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Abstract 

Numerous scientists have examined the mechanical properties of materials at the micro- and nanoscale 

in recent years. Conversely, the remarkable advancements in micro and nanotechnology across several 

fields and industries, such as their extensive applications in micro- and nano-electro-mechanical systems 

(MEMS and NEMS), have piqued the curiosity of researchers. In this paper, vibration and dynamic 

behavior of multi-layer sandwich composite piezoelectric micro beam using higher-order elasticity 

theory by considering strain gradient and surface effects are investigated. The Hamilton’s principle is 

utilized to derive the sandwich micro beam model with Gurtin- Murdoch surface theory and generalized 

differential quadrature method is used to discretize and solve the differential equation Moreover, the 

effects of higher order materials and geometry of model on control respond and frequency behavior have 

been presented. In addition, the role of different theories based FFT results has been examined. The 

results show that the small material length scale considering in the higher order theories plays a key role 

in the dynamic respond of models. Also, the result of higher order theories should be considered in 

micro and nano scale and the classical theory could not predict the mechanical behavior very well. The 

study's conclusions imply that the effectiveness of controller scheme is within the piezoelectric voltage 

range in terms of vibration control and feedback damping factors.  

Keywords: Multi-Layer Sandwich Composite, Micro beam, higher-order elasticity theory, vibration and 

dynamic analysis 

1- Introduction 

The behavior of materials in the context of 

micro and nano electro-mechanical systems 

(MEMS and NEMS) has drawn the 

attention of numerous researchers in recent 

times. In many mechanical engineering 

applications, including atomic forces 

micro-scopes (AFMS), micro-switches, 

micro and nano sensors and actuators, 

micro rate gyros, and micro flexible joints, 

MEMS and NEMS play a significant role 

[1, 2]. Experimental studies have 

demonstrated that the size effect needs to be 

considered in the mechanical behavior of 

micro-scale structures when the length 

characteristic is on the order of microns [3]. 

Specifically, high longitudinal Young's 

modulus, strength to weight ratio, and high 
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frequency operation are unique 

characteristics that have drawn a lot of study 

from many scientific fields. Sandwich 

composite microstructures are a well-

known class of small-scale materials with a 

wide range of uses in contemporary 

industries. The results of the experiments 

showed that the behavior of micro and 

nanomaterials differs fundamentally and is 

dependent on the structure's dimensions [4-

6]. In order to address the fundamental 

drawbacks of classical theory, higher order 

continuum theories that take material length 

scale factors into account have been 

extended. Recent mechanical testing and 

experimental observations have made it 

clear that the behavior of materials at the 

micro and nanoscales essentially varies 

from that of materials at the macroscale and 

is strongly reliant on size as well as 

structure dimension [7-12]. Researchers 

have determined that the size impact needs 

to be considered in mechanical behavior in 

order to overcome this inherent weakness of 

classical theory and get the precise 

prediction of behavior in small-scale 

dimensions [13, 14]. As a result, several 

higher order continuum theories have been 

put forth that include factors related to the 

material length scale, such as strain 

gradient, Eringen, micropolar elasticity, 

couple stress, and modified couple stress. 

One of these advanced theories that many 

researchers have effectively used is the 

modified pair stress theory. Alashti et al. 

studied at the size-dependent behavior of 

microbeams in order to investigate static 

and free vibration problems utilizing the 

pair stress theory. The findings demonstrate 

that the deflection estimated by the 

previously indicated technique is less than 

that of the classical hypothesis [15]. 

Nikpourian and colleagues [16] report size-

dependent nonlinear dynamic resonance of 

a piezoelectrically laminated MEMS. For 

both rectangular and circular micro-plates, 

Jomehzadeh et al. [17] provided a micro-

mechanical study based on the modified 

couple stress for examining a wide range of 

length scale parameters, distinct aspect 

ratios, and alternative boundary conditions. 

Dynamic stability of manufactured double-

sided NEMS with finite conductivity, 

surface energy, and nonlocal effect was 

achieved by Sedighi et al. [18]. Ding et al. 

[19] assessed the impact of the thickness, 

beam width, and electrode gap on the 

frequency response using a modified couple 

stress theory of electrostatically actuated 

micro-beam with von Kármán geometric 

nonlinearity. The dynamic behavior of 

geometrical imperfect micro-beam was 

studied by Farokhi et al. [20] taking into 

account the modified pair stress theory. To 

discretize the equation of motion, they used 

the Galerkin method. Sahmani and Bahrami 

[21] noted that the dynamic stability of 

micro-beams driven by piezoelectric 

voltage is depending on their size. A narrow 

elastic beam's bending and buckling were 

proven by Lazopoulos & Lazopoulos [22]. 

