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Abstract 

This paper investigates the free axial vibration of cracked nanotubes with considering scale parameter 

under various boundary conditions. The cracked nanotube is modeled by dividing it into two segments 

connected by a linear spring. The stiffness of the spring is dependent to the crack severity and obtained 

using fracture mechanics principles. Governing equations and corresponding boundary conditions are 

derived with the aid of doublet mechanics (DM). The natural frequencies are obtained analytically with 

solving characteristics equation and the influence of the crack severity, the boundary conditions, the 

tube chirality, and the dimensions of nanotube on the free axial vibration of cracked nanotubes is studied 

in detail. It was shown that the frequency decreases with increase of the crack severity and scale 

parameter. This reduction is more apparent when the boundaries of the beam are changed from free end 

to clamped one. In addition, when the crack location is near the support, a larger decrease in the 

frequency can be observed. To validate accuracy and efficiency of the present method, the results 

obtained herein are compared with the available results in the literatures and good agreement is 

observed. 

Keywords: Axial vibration, Cracked nanotube, Doublet mechanics, Natural frequency, Crack severity. 

1. Introduction 

The importance of the beam and its 

engineering applications is obvious, and it 

undergoes different kinds of loading. It is 

well known that presence of crack in a 

beam creates discontinuities varies its 

dynamic behavior and may cause the failure 

[1]. Cracks are classified base on the 

geometry and its orientation, cracks parallel 

to beam axis are known as longitudinal 

cracks, cracks that close and open when 

subjected to alternative stresses are known 

as breathing crack, crack which are 

perpendicular to the axis of shaft are known 
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as transverse crack, the cracks on surface 

which is not visible known as sub-surface 

crack on the surface are known as surface 

crack. Cracked structures are susceptible to 

failure depending on the vibration mode. 

Failure is due to the resonance formed by 

the superposition of frequency of periodic 

force acting on structure and the natural 

frequency of the structure. Crack severity is 

defined by division of crack length to crack 

depth [2]. Natural frequency is the 

frequency at which a system or structure 

vibrates when subjected to an initial 

excitation in the absence of any driving or 

damping force [3]. Then, to determine 

natural frequency, free undamped vibration 

must be considered. For any cracked 

structure, the study of resonance is more 

important because it affects the structure in 

different ways [4]. When the frequency of 

applied load becomes equal to associated 

natural frequency, the structure vibrates 

theoretically at infinite amplitude leading to 

failure [5]. To avoid structural failure due 

to periodic load, it is important to determine 

resonant frequency. As material failure 

could lead to disastrous results, structures 

have regular costly and time consuming 

inspections. During the last decades, 

damage detection methods using vibration 

analysis have attracted growing interest 

because of their simplicity for 

implementation [6]. It is known that 

presence of the crack reduces its natural 

frequency and deviates its mode shape. It 

should be pointed out that the frequency 

reduction in cracked beam is not due to 

removal of mass rather the reduction of 

mass would increase natural frequency [7]. 

Indeed, a crack in a structure leads to a 

reduction in the stiffness and an increase in 

the damping of the structure. As 

frequencies are measured more easily than 

mode shapes, and on the other hand, mode 

shapes also affected by experimental errors, 

the investigation of the natural frequency is 

more significant. Therefore, it is possible to 

predict the crack depth and crack location 

by measuring changes in the vibration 

parameters.  

In recent years, the study of the beamlike 

vibration in nanoscale devices has been of 

significant interest to researchers due to 

their use in NEMS [8]. Nowadays, it is still 

a challenge to study the mechanics of 

nanomaterials by means of experimental 

tests due to the difficulties exists in the 

nanoscale [9]. Furthermore, structures at 

the nanoscale are known to exhibit a size-

dependent behavior. Therefore, the 

theoretical methods such as atomistic 

simulations and classical continuum 

mechanics (CCM) theories are often used to 

analyze the dynamic responses of cracked 

nanostructures [10- 12]. It is known that 

atomistic simulation methods are extremely 

costly and time-consuming task [13]. On 

the other hand, CCM theories are assumed 

to be scale independence ignoring the scale 

effect [14]. Couple stress theory and shear 

deformation maybe used to investigate 

vibration of nanostructure. Alimoradzadeh 

et al. studied free and forced vibration of a 

clamped microbeam based on the third 

order shear deformation and modified 

couple stress theories. The size dependent 

dynamic equilibrium equations along with 

boundary conditions derived using the 

variational approach. They found that 

dimensionless frequencies are strongly 

dependent on the scale parameter and 

power index [15]. 
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To improve CCM, DM elasticity theory has 

