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Abstract

Stroke risk assessment is complex in biomedical engineering due to the interaction of multiple clinical
and lifestyle-related risk factors, which may not be consistently or comprehensively evaluated in routine
clinical practice. To address this challenge, this study proposes a non-learning soft computing
framework based on fuzzy cognitive mapping for stroke risk assessment. The proposed model integrates
expert knowledge from three neurologists to construct the fuzzy cognitive map and assigns individual
risk levels into low, moderate, and high categories. Model performance was evaluated using 10-fold
cross-validation on a dataset of 110 individuals and benchmarked against the fuzzy c-means clustering
algorithm and logistic regression. Experimental results demonstrate that the proposed FCM-based
system outperforms the comparative methods, achieving an overall classification accuracy of 90.7%.
These findings indicate that the proposed approach provides an interpretable and effective decision-
support tool for stroke risk assessment.

Keywords: Assessment, Biomedical engineering, Fuzzy cognitive maps, Ischemic, Risk, Stroke.

1- Introduction
Health remains a universal concern,
especially as the prevalence of serious

techniques have emerged as a highly
effective means of supporting the
identification of various medical conditions.
A variety of artificial intelligence
techniques have been employed for data
representation and interpretation. Among
these, fuzzy cognitive mapping stands out
as a comparatively less familiar yet valuable

illnesses continues to pose growing risks to
humanity. Ensuring prompt and precise
disease  detection is essential  for
safeguarding individuals from both current
and emerging health threats. Advances in
soft computing techniques and biomedical
engineering have played a vital role in
enhancing the management, diagnosis,
treatment, and overall care within

soft computing approach [2]; however, it
serves as a powerful technique for
representing causal relationships and
inferences, capable of articulating the
explicit conceptual framework of a system.
This is achieved through the integration of

healthcare systems. [1]. The diagnosis of
diseases is a very complex and ambiguous
task in medical science, with the theoretical

data analysis methods not being very
effective in obtaining appropriate medical
information; however, computer-assisted

key features from both fuzzy logic and
neural networks. The approach introduces
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Fig.1 A sample FCM with 5 concept and 9 edge

a conceptual model that is not restricted to
precise numerical values or measurements,
making it particularly suitable for capturing
concepts that lack structure. The behavior of
complex systems can be represented
through various concepts within a Fuzzy
Cognitive Map (FCM), where each node
corresponds to a specific characteristic or
defined state of the system [3, 4]. The
widespread adoption of FCM is attributed to
its ease of construction, analytical
flexibility, and applicability in system
design. Its strengths include compatibility
with diverse domains, the ability to
accommodate  uncertain  knowledge,
relatively simple modeling, efficiency in
terms of time, and support for high-level
decision-making [5, 6]. FCM has found
applications across a wide range of
scientific and industrial domains. These
include decision-support systems, political
and military sciences, electrical
engineering, information systems, business
management, supervision and production
processes, systems analysis, computer
science, and medicine, among others [7, 8].
Moreover, FCM is regarded as a
contemporary and  highly effective
approach for disease diagnosis. Its
applicability extends to areas such as
diagnostic forecasting, classification, and
decision-making [9]. In recent years, a
growing body of research has applied fuzzy

cognitive mapping across diverse medical
fields. Notable examples include its use in
stroke ischemic diagnosis [8], Parkinson's
disease prediction [10], musculoskeletal
rheumatic disease diagnosis [7],
classification of plantar changes [11],
differential diagnosis modeling of febrile
diseases [12], and early diagnosis of Covid-
19 [13]. Stroke ranks as the third leading
cause of mortality worldwide and represents
one of the primary contributors to
neurological disorders, posing a major
global health concern. As a medical
emergency, rapid detection and precise
diagnosis are vital to minimizing
irreversible harm and improving patient
Nonetheless, stroke can
sometimes remain undetected during the
initial  evaluation, underscoring the
importance of accurate diagnosis in
forecasting patient prognosis and guiding
effective treatment [8]. A variety of
artificial intelligence (Al) approaches have
been explored to enhance the accuracy of

outcomes.