They came to the conclusion that when 

beam thickness decreased, so did the cross-

section area's dependence, based on the 

strain gradient hypothesis. The increase in 

thin beam stiffness is responsible for this 

impact. Trindade and Benjeddou's finite 

element model [23] was created to assess 

the vibrational response of a traditional 

sandwich beam with a dynamic 

piezoelectric actuator and sensor. Ghaznavi 

et al. [24] examined the stability of 

transvers motion for a cantilever micro-

beam integrated with piezoelectric layers 

for the actuator and sensor. Using strain 

gradient theory, Sahmani et al. [21] clarified 

the dynamic stability of a micro-beam 

driven by piezoelectric voltage. 
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Additionally, they contrasted the critical 

piezoelectric voltages predicted by the 

classical theory with those that included a 

range of length scale parameter values. 

Researchers have been paying close 

attention to MEMS vibration abatement and 

control. Therefore, vibration control has 

made efficient use of a variety of control 

strategies. Based on the Strain Gradient 

nonlinear theory, Vatankhah et al. [25] 

examined a closed-loop control approach to 

reduce the vibration of a tiny Euler-

Bernoulli cantilever beam utilizing linear 

piezoelectric actuation. Using the Galerkin 

projection approach, they transformed the 

controlling partial differential equation into 

a few ordinary differential equations, and a 

reliable linear controller was created for this 

model. Ansari et al.'s study included a 

computer analysis of Timoshenko nano-

beam vibrations at various end conditions 

that took surface stress effects into account. 

They demonstrated how raising the 

dimensionless fundamental frequency is a 

direct result of raising the residual surface 

stress. The global dynamics and integrity of 

a micro-plate pressure sensor were 

expanded by Belarinelli et al. [26]. Gurtin-

Murdoch elasticity theory was utilized by 

Mohammadimehr et al. [27] to examine the 

influence of surface effects on the free 

vibration of an isotropic piezoelectric 

Timoshenko micro-beam. Their research 

demonstrated how the natural frequency 

responses are impacted by surface stress 

effects. The Gurtin–Murdoch surface stress 

and strain gradient theory was utilized by 

Mirkalantari et al. [28] to forecast the pull-

in instability behavior of nano-plates. They 

employed the GDQM to solve governing 

equations in their research. 

To the best of the author's knowledge, no 

research has been published on the best wy

 to control a microbeam using piezoelectric

 layers based on modified couple stress the

ory. The majority of related studies in micr

o and nano mechanical behavior that take i

nto account higher order continuum theorie

s concentrated on size dependent effect, sta

bility, and vibration analyses of the model. 

Furthermore, sandwich structures with piez

oelectric layers in micro scale that take surf

ace stress elasticity into account have recei

ved much too little attention. 

Surface stress elasticity and higher order 

elasticity theory are used to model the 

structure of micro cantilever beam model in 

the current study. Based on Hamilton's 

principle, the governing equations of 

motion and boundary conditions for a 

multilayer piezoelectric and micro-beam 

are constructed, and GDQM is then used to 

discretize the data. The LQR with output 

feedback is utilized to assess the active 

vibration control capability. 

2- Governing equations of motion 

Composite cantilever sandwich microbeam 

with two active silicon material qualities 

with PZT-4 piezoelectric layers linked to a 

thick porous core constitutes the 

fundamental idea of the problem. This 

sophisticated, one-of-a-kind structure was 

developed using surface stress and strain 

gradient theories. 

A schematic of a micro cantilever beam 

integrated with piezoelectric layers is 

presented in Figure 1. The length and width 

of the microbeam in this model are L and b, 

respectively. Furthermore, two thickness 

parameters related to the bulk and 

piezoelectric thickness, respectively, are 

indicated by ℎ𝑏 and ℎ𝑝 [29]. 
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Fig. 1 Schematic of micro cantilever beam with 

piezoelectric layers[30]  

The displacement field of an Euler-

Bernoulli beam is stated as [31]: 

𝑈1 = −𝑍
𝜕𝑤(𝑋, 𝑡)

𝜕𝑋
 

 𝑈2 = 0  

𝑈3 = 𝑤(𝑋, 𝑡) 

(1) 

where 𝑈1, 𝑈2 and 𝑈3 directions are denoted 

by the letters in  𝑋, 𝑌 and 𝑍, respectively. 

The potential strain energy without surface 

effect is extracted as [27]: 

𝑈

= ∫(𝜎𝑖𝑗

.