been also used in the linear and nonlinear 

vibration analysis of carbon nanotubes [16, 

17].  DM is a micro-mechanical theory 

based on a discrete material model wherein 

solids may be represented as arrays of 

points or nodes at finite distances. A pair of 

such nodes is referred to as a doublet, and 

the nodal spacing distances introduce 

length scales into the microstructural 

theory. Each node in the array is allowed to 

have translation and rotation where small 

translational and rotational displacements 

are expanded in Taylor series about the 

nodal point. The order at which the series is 

truncated defines the degree of 

approximation employed. The lowest order 

case using only a single term in the series 

does not contain any length scales, while 

using the terms beyond the first produce a 

multi length scale theory. 

Due to different causes, cracks are often 

found in the nanostructures. For example, 

thermally-induced crack in the fabrication 

process of nanomaterials such as ZnO 

nanorods and nanowires may be created 

during heating [18]. The presence of the 

cracks in the nanodevices affects the safety 

and reliability in applications. However, 

few published papers investigated the 

aspect of mechanical analysis of cracked 

nanostructures [19]. Another field that 

recently attracted growing interest for the 

researchers is considering the scale effects 

on vibration of cracked nanobeams. 

Recently, nonlocal beam model has been 

adopted for the flexural [20, 21] and 

torsional [22, 23] vibration analysis of 

cracked nanostructures. Buckling behavior 

of imperfect axially compressed cylinder 

with an axial crack studied by many 

researcher [24, 25]. However, fewer 

researches have been so far conducted on 

the vibration behavior of cracked CNTs 

using DM theory. Although, there are 

several studies focusing on the axial 

responses of these kinds of nanostructures, 

none of them has incorporated the scale 

effect, explicitly. Gheshlaghi and 

Hasheminejad studied the axial vibration of 

CNTs using a modified couple stress theory 

[26]. Using a nonlocal elasticity model, the 

effects of crack on free axial vibration of 

nanorods and the effects of elastic medium 

on axial statics and dynamics of nanotubes 

were investigated. Zhang et al reported an 

order-of-magnitude reduction in the fatigue 

crack propagation rate for an epoxy system 

with the addition of five percent of carbon 

nanotube additives using fractography 

analysis and fracture mechanics modeling 

[27]. Rane et al. developed a method based 

on measurement of natural frequencies for 

detection of the location and size of a crack 

in a cantilever beam [28]. Hsu et al. studied 

the longitudinal frequency of a cracked 

nanobeam. They obtained the frequency 

equation of the nanobeam with different 

boundary conditions based on the nonlocal 

elasticity theory [29]. Singh introduced 

transcendental eigenvalue problems in 

axially vibrating rods to estimate the 

damage parameters in the continuous 

structure from natural frequencies [30]. 

Yali and Cercevik studied the axial 

vibration of cracked carbon nanotubes with 

arbitrary boundary conditions using the 

nonlocal elasticity theory. The crack 

severity and the supports were modeled by 

an axial spring representing the 

discontinuity in the axial displacement [31]. 

Loghmani and Hairi Yazdi studied free 
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vibration of Euler-Bernoulli nanobeam 

with multiple cracks using Eringen's 

nonlocal elasticity theory based on wave 

approach [32]. Ebrahimi and Mahmudi 

proposed a finite element (FE) model to 

study the thermal transverse vibrations of 

cracked nanobeams resting on a double-

parameter nonlocal elastic foundation using 

Hamilton’s principal [33]. Dilena and 

Morassi studied the identification of a 

single open crack in a vibrating beam, 

either under axial or bending vibration, 

based on measurements of damage-induced 

shifts in natural frequencies and 

antiresonant frequencies [34]. 