treatment prediction and prognosis stroke
onset [ 14]. Recent research highlights fuzzy
cognitive maps as a promising classification
technique within the medical domain [3].
Therefore, using fuzzy cognitive maps to
classify stroke patients could be an
interesting  research  topic  because,
according to the free-throw theory, it is not
certain that a particular classifier is the best
for all data, and these experimental results
determine the effectiveness of the
classifiers. This research did not focus on
developing a new system; instead, it utilized
an existing framework and expanded its
application to the stroke domain to generate
new insights. This study is the first to
investigate the interpretability and stability
of a non-learning fuzzy cognitive mapping
system used for stroke risk assessment. In
this model, the causal relationships between
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risk factors are defined by the knowledge
and experiences of three neurologists, and
the weights are fixed. Also, the mutual
influence of risk factors and their
interactions is clearly shown to physicians.
The approach offers a comprehensive tool
to support physicians in making timely and
accurate stroke diagnoses. In practice, the
patient’s stroke risk is calculated from real
clinical data, and the resulting values are
compared with the average assessments of
several neurologists. The accuracy of the
proposed approach is evaluated and
compared against the fuzzy c-means
algorithm and logistic regression. Findings
suggest that the presented method, along
with the simulation of several neurologists’
opinions, has better performance than that
of a physician. The paper is organized as
follows: Section 2 introduces the fuzzy
cognitive map. Section 3 provides an
overview of stroke, highlighting both
modifiable and non-modifiable risk factors
associated with ischemic stroke. Section 4
details an enhanced FCM-based model for
stroke assessment, which applies three
patient profiles to determine the 5-year
ischemic stroke risk and evaluates the
system's performance. Section 5 concludes
the work.

2- Fuzzy cognitive maps

Fuzzy cognitive maps are a soft computing
technique designed to emulate human-like
reasoning and decision-making. Introduced
by Kosko in 1986, they are represented as
directed graphs incorporating a feedback
loop [1]. FCMs are employed to model
systems characterized by interdependencies
and computational complexity. They are
composed of a set of nodes, or concepts,
with N denoting the total number of
concepts. Each node represents a
fundamental component of the system and

is assigned a value within the interval [0, 1].
In an FCM, concepts are interconnected
through weighted edges that express their
causal relationships [15]. Figure 1
illustrates a simple example containing five
nodes and nine weighted connections. The
weight assigned to the link between two
concepts, C; and C;, lies within the range
[-1, 1], and the value of this weight depends
on the strength of the cause-and-effect
relationship between C; and C;. The
relationship between these concepts is
either positive or negative, as described by
W;;. Therefore, three weights can exist, with
W;;>0 representing a positive relationship,
W;;<0 indicating a negative relationship,
and W;=0 indicating that there is no
relationship between these concepts. By
specifying the value of the concept and the
weights, the FCM converges to the stability
condition the stability condition. During
each iteration, the value of a concept P; is
influenced by the concepts connected to it
and 1s updated based on the (1):

n
pltD = fp® +25(k) W) (1)
j=1
J#Fl
Where, f denotes the sigmoid threshold
function, and here A > 0 is the parameter that
determines that all values are calculated and
the process continues until the FCM
converges to a stationary state after a few
iterations. The slope of the function is
defined as follows [8]:
_ 1 ()

S =1vrem

3-Define stroke and introduce risk factors for
FCM model design

Stroke is a serious neurological disorder
that affects individuals of all ages across the
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Table 1: FCM model concepts for the of
assessment stroke risk

Cn Concepts Type of values

C Age Three fuzzy values
(Young, Middle age,
Old)
C Blood Four fuzzy values

Pressure (Low, Medium, High,
Very high)

Cs LDL Four fuzzy values
Cholesterol (Low, Medium, High,
Very high)
Cy4 HDL Three fuzzy values

Cholesterol | (Low, Medium, High)
Cs Diabetes Three fuzzy values
(Low, Medium, High);

Cs Heart Two discrete values
Disease (Yes, No)
C; Family Two fuzzy values (Yes
History , No)
Csg Smoking Two fuzzy values (Yes
, No)
Co BMI Three fuzzy values
(Low, Medium, High)
Cio Exercise Two fuzzy values (Yes
, No)
Cii Sex Two fuzzy values

