing version of this technique without any
development is ineffective to deal with the critical challenges in such
industries, and in addition to not helping to reduce costs, it also leads to
distrust of the system in other fault diagnosis methods.
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Algorithm 2 One-Class SVM Algorithm
1: Input: Data X, nu parameter v
2: Output: Anomaly scores scores
3
: Procedure:
5: Normalize the data X using a suitable normalization technique
6: Split the normalized data into training and testing sets
. Initialize the One-Class SVM model with parameter v
8: Train the One-Class SVM model using the training data
9: Function PredictAnomalyScores( X, model):
10:  Predict anomaly scores for the data X using the trained model

11:  return Anomaly scores scores
12: Call the Predict AnomalyScores function with the testing data and trained
model

3: return Anomaly scores scores
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