Although there are many papers like 

mentioned above that investigate the 

cracked nanotubes but none of them 

obtained the frequency explicitly dependent 

to chiral effect. Indeed, they enter the scale 

parameter in to equations of motion 

indirectly by being implicitly contained in 

the macrotensors of elasticity. In other 

words, unlike the elastic macrotensors in 

DM, the elastic macrotensors in the 

nonlocal theory are unknown functions of 

the underlying microstructural parameters. 

Indeed, and the parameters of the 

microstructure are not included in the 

mathematical model directly. 

As far as known, however, there has been 

no investigation on the longitudinal 

vibration of a nanostructure with cracks 

explicitly incorporates scale effect in 

details. The lack prompted the authors to 

model the free axial vibration of cracked 

nanotubes based on DM theory and to 

investigate the scale effects on axial 

vibration frequency. In this paper, the axial 

vibration of a cracked nanobeam with 

different boundary conditions is studied 

using DM theory. The effects of the crack 

parameter, crack location, and scale 

parameter on the vibration frequency of the 

cracked nanotube are studied. The main 

purpose of the present work is to propose a 

comprehensive analytical model to study 

the free axial vibration of cracked CNTs. 

To this end, the governing equations of 

cracked nanotubes incorporating scale 

effects are derived using DM principle.  

2- Free axial vibration analysis of SWCNT 

using DM 

In this section, the governing equation of 

motion of a nanotube in presence of the 

scale parameter is derived by DM principle. 

To this end, a nanotube is considered with 

the circular cross-section of constant area A 

with the radius R and the length L, modulus 

of elasticity E, density 𝜌, scale parameter 𝜂 

as shown in Fig. 1. 

 
Fig. 1 A SWCNT [3]. 

 

The governing equation for axial vibration 

of SWCNTs considering scale effect is 

given by [3] 

 

𝐸
𝜕2𝑢

𝜕𝑥2
+ 𝜅𝐸𝜂2 𝜕4𝑢

𝜕𝑥4
= 𝜌

𝜕2𝑢

𝜕𝑡2
                       (1) 

 

wherein 𝑢 is the axial displacement of the 

beam and 𝜅 is chiral dependent and given 

by 

 



55 
A.Fatahi-Vajari & Z.Azimzadeh./ Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering 16 (2024) 0051~0064 

  

𝜅 = {

1

12
          for Zigzag nanotubes

1

16
     for Armchair nanotubes

     (2) 

 

Now, the mode shape function of the CNT 

in axial vibration mode is determined. To 

this end, the time response of the nanotubes 

is considered to be the following equation 

 

𝜕2𝑢

𝜕𝑡2
= −𝜔𝑛

2𝑢                                           (3) 

 

Substituting (3) into (1) and solving the 

resulting equation, gives the following 

relation for displacement  

𝑢 = 𝐴𝑠𝑖𝑛 (
𝑛𝜋

𝐿
𝑥) + 𝐵𝑐𝑜𝑠 (

𝑛𝜋

𝐿
𝑥)             (4) 

 

The boundary conditions are as follow: 

Clamped-clamped boundary condition 

 

𝑢(𝑥, 𝑡) = 0    𝑎𝑡 𝑥 = 0, 𝐿                        (5) 

 

Clamped-free boundary condition 

 

𝑢(𝑥, 𝑡) = 0 𝑎𝑡 𝑥 = 0 𝑎𝑛𝑑 
𝜕𝑢(𝑥,𝑡)

𝜕𝑥
=

0 𝑎𝑡 𝑥 = 𝐿                                               (6) 

 

Free-free boundary condition     

 
𝜕𝑢(𝑥,𝑡)

𝜕𝑥
= 0    𝑎𝑡 𝑥 = 0, 𝐿                         (7) 

 

However, in real supporting situations, 

idealized boundary conditions (clamped-

clamped and clamped-free) never occur and 

therefore there exists axial or rotational 

restraint or both [5]. 

Solving Eq. (4) with considering related 

boundary condition yields the following 

mode shapes and natural frequencies for 

un-cracked nanobeams. 

