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Abstract 

Renewable energy sources are used as distributed generation (DG) sources in distribution networks. 

Inverter microgrids (MGs) in island operation are nonlinear systems with multiple dynamic modes. 

One of the main advantages of a microgrid is its ability to operate in islanded mode, where the DGs 

are responsible for providing both active and reactive power requirements by themselves. The 

distinguishing feature of distributed generation, with power electronic interfaces, which usually work 

as voltage source inverters, is the flexibility to provide controlled and high-quality energy. In this 

paper, the dynamic model of a microgrid based on inverter voltage sources in the first level of control 

is used. The behavior of a microgrid in the time domain is simulated and the performance of a 

microgrid is shown in three different modes. The inverter source control model including power 

control loops, voltage control and current control loops as well as the LC filter of the source output in 

the dq biaxial reference device are used. The simulation results show that with conventional dropout 

strategies, the active power distribution is done properly between sources, but it is not accurate enough 

to distribute the reactive power between the resources of a microgrid. 

Keywords: Inverter-Based Microgrid, Droop Control, Island Mode 

1- Introduction 

Energy has a basic role in increasing 

industrial productivity, in other words, 

when energy is available in sufficient qua-

ntity and on time, economic development 

will be possible [1,2]. Energy exists in var-

ious forms including heat, light, mechani-

cal, electrical, chemical and nuclear. Ener-

gy sources are divided into two categories: 

renewable and non-renewable [3, 4]. 

In recent years, traditional electrical power 

systems have undergone continuous and 

rapid changes to reduce environmental 

concerns and respond to consumer dema-

nds [5,6]. One of the solutions proposed in 

this field is the use of renewable and envir-

onmentally friendly resources [7,8]. Rene-

wable energy sources such as solar energy  

[9, 10], wind energy [11, 12], sea wave 

energy [13,14], and geothermal energy 

[15,16]  are used as distributed generation 

sources in distribution networks. 
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A microgrid is a small-scale power grid, 

consisting of a number of distributed 

generation units and part of the loads close 

to these sources, in the field of electrical 

energy systems [17, 18]. The microgrid is 

normally connected to the power grid, but 

it is designed in such a way that in the 

event of a fault in the upstream grid or 

prior planning, it can continue to operate as 

an island and autonomous [19,20]. The 

islanding capability of the microgrid makes 

it possible to feed the sensitive loads in the 

microgrid in the event of a fault in the 

upstream network. This feature improves 

reliability for in-network consumers [21, 

22]. With the separation of the microgrid 

from the main network, the control tasks 

and objectives of the distributed resources 

in it undergo fundamental changes. In 

islanded operation mode, the inverter 

source controller in the microgrid must 

control the system voltage and frequency 

and distribute the set of loads according to 

the source capacity between them [23, 24]. 

Today, the use of renewable distributed 

generation sources in medium and low 

voltage microgrids is of great importance 

[25, 26]. Typically, voltage source 

inverters (VSIs) with high switching 

frequency, are used to connect such 

sources to distribution networks to produce 

sinusoidal voltage of the desired quality  

[27, 28]. A microgrid system that benefits 

from distributed generation resources has a 

non-linear and time-varying nature which 

encounters the control problem with some 

difficulties [29, 30]. So far, various 

researches have been done to analyze the 

dynamic performance of microgrids based 

on inverter sources. 

A small signal model for the inverter 

microgrid is extracted in [31]. Then, using 

special value analyze, the effect of 

different control parameters on microgrid 

stability has been investigated. The 

selection of an inappropriate range to 

change the parameters and their effect on 

the stability of the inverter microgrid has 

been studied. Then, using the genetic algo-

rithm, the optimal range for the coeffic-

ients of the drop characteristics and the 

gains of the PI controllers is determined. 

The use of a distributed framework to 

evaluate and improve small signal stability 

in inverter microgrids has been proposed in  

[32]. In this study, by selecting a DG bus 

as the leader, the necessary information is 

received from adjacent buses. Then, by 

designing an algorithm, the Jacobin matrix 

of the system is formed and its stability is 

evaluated. A local control approach at each 

inverter based on an event-driven operation 

of a parameter-varying filter is presented in  

[33], which, it active power sharing and 

controllable accuracy for frequency 

restoration without requiring the exchange 

of control data between inverters over the 

communication network. A decentralized 

power control method in a single-phase 

flexible ac microgrid is investigated in 

[34], where, to enhance the dynamics of 

the power loop, droop control is used 

together with a derivative controller in 

island mode. In addition, for the mode 

connected to the grid, in order to 

accurately control the power factor, at the 

common connection point, a droop method 

is used with an integral controller. An 

islanded microgrid voltage and frequency 

control based on fractional order control 

and an improved droop control scheme are 

presented in [35], where a sparrow search 

algorithm is used to adjust the parameters 

of the fractional-order proportional integral 

derivative filter controller, and the 

simulation results show that the proposed 

controller outperforms the traditional 
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proportional integral controller in effic-

iency and flexibility. 