Ω

𝜀𝑖𝑗+𝑃𝑖𝛾𝑖
+𝜏𝑖𝑗𝑘

(1)
ƞ

𝑖𝑗𝑘

(1)
+ 𝑚

𝑖𝑗
𝑥𝑖𝑗

− 𝐷𝑖𝐸𝑖)𝑑𝑉 

(2) 

where 𝜎𝑖𝑗 and 𝜀𝑖𝑗 are Cauchy stress and 

strain tensors which are defined as Eqs. (3) 

and (4), respectively [32]. 

𝜎𝑖𝑗 = λ𝛿𝑖𝑗𝜀𝑚𝑚 + 2𝜇𝜀𝑖𝑗 − 𝑒𝑛𝑖𝑗𝐸𝑛 (3) 

𝜀𝑖𝑗 =
1

2
(𝑢𝑖.𝑗 + 𝑢𝑗.𝑖) 

(4) 

In which λ and 𝜇 are the Lame constants, 𝑒 

and 𝛿𝑖𝑗are the piezoelectric coefficient and 

kronecker delta.  

The material length scale parameters are 

presented in follows equations where 

𝑚𝑖𝑗, 𝑥𝑖𝑗 , 𝐷𝑖 and 𝐸𝑖 denote the deviatoric 

part of couple stress tensor, symmetric 

curvature tensor, electrical displacement 

and electrical field, respectively which are 

given as Eqs. (5)-(8) [32]: 

𝑚𝑖𝑗 = 2𝜇𝑙2
2𝜒𝑖𝑗 (5) 

𝜒𝑖𝑗 =
1

2
(𝜃𝑖,𝑗 + 𝜃𝑗.𝑖) 

(6) 

𝐷𝑖 = 𝑒𝑖𝑚𝑛𝜀𝑚𝑚 + 𝜖𝑖𝑚𝐸𝑚 (7) 

𝐸𝑖 = −Ф,𝑖 (8) 

where  𝜃, 𝜖, Ф,𝑖, 𝜇 and 𝑙2 are the 

infinitesimal rotation vector, the dielectric 

permittivity constant, the electric potential, 

shear modulus and length scale parameter 

associated with symmetric rotation 

gradients, respectively. The Rotation vector 

is considered as Eq. (9) [21]: 

𝜃𝑖 =
1

2
𝑐𝑢𝑟𝑙(𝑢𝑖.𝑗) 

(9) 

and the higher order parameters can be 

obtained as follow: 

𝜒12 = 𝜒21 = −
1

2

𝜕2𝑤

𝜕𝑥2
 (10) 
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𝛾1 = 𝜀11,1 = −𝑍
𝜕3𝑤

𝜕𝑥3
 

(11) 

𝛾3 = 𝜀11,3 =  −
𝜕2𝑤

𝜕𝑥2
 

ƞ113
(1)

= ƞ131
(1)

= ƞ311
(1)

= −
4

15

𝜕2𝑤

𝜕𝑥2
 

(12) 

ƞ111
(1)

= −
2

5
𝑍

𝜕3𝑤

𝜕𝑥3
 

ƞ333
(1)

= 
1

5

𝜕2𝑤

𝜕𝑥2
 

ƞ223
(1)

= ƞ232
(1)

= ƞ322
(1)

=
1

15

𝜕2𝑤

𝜕𝑥2
 

ƞ122
(1)

= ƞ212
(1)

= ƞ221
(1)

= ƞ133
(1)

= ƞ331
(1)

= ƞ313
(1)

=
1

5
𝑍

𝜕3𝑤

𝜕𝑥3
 

The higher-order stresses defined as [33]  

and [34]: 

𝑚12
𝐵 = 𝑚21

𝐵

= −𝜇𝑙2
2
𝜕2𝑤

𝜕𝑥2
 

(13) 
𝑚12

𝑃 = 𝑚21
𝑃

= −𝜇𝑙2
2
𝜕2𝑤

𝜕𝑥2
 

𝑝1
𝐵 = −2𝜇𝑙0

2𝑍
𝜕3𝑤

𝜕𝑥3
 (14) 

𝑝3
𝐵 =  −2𝜇𝑙0

2
𝜕2𝑤

𝜕𝑥2
  

𝑝1
𝑃 = −2𝜇𝑙0

2𝑍
𝜕3𝑤

𝜕𝑥3
 

(15) 

𝑝3
𝑃 =  −2𝜇𝑙0

2
𝜕2𝑤

𝜕𝑥2
 

𝜏113
𝐵(1)

= 𝜏131
𝐵(1)

= 𝜏311
𝐵(1)