For clamped-clamped boundary conditions 

 

𝑢(𝑥) = ∑ 𝐶𝑛 𝑠𝑖𝑛 (
𝑛𝜋

𝐿
𝑥)∞

𝑛=1                     (8) 

𝜔𝑛
2 =

𝐸

𝜌
(

𝑛𝜋

𝐿
)

2

[1 − 𝜂2𝜅 (
𝑛𝜋

𝐿
)

2

]               (9) 

 

For free-free boundary conditions 

 

𝑢(𝑥) = ∑ 𝐶𝑛 𝑐𝑜𝑠 (
𝑛𝜋

𝐿
𝑥)∞

𝑛=1                   (10) 

𝜔𝑛
2 =

𝐸

𝜌
(

𝑛𝜋

𝐿
)

2

[1 − 𝜂2𝜅 (
𝑛𝜋

𝐿
)

2

]             (11) 

 

For clamped-free boundary conditions 

 

𝑢(𝑥) = ∑ 𝐶𝑛 [1 − 𝑐𝑜𝑠 (
𝑛𝜋

𝐿
𝑥)]∞

𝑛=1         (12) 

𝜔𝑛
2 =

𝐸

𝜌
(

(2𝑛+1)𝜋

2𝐿
)

2

[1 − 𝜂2𝜅 (
(2𝑛+1)𝜋

2𝐿
)

2

]  (13) 

 

The axial force is also obtained by the 

following equation [8] 

 

𝐹 = 𝐸𝐴 [
𝜕𝑢

𝜕𝑥
+ 𝜅𝜂2 𝜕3𝑢

𝜕𝑥3]                         (14) 

 

3- Crack modeling 

A schematic diagram of a cracked 

nanobeam is depicted in Fig. 2. The 

nanobeam with previous specifications has 

a crack at location C located at a distance 

𝐿𝐶 from the left end. The crack is modeled 

by a linear elastic axial spring representing 

the discontinuity in the axial displacement. 

Crack severity or crack parameter shown 

with K defined by 𝐾 =
𝐸𝐴

𝑘𝐿
. In the present 

model, the effect of the crack is taken into 

account following the methodology 

proposed in [29]. To this end, the CNT is 

divided into two intact nanobeam pieces 

which are connected by an axial spring 

located at the cracked section to consider 

the additional strain energy due to the 
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presence of the crack. It is obvious that in 

the crack location, the axial displacement 

has discontinuity. However the axial force 

is presumed to be continuous. Natural 

frequencies for cracked nanobeams for 

different crack positions, crack severities, 

mode numbers, and dimensions of 

nanobeam on the free axial vibration of 

nanotubes are studied. In this work, the 

nanobeam with a single and double edge 

crack for a longitudinal vibration is 

explored based on the DM theory. 

 

 
Fig. 2 A nanobeam with crack  

It should be pointed out that presence of 

crack causes a complex geometrical 

property which is difficult to study. 

Analyzing the results in the presence of the 

crack, the equation of motion for two intact 

nanobeams given with (1) can be expressed 

as [3] 

𝐸
𝜕2𝑢1

𝜕𝑥2 + 𝜅𝐸𝜂2 𝜕4𝑢1

𝜕𝑥4 = 𝜌
𝜕2𝑢1

𝜕𝑡2                 (15) 

𝐸
𝜕2𝑢2

𝜕𝑥2
+ 𝜅𝐸𝜂2 𝜕4𝑢2

𝜕𝑥4
= 𝜌

𝜕2𝑢2

𝜕𝑡2
                (16) 

 

Similar to (4), the solution of (15) and (16) 

can be expressed as 

 

𝑢1 = 𝐴1𝑠𝑖𝑛 (√
𝜌

𝐸
𝜔𝑛𝑥) + 𝐵1𝑐𝑜𝑠 (√

𝜌

𝐸
𝜔𝑛𝑥)     (17) 

𝑢2 = 𝐴2𝑠𝑖𝑛 (√
𝜌

𝐸
𝜔𝑛𝑥) + 𝐵2𝑐𝑜𝑠 (√

𝜌

𝐸
𝜔𝑛𝑥)     (18) 

Eqs. (17) and (18) are the free axial 

vibration solution of the segment one and 

two, respectively. (17) and (18) have four 

unknown coefficients must be determined. 