The dynamic model of a microgrid based 

on inverter voltage sources in the first level 

of control is used in this paper. The 

behavior of a microgrid in the time domain 

and its performance are simulated in three 

different modes. The simulation results 

show the non-distribution of reactive 

power between the sources of a microgrid 

using conventional methods. The simul-

ation results show that in the presented 

method, unlike common loss methods, by 

using the frequency parameter, active pow-

er distribution between sources is done 

correctly. 

2- Control Structure of Distributed 

Generation Based on Inverter Converter 

Fig. 1 of the block diagram of a voltage 

source inverter (VSI) with the correspo-

nding controllers shows that the inverter is 

connected to the microgrid via the LC filter 

and the inductor. 

The control structure of the inverter 

consists of two parts: an external power 

control loop and an internal control loop, 

including voltage control loops and current 

control loops [36, 37]. 

 

 
Fig. 1. Inverter microgrid under study (single phase 

block diagram) 

In the power control loop, a local 

controller is used in each DG to maintain 

the voltage and frequency in the range of 

predetermined values, and to increase the 

reliability of the inverter microgrids in the 

island operation mode [38,39]. 

The coordination between the local 

controllers according to the following 

equations is obtained by the methods of 

frequency-active power droop and voltage-

reactive power in the power control loop. 

- o pm P           (1) 

= -or n qV V n Q                     (2) 

Where mp and nq are the coefficients of 

active power droop and reactive power 

droop of each DG unit, respectively.  

The angular frequency of the DG is ω and 

the nominal frequency of the system is fo 

(ωo=2ᴫfo). Vor is the magnitude of the 

reference voltage is the output of the power 

controller. The nominal voltage of the 

system is 380 V. P and Q are the mean 

values of the active and reactive powers 

measured at the output of the DGs. The 

inverter output voltage is regulated by the 

voltage controller. Usually, a current 

control loop is used to increase internal 

stability, increase power quality, and 

prevent system overload. This controller 

minimizes the difference between the 

current passing through the inductor and 

the current reference calculated by the 

voltage controller. The output of this 

controller is the input voltage signal to the 

inverter. 

3- Microgrid model 

Microgrid has many benefits for 

consumers and for power generation 

companies [40, 41]. 

Microgrid is an electrical energy gener-

ation and distribution system, and it consi-

sts of different parts such as distributed 

generation, energy storage systems, loads 

and protection equipment [42, 43]. 
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Microgrids have three main structures: AC 

microgrid, DC microgrid and combined 

AC-DC microgrid [44, 45]. One of the 

most important advantages of a microgrid 

is to improve power quality, provide 

diverse services to loads, and reduce the 

influence of distributed generation [46, 

47]. Also, microgrids help distribution 

networks by self-repairing after a fault 

occurs, due to their independent perform-

ance ability. 

Microgrids as a new style of distribution 

network with production control and local 

consumption can be operated in two 

functional modes connected to the network 

and separated from the network (island) 

[48,49]. 

The linearized equation of the node voltag-

es in the network can be represented as 

follows: 

bDQ N Inv oDQ Load LoadDQ

Net lineDQ

v R (M i M i

M i )

              

   

   (3) 

4- System under study 

The single-line diagram of the autonomous 

inverter microgrid 380 V, 50 Hz studied is 

shown in Fig. 2 [50].  

 

 
Fig. 2. Inverter microgrid under study (single phase 

block diagram) 

 

This microgrid includes four distributed 

generation inverters, which are connected 

to buses 1 to 4. The capacity of sources 1 

and 2 is 33 kVA and the capacity of 

sources 3 and 4 is 25 kVA. 

The buses are connected to each other by 3 

transmission lines. The X / R ratio of the 

lines is very important in the microgrid 

stability. Therefore, the lines with different 

X/R ratios are selected, so that the micro-

grid does not have a dominant resistance 

mode or a dominant inductor. 