(Female , Male)
Cn Ci2: Stroke | Two fuzzy vales (Yes,

History No)
Cis Risk of Three fuzzy values
Stroke (Low, Medium, High)

globe. In the United States, it ranks as the
third leading cause of death, following
coronary heart disease and cancer, with an
incidence ranging from 0.2 to 2 per
thousand people. In Iran, the post-stroke
morbidity rate was reported at 8% in 2003,
while the mortality rate stood at 4.4%.
Strokes are generally divided into two main
types: hemorrhagic and ischemic. Ischemic
stroke, the more prevalent form, accounts
for approximately 85% of all cases. It arises
when blood flow to a region of the brain is
obstructed or markedly reduced, depriving
the affected area of essential oxygen and
nutrients. This interruption, which can
persist from minutes to several hours, leads
to cellular dysfunction and eventual cell
death. Consequently, ischemic stroke is
considered a medical emergency, and rapid

intervention is crucial to minimize brain
damage and subsequent neurological
impairments, making every second critical
for timely diagnosis and treatment [16]. The
risk factors and symptoms of ischemic
stroke encompass twelve characteristics,
which are categorized as modifiable or non-
modifiable and play a key role in disease
assessment. These factors are represented
using two, three, or four fuzzy values,
corresponding to linguistic variables such as
low, medium, high, and very high, as
summarized in Table 1. The input data for
these factors were collected from 110 real
cases at Imam Reza Hospital in Tabriz city
and evaluated by three neurologists: Dr.
Mohammadzadeh, Dr. Hagigat, and Dr.
Asgarpour. The fuzzy cognitive map model
proposed in this study is grounded in the
neurologist's assessments, which guided the
selection of both input and output concepts.
Figures 2 and 3 illustrate the membership
functions for family history (C7) and BMI
(Co), respectively.

4-Steps to build FCM for assessing ischemic
stroke risk rate

Once the neurologists determined the input
and output concepts, they were asked to
evaluate the influence of each concept on
the others and to  define the
interrelationships using linguistic variables
expressed through fuzzy “if-then” rules.
Each linguistic variable is represented
within the interval [0, 1]. In this approach,
the relationship between two concepts is
defined by a neurologist using fuzzy
linguistic variables, which represent the
strength and direction of causality. For
instance, a specialist can describe the cause-
and-effect connection between concepts C;
and C; through fuzzy rules as follows:

If the value of the concept C; is A, then the
value of the concept C; is B, where the
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Fig. 2 Membership function for the family history
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Fig. 3 Membership function for the BMI input
concept

linguistic weight W;; is assigned as Z. Here,
A, B, and Z are all fuzzy linguistic variables
that capture the degree of influence between
the concepts [1]. Neurologists often have
differing opinions regarding the influence
of one concept on another. To derive the
final linguistic weights, the three sets of
linguistic variables provided by each
specialist were aggregated. The overall
weight was then converted into a numerical
value using the centroid defuzzification
method. This approach allows neurologists
to qualitatively express the strength of
causal relationships without relying on
precise numerical values. Each connection
is evaluated through fuzzy inference, and
the resulting fuzzy weights are defuzzified
using the centroid method to generate the
initial FCM weight matrix [1, 3]. The
following example demonstrates the
process of deriving numerical weights from

the assessments of neurologists. Three
specialists  evaluated the relationship
between concepts C3 (LDL) and C;3 (stroke
risk rate) using fuzzy rules as follows:

First neurologist: If the LDL (C3) is low,
then the stroke risk rate (Ci3) is low.
Second neurologist: If the LDL (C3) is
medium, then the stroke risk rate (Ci3) is
medium.

Third neurologist: If the LDL (C3) is
medium, then the stroke risk rate (Ci3) is
high. These three linguistic assessments
low, medium, and high were aggregated
using the SUM method to generate the final
linguistic weights. The weight from C; to
Ci3 was then quantified as 0.38 through
centroid defuzzification, as illustrated in
Fig. 4. Applying the same procedure to the
other relationships, all non-zero matrices
obtain weights, as shown in Table 2 and Fig.
5, which are respectively the initial weight
matrix and FCM model for the prediction of
the risk of stroke with numerical values of
the initial weights. Therefore, it can be said
that the steps of building FCM for
determining ischemic stroke risk rate are as
follows:

Step 1: Identify the concepts/risk factors for
ischemic stroke (shown in Table 1) and
determine the relationship between them by
neurologists.

Step 2: The estimated severity of the
relationship between factors (if any) by the
neurologists is assumed to be the original
weight matrix (given in Table 2).