Obtaining the natural frequencies in axial 

mode, two more conditions than those 

given in (5)-(7) are needed. The conditions 

are compatibility conditions at the crack 

section given by 

Jump in axial deflection, 

 

𝑢1 − 𝑢2 = 𝐶𝐹1                                      (19) 

 

Continuity of the axial force, 

 

𝐹1 = 𝐹2                                                 (20) 

 

In (19), 𝐶 =
1

𝑘
 is the flexibility of the spring 

and obtained using fracture mechanics 

principles. 

Applying the boundary and compatibility 

conditions, (17)- (20) yield a system of four 

homogeneous algebraic equations with 

𝐴1, 𝐵1, 𝐴2, and 𝐵2 as unknowns. 

For two ends clamped boundary conditions 

stated in (5), (17)- (20) can be written in 

matrix form as 

 

[

0 1 0 0
0 0 𝑠𝑖𝑛(𝑘2) 𝑐𝑜𝑠(𝑘2)

𝑐𝑜𝑠(𝑘1) −𝑠𝑖𝑛(𝑘1) −𝑐𝑜𝑠(𝑘1) 𝑠𝑖𝑛(𝑘1)

𝑢 𝑤 −𝑠𝑖𝑛(𝑘1) −𝑐𝑜𝑠(𝑘1)

] [

𝐴1

𝐵1

𝐴2

𝐵2

] =

0                                                            (21) 

wherein 𝑞 = √
𝜌

𝐸
𝜔𝑛, 𝑘1 = 𝑞𝐿𝑐 , 𝑘2 =

𝑞𝐿, 𝑢 = 𝑠𝑖𝑛(𝑘1) − 𝐶𝑘𝑐𝑜𝑠(𝑘1) +

𝐶𝑞3𝜅𝜂2𝑐𝑜𝑠(𝑘1), 𝑤 = 𝑐𝑜𝑠(𝑘1) +

𝐶𝑘𝑠𝑖𝑛(𝑘1) − 𝐶𝑞3𝜅𝜂2𝑠𝑖𝑛(𝑘1) 
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For a nontrivial solution of 𝐴1, 𝐵1, 𝐴2 and 

𝐵2, the determinant of the  coefficients of 

the matrix must be set to zero for each 

boundary type. The process gives the 

explicit form of characteristic equation of 

the cracked nanobeam with fixed-fixed 

yields 

 

−𝑠𝑖𝑛(𝑘2)[−1 + 𝑝𝑠𝑖𝑛(𝑘1)𝑐𝑜𝑠(𝑘1)] +

𝑝𝑐𝑜𝑠(𝑘2)𝑐𝑜𝑠2(𝑘1) = 0                        (22) 

 

wherein 𝑝 = 𝐸𝐴𝐶𝑞(1 − 𝜅𝜂2𝑞2) 

For the other boundary conditions, similar 

calculations yield the following 

characteristic equations for the fixed- free 

and free-free cracked nanobeam, 

For the fixed-free and free-free cracked 

nanobeam, 

 

−𝑐𝑜𝑠(𝑘2)[−1 + 𝑝𝑠𝑖𝑛(𝑘1)𝑐𝑜𝑠(𝑘1)] −

𝑝𝑠𝑖𝑛(𝑘2)𝑐𝑜𝑠2(𝑘1) = 0                         (23) 

 

For the free-free cracked nanobeam, 

 

−𝑝𝑐𝑜𝑠(𝑘2)𝑠𝑖𝑛2(𝑘1) − 𝑠𝑖𝑛(𝑘2)[1 +

𝑝𝑠𝑖𝑛(𝑘1)𝑐𝑜𝑠(𝑘1)] = 0                         (24) 

 

One may introduce the frequency ratio as 

the frequency of nanobeam without 

considering crack to the frequency of the 

cracked nanobeam to obtain dimension less 

frequency as 

𝐹. 𝑅 =
𝑁𝑎𝑡𝑟𝑢𝑎𝑙 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑐𝑟𝑎𝑐𝑘

𝑁𝑎𝑡𝑟𝑢𝑎𝑙 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑤𝑖𝑡ℎ 𝑐𝑟𝑎𝑐𝑘
   (25) 

The roots of the characteristic equations 

(22) – (24) are the axial frequencies for the 

cracked nanobeam incorporating the scale 

effects, explicitly. For example, for Zigzag, 

Armchair and other arbitrary chiral 

nanotubes, we obtained different frequency 

equations. 