= −
8

15
𝜇𝑙1

2
𝜕2𝑤

𝜕𝑥2
 

(16) 

𝜏111
𝐵(1)

= −
4

5
𝜇𝑙1

2𝑍
𝜕3𝑤

𝜕𝑥3
 

𝜏333
𝐵(1)

= 
2

5
𝜇𝑙1

2
𝜕2𝑤

𝜕𝑥2
 

𝜏223
𝐵(1)

= 𝜏232
𝐵(1)

= 𝜏322
𝐵(1)

=
2

15
𝜇𝑙1

2
𝜕2𝑤

𝜕𝑥2
 

𝜏122
𝐵(1)

= 𝜏212
𝐵(1)

= 𝜏221
𝐵(1)

= 𝜏133
𝐵(1)

= 𝜏331
𝐵(1)

= 𝜏313
𝐵(1)

=
2

5
𝜇𝑙1

2𝑍
𝜕3𝑤

𝜕𝑥3
 

𝜏122
𝑃(1)

= 𝜏212
𝑃(1)

= 𝜏221
𝑃(1)

= 𝜏133
𝑃(1)

= 𝜏331
𝑃(1)

= 𝜏313
𝑃(1)

=
2

5
𝜇𝑙1

2𝑍
𝜕3𝑤

𝜕𝑥3
 

𝜏223
𝑃(1)

= 𝜏232
𝑃(1)

= 𝜏322
𝑃(1)

=
2

15
𝜇𝑙1

2
𝜕2𝑤

𝜕𝑥2
 

𝜏333
𝑃(1)

= 
2

5
𝜇𝑙1

2
𝜕2𝑤

𝜕𝑥2
 

𝜏113
𝑃(1)

= 𝜏131
𝑃(1)

= 𝜏311
𝑃(1)

= −
8

15
𝜇𝑙1

2
𝜕2𝑤

𝜕𝑥2
 

𝜏111
𝑃(1)

= −
4

5
𝜇𝑙1

2𝑍
𝜕3𝑤

𝜕𝑥3
 

(17) 

The distribution of electrical potential 

across the thickness of the piezoelectric 

micro-layer is represented by the equation 

(Eq). (18) [32]: 

Ф(𝑝)(𝑥, 𝑧, 𝑡)

= − cos(𝛽𝑧)𝜙 (𝑥, 𝑡) +
2𝑧𝑉0

ℎ(𝑝)
 

(18) 

𝛽 =  𝜋
ℎ𝑝

⁄ and 𝑉0 is the external electric 

voltage. The surface stress theory can be 

achieved as:[28, 35]: 
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𝑈𝑠 =
1

2
∫ ∮(𝜏𝑖𝑗

.

𝜕𝐴

𝐿

0

𝜀𝑖𝑗 + 𝜏𝑛𝑖𝑢𝑛,𝑖) 
(19) 

and  𝜏𝑠 is the residual surface stress under 

uncertain condition and 𝜏𝛼𝛽 is the in-plane 

components of surface stress tensor 𝜆𝑠 and 

𝜇𝑠 are surface elastic constants which are 

assumed as follows [27]: 

𝜆𝑠 =
𝐸𝒔𝜐𝑆 

(1 + 𝜐𝑆 )(1 − 2𝜐𝑆 )
 

(20) 

𝜇𝑠 =
𝐸𝒔

2(1 + 𝜐𝑆 )
 

(21) 

where 𝜐𝑆 and 𝐸𝒔 are Poisson’s ratio and 

Young’s modulus, respectively.  

The kinetic energy of the model can be 

written as: 

𝑇(𝐵)

=
1

2
∫ {𝐼0

(𝑏)
(
𝜕𝑤

𝜕𝑡
)
2𝐿

0

+ 𝐼2
(𝑏)

(
𝜕2𝑤

𝜕𝑥𝜕𝑡
)

2

} 𝑑𝑥 

(22) 

𝑇(𝐴)

=
1

2
∫ {𝐼0

(𝑎)
(
𝜕𝑤

𝜕𝑡
)
2𝐿

0

+ 𝐼2
(𝑎)

(
𝜕2𝑤

𝜕𝑥𝜕𝑡
)

2

} 𝑑𝑥 

𝑇(𝑆)

=
1

2
∫ {𝐼0

(𝑠)
(
𝜕𝑤

𝜕𝑡
)
2𝐿

0

+ 𝐼2
(𝑠)

(
𝜕2𝑤

𝜕𝑥𝜕𝑡
)

2

} 𝑑𝑥 

in which the moment of inertia can be 

obtained as follows: 

 

𝐼0
(𝐵)

= ∫ 𝜌𝑏 𝑑𝐴(𝑏)
.