Step 3: Normalize the initial values of the
concept according to the Equation in [8].
Step 4: Take the initial concept values and
the weights matrix.

Step 5: Updating new concept values
according to (1).

Step 6: Consider the new value as an initial
value in the next iteration.

Step 7: Repeat the steps until reaching
equilibrium and meeting the following
condition:

P¥ —Pf71 < 0-001 3)
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Table 2: Initial weight values proposed by neurologists for assessing the risk of stroke

Ci C, C; Cy Cs Cs Cy Csg Co Cio | Ci Cn Cis
C 0 0.55 0 0 0.35 0.4 0 0 0 0 0 0.60 0.60
C 0 0 0 0 0.46 0.45 0 0 0 0 0 0.52 0.54
Cs 0 0 0 0 0 0.44 0 0 0 0 0 0.40 0.40
(O 0 0 0 0 0 -0.55 0 0 0 0 0 -0.54 | -0.58
Cs 0 0.40 0 0 0 0.45 0 0 0 0 0 0.50 0.50
Cs 0 0 0 0 0 0 0 0 0 0 0 0.55 0.58
C; 0 0.45 0 0 0.35 0.40 0 0 0 0 0 0.30 0.30
Cs 0 0.30 0 0 0.20 0.35 0 0 0 0 0 0.45 0.45
Co 0 0.25 0 0 0.45 0.35 0 0 0 0 0 0.25 0.25
Cio 0 -0.20 0 0 -0.35 | -0.35 0 0 -0.30 0 0 -0.30 | -0.30
Cu 0 0 0 0 0 0 0 0 0 0 0 0.10 0.10
Ci 0 0 0 0 0 0 0 0 0 0 0 0 0.68
Cis 0 0 0 0 0 0 0 0 0 0 0 0 0
1
0.8
First Neurologist
0.6
0.4
0.2 \
o
1] 0.2 0.4 0.6 0.8 1
1
0.8
0.6 Second Neurologist
0.4
0.2
0
0 0.2 0.4 0.6 0.8 1

) 0.2 i 0.4 0.6 0.8 1

Third Neurologist W=0.38

Center of area

Fig. 4 Aggregation of three linguistic variables using the SUM method

Step 8: Stopping the procedure by obtaining represents the output variable, determined

the final concept values (Pring1)- by neurologists, to indicate the probability
of ischemic stroke occurrence within five
years. The decision outcome is modelled as
a fuzzy set variable with three categories,

4-1- Simulation and evaluation results
In this study, twelve characteristics are
employed as input variables, while Ci3
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Table 3: Values of fuzzy cognitive map concepts at 7 iteration steps for the first example

low, medium, and high, defined according
to neurologists’ assessments as follows:
0<low<0.14, 0.15<medium<0.30, and
0.31<high<1. To clarify this framework,
three examples of experimental data are
presented. A 75-year-old male patient was
evaluated with the following clinical
profile: blood pressure of 190, LDL
cholesterol of 160, HDL cholesterol of 35,
blood sugar level of 180, no history of heart
disease, positive family history, non-
smoker status, BMI of 35.5, absence of
regular physical activity, and a previous
stroke. Based on these indicators,
neurologists assessed the individual’s
stroke risk as high. Before analysis, all
variables were normalized to the [0,1] range
using the equation in [8].

The resulting normalized input values are as
follows: Preiqr = [0.7  0.55 0.44 0.25
054 0 1 0 083 01 10.1 The initial
input value, together with the weight matrix
provided in Table 2, was iteratively updated
using (1) until the FCM stabilized. As
presented in Table 3, the system reached
equilibrium after seven iterations, at which
point the concept values no longer changed.
The final output concept obtained at

P P, P; Py Ps P¢ P Pg Py
0.7 0.55 0.44 0.25 0.54 0 1 0 0.83
0.54711 | 0.58715 | 0.52967 | 0.51687 | 0.53639 0.5 0.63577 0.56573 | 0.55579
0.53686 | 0.60243 | 0.53569 | 0.53483 | 0.53614 | 0.5337 0.61466 0.59239 | 0.53745
0.53617 | 0.60398 0.5361 | 0.53604 | 0.53613 | 0.53596 0.61349 0.59381 | 0.53621
0.53613 | 0.60411 | 0.53612 | 0.53612 | 0.53613 | 0.53611 | 0.61343 0.5939 | 0.53613
0.53613 | 0.60412 | 0.53613 | 0.53613 | 0.53613 | 0.53612 | 0.61342 | 0.59391 | 0.53613
0.53613 | 0.60412 | 0.53613 | 0.53613 | 0.53613 | 0.53613 | 0.61342 | 0.59391 | 0.52453
Pio Py Pis Pi3