A MATLAB program is written to solve the 

characteristic equations. It should be 

pointed out here that, by setting 𝐶 = 0 in 

the above equations, it can be obtained the 

natural frequency, i.e. eigenvalue 

equations, of the corresponding uncracked 

nanobeams and 𝜂 = 0 the corresponding 

scale less nanobeam. Indeed, the 

computation of these vibration frequencies 

may also be used to detect the location and 

severity of cracks in a nanostructure.  

4- Local flexibility of cracked nanostructure 

Assume that a slender prismatic nanobeam 

with a circular cross section, having a non-

propagating single edge crack (SEC) and 

double edge crack (DEC) (or flaw like 

crack) are shown in Fig. 3. 

 

 
Fig. 3 SEC and DEC in axial loading of SWCNT 

 

The cracked section is presented by a 

massless axial spring with flexibility 𝐶, 

where 

 

𝐹 = 𝑘∆𝑥                                               (26) 

 

and 
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𝐶 =
1

𝑘
=

∆𝑥

𝐹
                                            (27) 

 

This quantity is a function of the crack 

severity and the axial stiffness (𝐸𝐴) of the 

cross section of the nanobeam, and can be 

written as suggested in [25] as below: 

 

𝐶 =
𝑑

𝐸𝐴
𝑓(𝜉)                                          (28) 

 

wherein 𝑓(𝜉) is calculated by the 

following equations 

 

for single edge crack 

 

𝑓(𝜉) = 0.0007 + 0.3255𝜉 − 8.4253𝜉2 +

167.486𝜉3 − 831.418𝜉4 + 2268.89𝜉5 −

3154.06𝜉6 + 1852.87𝜉7                     (29) 

 

For double edge crack 

 

𝑓(𝜉) = −0.0445 + 11.77𝜉 −

393.721𝜉2 + 4813.5𝜉3 − 27314.8𝜉4 +

79935𝜉5 − 115803𝜉6 + 66031.8𝜉7  (30) 

 

where 𝑑 is the diameter of the circular cross 

section and 𝑓(𝜉) is called the local 

flexibility function. 

In this study an attempt is also made to 

calculate the stress intensity factor of the 

nanobeam explicitly incorporate scale 

effect using DM and principals of fracture 

mechanics. The predictive equation 𝑓(𝜉) 

for slender prismatic nanobeam with a SEC 

and DEC is proposed as [35] 

 

𝐾𝐼 = 𝜎√𝜋𝑎𝐹(
𝑎

𝑑
)                                   (31) 

 

wherein 𝐹(
𝑎

𝑑
) is a function of crack severity 

and crack type defined by the following 

equations for cracked nanobeam with 

circular cross section. 

For single edge crack 

 

𝐹 (
𝑎

𝑑
) = 1.122 − 0.231 (

𝑎

𝑑
) +

10.550 (
𝑎

𝑑
)

2

− 21.710 (
𝑎

𝑑
)

3

+

30.382 (
𝑎

𝑑
)

4

                                          (32) 

 

For double edge crack 

 

𝐹 (
𝑎

𝑑
) =

1.122−0.561(
2𝑎

𝑑
)−0.205(

2𝑎

𝑑
)

2
+0.471(

2𝑎

𝑑
)

3
−0.190(

2𝑎

𝑑
)

4

√1−
2𝑎

𝑑

   (33) 

 

In the above equations 
𝑎

𝑑
 is introduced as 

normalized crack depth. 

5- Results and discussion 

In order to show the accuracy and 

capability of the proposed method, the 

results for the natural frequency of 

nanotubes with a single edge crack are 

presented and compered to the numerical in 

[30], experimental in [34] and nonlocal 

Eringens results in [29]. A comparative 

study for evaluation of the first five natural 

axial frequencies considering the crack 

(
𝐿𝐶

𝐿
 =  0.2002) and scale effects and the 

results given by [34] is carried out in Table 

1 for a beam with fixed-free boundary 

condition and 𝐾 =
𝐸𝐴

𝑘𝐿
= 0.1144. It can be 

seen that Table 1 confirms the reliability of 

the present formulation and results. 

From Table 1, it is obvious that the 

frequencies of nanobeam are approaching 

to the frequencies obtained from 

experimental and nonlocal simulations by 
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choosing the corresponding nonlocal 

parameter.  