𝐴(𝐵)

,  𝐼2
(𝐵)

= ∫ 𝜌𝑏𝑍
2 𝑑𝐴(𝐵)

.

𝐴(𝐵)

 

(23) 
𝐼0
(𝐴)

= ∫ 𝜌𝑎 𝑑𝐴(𝐴)
.

𝐴(𝐴)
,  𝐼2

(𝐴)

= ∫ 𝜌𝑎𝑍2 𝑑𝐴(𝐴)
.

𝐴(𝑃)
 

𝐼0
(𝑆)

= ∫ 𝜌𝑠 𝑑𝐴(𝑆)
.

𝐴(𝑠)
,  𝐼2

(𝑃)

= ∫ 𝜌𝑠𝑍
2 𝑑𝐴(𝑆)

.

𝐴(𝑆)
 

𝜌𝑏 , 𝜌𝑎 and 𝜌𝑠 denote the densities of the 

bulk and piezoelectric layers including the 

actuator and sensor, respectively. By 

considering the kinetic energy and strain 

energy we have: 

Π = 𝑈𝑡𝑜𝑡𝑎𝑙 − 𝑇𝑡𝑜𝑡𝑎𝑙   (24) 

 

Π is the total potential energy of model 

Therefore, Hamilton’s principle and 

variational method can be explained by: 

𝛿 ∫ (𝑈𝑡𝑜𝑡𝑎𝑙 − 𝑇𝑡𝑜𝑡𝑎𝑙 )
𝑡2

𝑡1

𝑑𝑡 = 0 

 

(25) 

 

generates the following partial differential 

equations of motion for the integrated 

micro-beam with piezoelectric layers, the 

final equations of motion can be expressed as: 
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𝛿𝑤:
1

2
𝑏𝐸𝑏 [

ℎ0
3

12
] +

1

2
𝐶11

(𝑎)
𝑏 [

( 
ℎ0
2

+ℎ(𝑎))
3

3
−

(
ℎ0
2

)
3

3
] +

𝛿𝑤:
1

2
𝑏𝐸𝑏 [

ℎ0
3

12
]

+
1

2
𝐶11

(𝑎)
𝑏

[
 
 
 ( 

ℎ0
2 + ℎ(𝑎))

3

3
−

(
ℎ0
2 )

3

3
]
 
 
 

+
1

2
𝐶11

(s)
𝑏

[
 
 
 (−

ℎ0
2 )

3

3
−

(−
ℎ0
2 − ℎ(𝑠))

3

3
]
 
 
 
 

+𝜇(𝑠)𝑙2
2𝐴(𝑠) + 𝜇(𝑎)𝑙2

2𝐴(𝑎) + 𝜇(𝑏)𝑙2
2𝐴(𝑏)

+ 2𝜇(𝑏)𝑙0
2𝐴(𝑏) + 2𝜇(𝑎)𝑙0

2𝐴(𝑎) + 2𝜇(𝑠)𝑙0
2𝐴(𝑠)

+
8

15
𝜇(𝑏)𝑙1

2𝐴(𝑏) +
8

15
𝜇(𝑎)𝑙1

2𝐴(𝑎)

+
8

15
𝜇(𝑠)𝑙1

2𝐴(𝑠) + 𝐸𝑠(𝑎)
ℎ2

4
𝑏

+ 2(−
ℎ0

3

24
+

ℎ3

24
)𝐸𝑠(𝑎) + 𝐸𝑠(𝑎)

ℎ0
2

4
𝑏

+ 𝐸𝑠(𝑏)𝑏
ℎ0

2

2
+ 𝐸𝑠(𝑏)

ℎ0
3

6
+ 𝐸𝑠(𝑠)

ℎ2

4
𝑏

+ 2(−
ℎ3

24
+

ℎ0
3

24
)𝐸𝑠(𝑠) + 𝐸𝑠(𝑠)

ℎ0
2

4
𝑏 (

𝜕4𝑤

𝜕𝑥4 ) 

(26) 

(−2𝜇(𝑎)𝑙0
2𝐼(𝑎) − 2𝜇(𝑠)𝑙0

2𝐼(𝑠) − 2𝜇(𝑏)𝑙0
2𝐼(𝑏)

−
4

5
𝜇(𝑏)𝑙1

2𝐼(𝑏) −
4

5
𝜇(𝑎)𝑙1

2𝐼(𝑎)

−
4

5
𝜇(𝑠)𝑙1

2𝐼(𝑠))(
𝜕6𝑤

𝜕𝑥6
)