0 1 1 0.1

0.5 0.56709 | 0.68327 | 0.67212

0.5337 0.5382 | 0.65162 | 0.67947
0.53596 | 0.53626 | 0.64898 | 0.67791
0.53611 | 0.53613 | 0.64879 | 0.67768
0.53612 | 0.53613 | 0.64877 | 0.67765
0.53613 | 0.53613 | 0.64877 | 0.67765

iteration seven was 0.67765. Applying the
equation in [8], this corresponds to a
calculated risk rate of 35%, which
neurologists classify as high risk, consistent
with the interval 0.31<high<l. Figure 6
illustrates the convergence process through
the sequence diagram of concept values.

Second example: A 74-year-old male
patient with no prior history of stroke was
assessed. His clinical parameters included:
blood pressure of 160, LDL cholesterol of
140, HDL cholesterol of 37, blood sugar of
95, absence of heart disease, positive family
history, non-smoker status, BMI of 24, and
lack of regular physical exercise. Based on
these indicators, neurologists estimated his
probability of experiencing a stroke as
medium. After normalization of the above

values, yielding the following initial
conceptual values: Pj,tiqi= [ 0.68 0.4
036 03 015 0 1 0 026 0 1

0 0.1]. The normalized input values, after
simulation with the FCM model, are

obtained as follows: Pgcy= [0.52354
0.56572  0.52354 0.52354  0.56098
0.57631 0.52354 0.52354 0.51615
0.52354  0.52354 0.59458 0.61386].

As illustrated, the output concept stabilized
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Table 4: The proposed fuzzy cognitive map system evaluation results in 10 iterations

Accuracy Recognition rate Recognition rate Recognition rate
low medium high
Fold 1 81% 1 0.6 1
Fold 2 81% 1 1 0.6
Fold 3 100% 1 1 1
Fold 4 81% 0.5 0.66 1
Fold 5 91% 0 0.75 1
Fold 6 91% 1 0.66 1
Fold 7 100% 1 1 1
Fold 8 100% 1 0 1
Fold 9 91% 1 0.75 1
Fold 10 91% 1 0.66 1

0.60

Fig. 5 Proposed FCM model with the assigned initial values of weights for the assessment of ischemic stroke

after six iterations, converging to a value of
0.61386. This corresponds to a calculated
risk rate of 22%, which neurologists classify

as medium risk, consistent with the interval
0.15 <medium < 0.30.
Third example: a 60-year-old female patient

with no prior stroke history was assessed.
Her clinical profile included: blood pressure
of 130, LDL cholesterol of 145, HDL

cholesterol of 42, blood sugar level of 100,
no heart disease, no family history, smoker
status, BMI of 27, and lack of regular
physical activity. Based on these
parameters, neurologists predicted a low
probability of stroke. After normalization of
the above values, the following initial
concept values were obtained: Pjtiq; =
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Fig. 7 Subsequent values of concepts till convergence for the third example

[0.470.250.380.30.170010.410000.1].
The normalized input values, following
simulation with the FCM model, are
presented as follows: Pgcy = [0.51151

0.53162 0.51151 0.51151 0.52931
0.53653 0.51151  0.51151  0.50798
0.51151  0.51151 0.54508 0.55403].

As observed, the output concept stabilized
after five iterations, converging to a value of
0.55403. This corresponds to a calculated
risk rate of 10%, which neurologists classify
as low risk, consistent with the interval
0<low<0.14. Figure 7 presents the sequence

diagram of concept values, illustrating the
convergence achieved. To assess the
performance of the proposed system, 110
real patient datasets, ranging in age from 28
to 95 years, were employed. Although this
sample size allows for statistical analyses
and evaluation of model performance, the
limited nature of the data to a specific
setting ~ may the
generalizability of the results to other
healthcare centers or different populations.
To increase the statistical robustness of the

clinical limit
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Table 5: The system evaluation results with the fuzzy c-means clustering algorithm in 10 iterations