Table 1: Natural frequencies of the clamped-free 

beam with a single crack for different methods. 

Mode 

number 
Numerical 

result [30] 

Eringen 

theory [29] 

Experimental 

result [34] 

Present 

method 

1 
1.4278 1.4278 1.4451 1.4399 

2 
4.5579 4.5576 4.5585 4.5578 

3 
7.8540 7.8540 7.7590 7.7875 

4 
10.4471 10.4486 10.3564 10.3840 

5 
12.8476 12.8741 

---- 
12.7989 

Effect of Crack severity and tube chirality 

Fig. 4 shows that effect of crack opening 

size on the frequency ratio of the cracked 

nanobeam for Zigzag and Armchair 

nanotubes for mode 3. The boundary 

condition is fixed-free and the crack is 

located as 
𝐿𝑐

𝐿
= 0.5.From this figure, it can 

be seen that as the crack parameter 

increases, the frequency decreases. 

Moreover, this reduction is significant as 

the crack severity being smaller. As the 

crack severity is more increases, the two 

graphs approaches to single value. That’s 

why the smaller crack severity is used for 

further modeling. It can also be concluded 

that in identical crack severity, the 

frequency of Armchair chiral is higher than 

the Zigzag one. This increase is more 

apparent in lower crack severities. 

 

Effect of boundary condition and crack 

parameter 

Effect of crack location for specified scale 

parameter has been represented in Fig. 5 for 

various crack severity for fixed-free 

boundary condition. The crack parameter is 

assumed to be 𝐾 = 0.11 and the first mode 

of vibration is considered. 

 

 
Fig. 4 Natural frequency versus crack severity 

 

From this figure, it can be observed that 

frequency ratio varies for a certain crack 

parameter depending on the crack location. 

It can be seen that frequency ratio increases 

as the crack moves away from the fixed 

end. In other words, reduction in frequency 

is less for crack located near free end. It is 

also seen that as the crack severity 

increases, the frequency ratio decreases. 

This reduction is more apparent as the crack 

location moves to neighborhood of free end 

support. 

This important note should be noticed 

carefully. As crack moves to fixed 

boundaries, the reduction is more apparent. 

To explain this effect sensibly, we can 

consider this example. Suppose a bar with 

free-free boundary conditions with a crack 

in the middle of the bar. As the crack moves 

from the middle to the end of the free 

boundaries, as it is expected, the effect of 

the crack is lessen. When crack reaches 

exactly to the end of the bar, it can be 

supposed that there is no crack in the bar. 

Therefore, we can conclude that as crack 

move to the free end boundaries, the effect 

of crack decreases. 
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Now, we can suppose a bar with fixed-fixed 

boundaries with a crack in the middle. In 

this case, as the crack moves toward the 

fixed end, the effect of the crack is more 

apparent. Especially when the crack 

reaches around the fixed ends of the bar, the 

frequency severely is affected by the crack. 

In this case the tube may even be separated 

from the support. 

 
Fig. 5 Frequency ratio versus normalized crack 

position 
 

Effect of scale parameter 

To demonstrate the influence of the scale 

parameter on the free axial vibration of 

cracked nanobeams, variations of the 

frequency ratio versus the scale parameter 

is plotted for different boundary conditions 

in Fig. 6. From this figure, the following 

important notes can be achieved. Firstly, in 

addition to the crack severity, the scale 

parameter has a decreasing effect on the 

axial frequency. The decreasing effect of 

the crack is the result of the rigidity loss of 

the structure, and the more flexible the 

structure is, the smaller its frequency is. 

The decreasing effect of the scale parameter 

can be explained in this way that the scale 

has a negative modulus, and its negative 

amount is increased by the surface residual 

stress resulting in the decrease in the axial 

rigidity of nanobeam. Moreover, the scale 

parameter decreases the potential energy of 

the system, and as it is known, as the 

potential energy of the system decreases, its 

natural frequency decreases too.  

 
Fig. 6 Frequency ratio versus scale parameter for 

different boundary condition 

Then, the scale effect is taken account in the 

analysis that makes the nanobeam stiffer. 