+ (
1

2
𝑒31𝑏 [

1

𝛽
((cos(𝛽 (

ℎ0

2
+ ℎ(𝑎)))

− cos (𝛽
ℎ0

2
)))

+ (
ℎ0

2

+ ℎ(𝑎))(sin(𝛽 (
ℎ0

2
+ ℎ(𝑎)))) − (

ℎ0

2
) sin (𝛽

ℎ0

2
)]

+
1

2
𝑒31

𝑠(𝑎)
𝑏𝛽 (−

ℎ

2
) cos (−

ℎ

2
𝛽)

+ 𝑒31
𝑠(𝑎)

[
1

𝛽
cos (−

ℎ0

2
𝛽) −

ℎ0

2
sin (−𝛽

ℎ0

2
)

−
1

𝛽
cos (−

ℎ

2
𝛽) +

ℎ

2
sin (−𝛽

ℎ

2
)]

+
1

2
𝑒31

𝑠(𝑎)
(𝑏) (−

ℎ0

2
)𝛽 cos (−

ℎ0

2
𝛽))(

𝜕2𝜙(𝑎)

𝜕𝑥2
) 

+(
1

2
𝑒31𝑏 [

1

𝛽
(cos (−𝛽

ℎ0

2
)

− cos(𝛽 (−
ℎ0

2
− ℎ(𝑠))))

− (
ℎ0

2
) sin (−𝛽

ℎ0

2
) +(

ℎ0

2

+ ℎ(𝑠))(sin(𝛽 (−
ℎ0

2
− ℎ(𝑠))))]

+
1

2
𝑒31

𝑠(𝑠)𝑏𝛽 (
ℎ

2
) cos (

ℎ

2
𝛽)

+ 𝑒31
𝑠(𝑠)

[
1

𝛽
cos (

ℎ

2
𝛽) +

ℎ

2
sin (𝛽

ℎ

2
) −

1

𝛽
cos (

ℎ0

2
𝛽)

−
ℎ0

2
sin (𝛽

ℎ0

2
)]

+
1

2
𝑒31

𝑠(𝑠)𝑏 (
ℎ0

2
)𝛽 cos (

ℎ0

2
𝛽))(

𝜕2𝜙(𝑆)

𝜕𝑥2
) 

+(−𝜌(𝑎)𝐼(𝑎) − 𝜌(𝑆)𝐼(𝑆) − 𝜌(𝑏)𝐼(𝑏))(
𝜕4𝑤

𝜕𝑥2𝜕𝑡2)

+ (𝜌(𝑎)𝐴(𝑎) + 𝜌(𝑠)𝐴(𝑠) + 𝜌(𝑏)𝐴(𝑏))(
𝜕2𝑤

𝜕𝑡2 ) = 0 
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The boundary conditions of micro 

cantilever beam are obtained from Eq. (28): 

𝑤(0) = 0 

𝜕𝑤(0)

𝜕𝑥
= 0 

𝜕2𝑤(𝐿)

𝜕𝑥2
= 0 

𝜕3𝑤(𝐿)

𝜕𝑥3
= 0 

(27) 

3- Solution and discretization 

To discretize the governing equations 

derived, the generalized differential 

quadrature method (GDQM) is used [36, 

37]. GDQM is an advanced numerical 

technique employed to describe the flexural 

and longitudinal free vibrations of the 

model. This method is applied to convert 

the partial differential equation into an 

ordinary differential equation. In GDQM, 

the derivative of a function is approximated 

by a weighted linear sum of function values 

at specified grid points along the coordinate 

direction. According to this method, the 

partial derivatives of a function 𝑓 at a point 

𝑥𝑖  are obtained as [6, 38]: 

𝑓(𝑟)(𝑥𝑖)

= ∑𝐶𝑖𝑗
(𝑟)

𝑓(𝑥𝑖) ,   𝑖 = 1, 2, … ,𝑁

𝑁

𝑖=1

 

(28) 

Using stiffness matrices [K], mass matrices 

[M], and the Rayleigh damping matrix [C], 

respectively, the discretized Eq. (29) and 

the associated boundary conditions can be 

expressed as matrices [29, 39] 

([𝑀]{𝑋} + [𝐶]{�̇�} + [𝐾]{𝑋})

= {𝐹} 
(29) 

[𝐶] = 𝛼1 [𝑀] + 𝛼2 [𝐾] 

(

 
 
 
 
 
 
 
 [

𝑀𝑤𝑤 0 0
0 0 0
0 0 0

] {

�̈�
𝛷(𝑎)̈

𝛷(𝑠)
̈

}

+ [
𝐶𝑤𝑤 𝐶𝑤𝛷(𝑎) 𝐶𝑤𝛷(𝑠)