Accuracy Recognition rate Recognition rate Recognition rate
low medium high
Fold 1 81% 1 0.6 1
Fold 2 72% 0.5 1 0.8
Fold 3 81% 1 0.75 1
Fold 4 81% 0.5 0.66 1
Fold 5 81% 0 0.6 1
Fold 6 81% 1 0.66 0.87
Fold 7 91% 1 1 0.88
Fold 8 81% 1 0 0.88
Fold 9 81% 1 0.75 0.83
Fold 10 91% 1 0.66 1

results, 10-fold cross-validation was used.
However, it is obvious that increasing the

data set and including data from multiple
healthcare centers in future studies can help
improve the statistical power and
generalizability of the results. In a 10-fold
validation cross method, nine subsets were
used for training, while the remaining
subset served as the test set. For each
iteration, the accuracy and recognition rate
were calculated based on the test dataset.
Table 4 presents the results of the algorithm
applied to the 11 test datasets. After 10
iterations, the overall accuracy, calculated
as the average across all datasets, was
90.7%. Additionally, for better comparison,
the data used in this article were clustered
using the fuzzy c- means. This algorithm is
one of the most important and useful
clustering algorithms. Indeed, clustering is
an unsupervised learning method; it is often
called classification. In the fuzzy c-means
clustering techniques, the samples are split
into ¢ clusters. The number of c¢ is
predetermined. The fuzzy c-means
algorithm is widely used in the medical field
for disease diagnosis because of its
effectiveness in recognizing systems [17,
18]. Therefore, this can be considered a
potential competitor of FCMs. In this study,
the weighting parameter is 2, the number of
clusters is 3, the tolerance level is 0.00001,

and the number of iterations is 100. Table 5
shows the accuracy and recognition rate in
each iteration of the fuzzy c-means
clustering algorithm. For ensuring greater
accuracy of the proposed system results, in
addition to fuzzy logistic
regression is also used. Logistic regression
is a supervised learning method used in the
medical field. In the logistic regression
model, the decision threshold is considered
to be 0.5 [19]. The results of the accuracy
and recognition rate in each iteration of the

c-means,

logistic regression are depicted in Table 6.
The results of the evaluation of the proposed
system showed that this model provides
more stable performance when dealing with
ambiguous and correlated data compared to
the logistic regression method. While
logistic regression faces limitations due to
the assumption of linear relationships and
relative independence of variables, fuzzy
cognitive mapping can represent a more
complex structure of causal relationships
and, as a result, improve decision-making
accuracy. This difference was especially
evident in data with a higher level of
uncertainty. Therefore, it can be said that
the proposed model, which utilizes prior
knowledge and addresses overlapping class
uncertainty, performs better than both the
unsupervised method and the linear
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Table 6: The system evaluation results with the logistic regression algorithm in 10 iterations

Accuracy Recognition rate Recognition rate Recognition rate
low medium high
Fold 1 91% 1 0.75 1
Fold 2 81% 0 1 0.85
Fold 3 91% 1 0.85 1
Fold 4 91% 0.65 1 1
Fold 5 81% 0 1 0.65
Fold 6 81% 1 0.75 0
Fold 7 91% 1 1 0.85
Fold 8 81% 1 0 0.85
Fold 9 81% 1 0.85 0.65
Fold 10 91% 0.75 1 1

supervised method. This indicates the
ability of the proposed model in assessing
stroke risk.

5- Conclusion

Early detection and treatment of stroke are
crucial, as timely diagnosis not only
enhances the patient’s chances of recovery

and survival but also mitigates the severe
consequences associated with the condition.
This study introduces an effective approach
using a soft computing technique known as
fuzzy cognitive modeling to predict the risk
of ischemic stroke over the next five years

based on key risk factors. By integrating
expert knowledge with a fuzzy logic
framework, this method improves the
accuracy of disease prediction. To validate
its performance, the system’s results were
compared with the average opinions of the
mentioned neurologists. The total accuracy
of this method for 110 real data sets is
90.7% compared with the fuzzy c-means
algorithm and logistic regression. The
findings indicate that FCM modeling
closely aligns with expert clinical judgment.
Overall, the results of this study indicate
that the proposed system based on fuzzy
cognitive mapping can be used as an
effective decision support tool in stroke
assessment and provides a good balance
between accuracy, flexibility, and

interpretability compared to the compared
methods.
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