Therefore, a larger nonlocal parameter 

leads to a decrease of the crack effect on the 

frequency. 

Effect of tube length 

Next, the effects of the tube length on the 

axial frequency are noticed. For this 

purpose, in Fig. 7, the frequency ratio of 

nanobeams with respect to tube length for 

different mode numbers is depicted.  
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Fig. 7 Frequency ratio versus tube length (A) for 

different mode number 

 

From this figure, it can be concluded that 

higher mode numbers reduce to higher 

frequencies. This increasing is more 

apparent in lower tube length. The 

frequency is decreases as the tube length 

increases. As the tube length increases 

more, the difference between mode number 

decreases. In other words, for nanobeams 

with enough large length, the effect of the 

mode number on frequency is negligible, 

and only the crack can have an apparent 

decreasing effect on lower length. 

Effect of crack type 

Effect of the scale parameter on the critical 

stress intensity factor (also known as 

fracture toughness) has been represented in 

Fig. 8 for various crack type for fixed-free 

boundary condition. It is assumed the tube 

length to be 𝐿 = 20𝐴 with crack length 𝑎 =

0.1 𝑛𝑚. The crack depth is assumed to be 
𝑎

𝑑
= 0.2 and the first mode of vibration is 

considered. From this figure, it can be 

observed that fracture toughness decreases 

as the scale parameter increases. This 

reduction is more apparent in lower tube 

length. 

As it is expected, it can be seen that the 

double edge cracked nanotube has lower 

fracture toughness than a single cracked 

nanotube. These discrepancies become 

more significant as the crack depth 

increases. In other words, the predicted 

local flexibility for a double edge cracked 

nanotube is more dominant when the crack 

depth increases. 

 

 
Fig. 8 Fracture toughness (𝑇𝑃𝑎√𝑛𝑚) versus scale 

parameter for different crack type 

6- Conclusion 

In this study, the free axial vibration of 

cracked nanobeams in the presence of the 

scale effects is investigated using DM 

elasticity theory with different boundary 

conditions. The governing equation of 

motion is obtained with dividing the 

nanotube into two segment in crack 

location connected with a linear spring with 

flexibility determined from fracture 

mechanics principles. The numerical 

results reveal that both the crack severity 

and scale parameter have a decreasing 

effect on the natural frequency.  

From the present study, the following notes 

are especially obtained: 

1. By using the present method, the 

eigenvalue equation for a cracked 

nanorod with any kinds of boundary 

conditions can be conveniently 
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determined from a fourth order 

determinant.  

2. The vibration frequency of nanorods is 

shown to be dependent on the crack 

severity, the end conditions and scale 

parameter. 

3. Influence of a crack on the dynamic 

behavior of the nanorod is sensitive to 

its location and length not to nanotube 

material. Natural frequency reduces 

due to the presence of cracks. The 

amount of reduction depends on 

location and size of cracks. As crack 

moves to the fixed support, more 

reduction in frequency is observed. On 

the other hands, the effect of crack is 

more pronounced when the cracks are 

near to the fixed end than at free end. 

4. As the scale parameter increases, the 

frequency decreases. The scale effects 

are more prominent for free end 

boundary condition. Also, for larger 

scale parameter, reduction in vibration 

frequency is not very sensible. 

5. For a certain crack location, the natural 

frequencies of a cracked nanotube are 

inversely proportional to the crack 

severity. While for a certain crack 

severity, change in natural frequency is 

less as the crack position moves away 

from fixed end. 

6. By increasing the length of the 

nanotube, the effect of the mode 

number decreases. For the nanotubes 

with enough large length, the effect of 

the mode number on the frequency of 

cracked nanotube can be neglected.  

7. This study also shows that the effect of 

the crack with the presence of the scale 

parameter on the axial frequency 

decreases in comparison with the case 

that only the effect of the crack on the 

axial frequency is considered. 

8. In the same conditions, Zigzag 

nanotubes has lower frequency that the 

Armchair one. This difference is more 

pronounced in lower cracked 

parameter. 

9. For a certain crack parameter, change 

in natural frequency is less as the crack 

position moves away from fixed end. 

10. The scale parameter has decreasing 

effect on fracture toughness. As 

expected nanotubes with DEC has 

lower fracture toughness than SEC. 
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