𝐶𝛷(𝑎)𝑤 𝐶𝛷(𝑎)𝛷(𝑎) 𝐶𝛷(𝑎)𝛷(𝑠)

𝐶𝛷(𝑠)𝑤 𝐶𝛷(𝑠)𝛷(𝑎) 𝐶𝛷(𝑠)𝛷(𝑠)

] {

�̇�
𝛷(𝑎)̇

𝛷(𝑠)
̇

}

+ [
𝐾𝑤𝑤 𝐾𝑤𝛷(𝑎) 𝐾𝑤𝛷(𝑠)

𝐾𝛷(𝑎)𝑤 𝐾𝛷(𝑎)𝛷(𝑎) 0
𝐾𝛷(𝑠)𝑤 0 𝐾𝛷(𝑠)𝛷(𝑠)

] {

𝑊
𝛷(𝑎)

𝛷(𝑠)

}

)

 
 
 
 
 
 
 
 

= {
𝑃

𝐹(𝑎)

0

} 

 

(30) 

4- Results and discussion 

This section examines the effects of a 

number of parameters on an integrated 

cantilever micro beam based on modified 

couple stress continuum theory, including 

thickness to material length scale parameter 

ratio, surface residual stress, Young's 

modulus of surface layer, surface mass 

density, and surface piezoelectric constant. 

When a structure undergoes mechanical or 

thermal oscillations, its deformation can be 

measured by detecting the induced electric 

charges in the sensor layer. The resulting 

output voltage is supplied to the actuator, 

which can be regulated using a closed-loop 

control algorithm that responds to 

deformation or strain inputs. By integrating 

distributed piezoelectric sensors and 

actuators, the generated force can mitigate 

structural vibrations and prevent resonance. 

This approach, implemented via a 

piezoelectric micro-beam, is used to control 

vibration, buckling, shape, damage 

assessment, and active noise in 

microstructures. 

Table 1 represents the mechanical and 

geometrical characteristics of bulk and 

piezoelectric layers. [21].  
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Table 1: The geometric and material constant of the 

micro-beam and piezoelectric layer. 

Piezoelectric 

layer 
Bulk Parameters 

3 3 Thickness(µm)  

450 450 Length(µm)   

50 50 Width(µm)  

64 210 
Young’s modulus 

(Gpa) 

7500 2331 
Mass 

density(𝐾𝑔 𝑚3⁄ )  

0.27 0.24 Poisson’s ratio 

-10 - 𝑒31(𝐶 𝑚2⁄ ) 
8-10×1.0275 - ∈33 (𝐶2 𝑚2⁄ 𝑁) 

17.6 17.6 𝑙 (𝜇𝑚) 

 

Based on the classical continuum theory, Fig. 2 

shows the GDQM accuracy of the model for the 

first two vibrational modes of the cantilever 

micro-beam combined with piezoelectric 

layers. It is evident that as the number of grid 

points rises, so does the precision of the 

vibrational modes. Furthermore, it is 

demonstrated that the boundary conditions 

connected with the model exhibit a good degree 

of consistency in the geometry of the vibration 

modes. Although, increasing the number of 

grid point enhanced the prediction of 

model, finding the best number of points 

should be considered.  

 
 

Fig. 2 Comparison of normalized vibrational mode 

shapes of the cantilever micro-beam with different 

number of grid points. 

Fig.3. illustrated the natural frequency 

fluctuation versus thickness at various beam 

lengths and thicknesses. In order to study 

the natural frequency, the thickness of all 

layers both bulk and piezoelectric is taken 

to be constant. Following the demonstration 

of the convergence and accuracy of the 

approaches, a series of size-dependent 

studies were carried out in order to elucidate 

the effects of surface stress, geometry, and 

independent material length scale effects in 

addition to other parameters on the 

cantilever micro sandwich beam's natural 

frequencies and dynamic response. The 

thickness effects the first natural frequency 

for various beam lengths are displayed in 

Fig. 3. In this simulation, various length 

scales have been compared. It has been 

noted that natural frequencies decrease 

when L/H ratios rise. The increasing length 

to thickness ratios makes this phenomenon 

more prominent. This figure also show that 

thickness dimensions have a significant 

impact on natural frequency in comparison 

to length.  

Fig. 3 L/H effects on the natural frequency of model 

Based on strain gradient theory, Fig. 4 shows 

how the material length scale parameter l0 

linked to dilatation gradient affects the 

fundamental natural frequency of cantilever 

microbeams at different thicknesses and 

lengths. It is concluded that, in comparison to 

the other parameters, the influence of material 



36 

M. Soltani et al./ Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering 16 (2024) 0027~0040 
 

 

lengths scale parameter l0 on the vibration of 

frequency is more important.  