Loads L1 and L2 are connected to buses 1 

and 3, and they are powered by sources in 

the microgrid. Each source is connected to 

its local bus by a coupling impedance 

Zc=0.03+j0.11. 

 The impedance lines are: Za=0.23+j0.10 

Ω, Zc=0.35+j0.58 Ω and Zb=0.23+j0.10 Ω. 

5- Simulation results 

The scenarios considered for the microgrid 

simulation are: 

(A) examine with the presence of the usual 

droop strategy 

(B) investigation of power sharing status, 

voltage and frequency adjustment after 

sudden change of load in microgrid 

(C) system performance analysis to enter a 

source into the microgrid. 

 

Examine with the presence of the usual droop 

strategy  

The studied microgrid is started with the 

presence of two loads in the mode of island 

operation. 

Fig. 3 shows the changes in active power 

and reactive power. Due to the same 

capacity and coefficients of droop charac-

teristics of sources 1 and 2 and similar for 

sources 3 and 4, it is expected that the 

required active power will be divided 

between them in proportion to the capacity 

of the resources. 

As can be seen, the ideal active power 

distribution is achieved between the 
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sources, and all four sources, in proportion 

to their capacity, contribute to the actual 

power supply many times over. 

But unlike active power, reactive power is 

not divided according to the capacity of the 

resources. 

 
(a) active power 

 
(b) reactive power 

Fig. 3. Changes in power 

 

 
Fig. 4. Changes of sources output voltage 

The changes of output voltage shown in 

Fig. 4.  

Fig. 5 shows the frequency changes of the 

sources. The output voltage of the sources 

is not equal due to differences in line 

parameters. However, when the frequency 

drop controller is applied, the operating 

frequency of all resources is directed to a 

common value, which is the operating 

frequency of the microgrid. 

 

 
Fig. 5. Change of sources frequency 

 

Sudden change of load in microgrid 

In this part, the conditions of change of the 

working point, due to the sudden change of 

load, are simulated in the microgrid. After 

the load changes in the microgrid, the 

power control units are expected to resp-

ond quickly to load changes and distribute 

it appropriately between resources. 

First, the microgrid is set up with the 

presence of loads. 

Then at time t=1.5 second, both loads are 

halved. Fig. 6 shows the active and 

reactive powers due to load change. 

As can be seen, after the reduction of 

microgrid loads, the share of resources in 

providing active power is proportional to 

their capacity. 

But reactive power is still unequally 

distributed among resources. Therefore, 

sudden load changes have no effect on 

active power sharing. The output voltage 
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and frequency of the sources due to load 

changes are shown in Figs. 7 and 8. 

 

Enter a source into the microgrid 

In real microgrids, the ability of resources 

to enter and exit the microgrid is very 

important in its reliable performance. This 

capability creates conditions in the 

microgrid that DG can be added to the 

microgrid without changing the control 

system [51]. 

 
(a) Active power 

 
(b) Reactive power 

Fig. 6. Changes in power due to load change 

 

 
Fig. 7. Changes of sources output voltage due to 

load change 

 

 
Fig. 8. Change of sources frequency due to load 

change 

 

 
(a) Active power 
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(b) reactive power 

Fig. 9. Changes in power due to source entry 

 

 
Fig. 10. Changes of sources output voltage due to 

source entry 

In this section, first the microgrid is 

launched with the presence of only three 

sources. Then at time t=1.5 sec, the fourth 

source is connected to the microgrid. 

Changes in power due to source entry and 

Changes of sources output voltage due to 

source entry are shown in Figs. 9 and 10, 

respectively. 

6- Conclusion 

One of the basic characteristics of micro-

grids is that they have the ability to work in 

grid-connected mode or island mode. In 

this paper, microgrids including voltage 

source inverter dynamics, network dynam-

ics and load dynamics are used. In this 

regard, in order to perform properly and 

reliably, the first and second levels of a 

hierarchical control structure are used in 

the permanent working mode of the 

autonomous inverter microgrid. Three 

different scenarios are implemented on a 

sample microgrid. The results of the simul-

ations have been investigated under diffe-

rent operating conditions such as changes 

in the microgrid operating point or the 

entry of resources into the system during 

operation. The simulation results also sho-

wed that due to the universality of the 

frequency parameter in the whole microgr-

id, the active power distribution is done 

properly between the sources, but the 

common drop strategies for reactive power 

distribution between the resources of a 

microgrid are not accurate enough. 
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