 

Fig. 4 Effect of length scale parameter l0 on natural 

frequency of model 

 

The impact of the material length scale 

parameter l2, which is associated with 

symmetric rotation, on the first natural 

frequency as a function of different lengths 

to thickness ratios is displayed in Figure 9. 

Figure 5 makes it clear that a rise in the 

material length scale parameter l2 

corresponds to an increase in the natural 

frequency's magnitude. Furthermore, a 

decrease in the fundamental natural 

frequency is observed with an increase in 

the length ratio; this decrease is ascribed to 

the model's reduced stiffness matrix. At 

smaller thicknesses, the impact of the 

material length scale parameters l2 becomes 

more significant. It good to mentioned that 

this parameters related to SGT and leads to 

predict the results of  model precisely.  

 

 
Fig. 5 Effect of length scale parameter l0 on natural 

frequency of model 

 

The initial tip displacements of magnitude 

5% of the model length are subjected to in 

order to obtain the vibrational response of 

the micro-beam model. In this instance, 

structural dampening is neglected because 

the focus was on determining whether the 

suggested approach could be implemented 

and how well the dynamic behavior 

performed. Fig. 5 provides the 

corresponding tip displacement for each of 

the classical and higher-order models. The 

vertical axes represent expansions for the 

model's tip deflection in meters, while the 

horizontal y-axis indicates the simulation 

period in seconds. 

 

 
 

Fig. 6 Dynamic response comparison of classical 

and higher order models 
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Another aspects of dynamic response can be 

consider based on control behavior of 

system. To this end, response of model to 

LQR controller has been simulated. In 

which the following equation can be 

expressed the controller relation: 

𝐽

= ∫ ({𝑦}𝑇[𝑄]{𝑦}   
∞

0

+ {𝑉𝑎}𝑇[𝑅]{𝑉𝑎}) 𝑑𝑡 

 

 

(31) 

 

 

where [𝑄] and [𝑅] are a symmetric matrix 

for the control performance and control 

cost. The  𝑅 = 𝑟𝐼 

 

In this technique, a tip displacement of 5% 

of the microbeam length is taken into 

account for the initial condition. Low 

magnitude is produced by the sensor's 

piezoelectric bending after micro-beam 

deflection. While an optimal control gain is 

computed to minimize an objective 

function, the LQR controller is regulated to 

process the input signal. Ultimately, the 

actuator layer's control voltage has the 

ability to reduce the vibration of the 

microbeam. The weighting factor R role is 

examined in Fig. 7 with the assumption that 

q = 5. It is demonstrated that the bigger 

values for the amplitude response for the 

micro-beam model are recreated by raising 

the weighting factor. The tip deflection 

suppressed by LQR control becomes worse 

than that of the lowest weighting factor R 

control because the weighting factor R 

control will increase the overshoot action. 

 
Fig. 7 Effects of LQR controller on higher order 

model 

 

By increasing the micro-beam stiffness 

matrix, the higher order model has 

produced the expected reduction in the 

maximum amplitude deflections of the 

micro-beam with respect to classical model. 

Fig.8 shows the results of the amplitude-

frequency response for the modified pair 

stress micro-beam model and the classical 

model with an increased frequency range. 

The reference signal's frequency in this 

simulation is adjusted to be close to the 

second mode's linear natural frequency. 

This figure shows that the displacements for 

the classical model are larger than the 

displacements for the higher order at every 

frequency. 

 

 
Fig. 8 Frequency to amplitude response comparison 

of classical and higher order models 
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5- Conclusion 

In this work, the free vibration analysis and 

dynamic response of higher order model 

was presented.  The variational method was 

used to derive the governing equations of 

motion. These equations were then 

discretized using the GDQ technique. The 

set of ordinary differential equations was 

thus created from the set of partial 

differential equations.  

The study's findings suggest that taking into 

account the independent material length 

scale parameter will boost the model's 

stiffness and natural frequency. Natural 

frequencies are shown to rise nonlinearly 

with an increase in the value of the material 

length scale. Furthermore, it was discovered 

that the natural frequency was predicted 

more precisely by surface stress conjunctive 

with higher order theory than by the 

classical model. It has been observed that 

the LQR approach, which actively controls 

vibration in dynamical systems, can 

significantly reduce vibration. This 

controlling scheme is a effective tool to 

reduce the model amplitude and control the 

shape. 
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