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Abstract 

Direct time integration method is based on creating dynamic equation in selected time intervals. It is 

presented to solve equations of motion describing the dynamic response of the structural linear and 

nonlinear multi degree of freedom systems. In this research, dynamic analyses of guyed cables with 

small sagging have been studied. Nonlinear systems in the guyed cables with multi degree of freedoms 

are involved creating matrix equation. In these systems, response and derivations of response- time have 

been found. Evaluation of the forced vibration response for nonlinear guy cable with multi degree of 

freedom needs to solve second order differential equations in the general coordination system. Therefore 

solving the equation may be obtained using integration methods of time domain. Newmark-β model is 

one of the direct time integration methods to solve second order differential equations of motion using 

the difference formulation. After normalization of motion equations for the second central difference, 

this model changes to explicit extrapolation to dynamic response. Because of having no domain loss 

error and has a small error in the periodicity, it can be used as one of the best formulation methods of 

guy cables under dynamic loads. 

Keywords: Dynamic analysis, Guy cable, Direct time integration, Motion equations

1- Introduction 

Cables structures are nonlinear structures 

which experience different types of loading. 

Regarding growing importance of cables 

structures application, understanding their 

properties are very important, so there is a 

need for more information on cable 

behavior [1]. Many of cables are unstable 

geometrically and change the geometric 

shape in the load direction but they have no 

stiffness from the beginning the analysis, so 

special methods are needed to analysis [2]. 

Anyway, because of nonlinearity of cable 

behavior there is a mismatch between 

loading, stiffness and inner forces. In this 

case, it is possible to solve motion equation 

of guyed cables using integration methods 

of time integrity [3]. Time integrity method 
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is frequently employed to compute 

numerical solutions of differential 

equations. This method is limited to linear 

systems but can be developed in linear 

systems. During the last decades, different 

time integrity methods have been used in 

structural systems. Each method have had 

different accuracy, stability and 

computational costs which according to 

displacement, speed and acceleration 

equations in step by step algorithm have 

different relations and can be obtained the 

dynamic response of the structure. The 

Newmark  method is an effective method 

for numerical time integration in dynamic 

problems. Newmark-β method generalizes 

numerical integration method using two 

parameters, β and 𝛾, which define numerical 

damping and controller of acceleration in 

the range of time step, respectively 

[4].Using this method, differential equation 

can be solved and using finite element 

analysis, it can be modeled dynamic 

systems.  

2- Dynamic analysis of guyed cables 

underweight loading 

Nonlinear structural systems which are 

multi degree of freedom systems involve 

equilibrium and dynamic matrix equations. 

In these equations, nonlinearity depends on 

time and time dependent variables. In 

nonlinear structures, the evaluation of the 

forced vibration response in multi degree of 

freedom requires solving quadratic 

differential equations in the general 

coordinate system. In this case, equation 

solving can be obtained by time domain 

integration methods. 

2-1- Development of governing equations of 

motion 

2-1-1- Main hypothesis 

The following assumptions are used to 

simplify the derivations of equations of 

motion equations of cable element [5]: 

(1) Cable material is elastic with linear 

strain (Lagrangian nonlinear strain) 

(2) Cables are long and pre-tensioned 

with axial stiffness (bending and 

torsional stiffness are negligible). 

Due to increase of the length, the 

stability of the structure reduces [6]. 

(3) Along the x axis the tension in cable 

varies (x is the only considered 

independent variable). 

2-1-2- Motion equations 

Consider the case of single span inclined 

cable subjected to three dimensional partial 

differential equations in a parabolic form. 

Fig. 1 shows the inclined dynamic cable and 

its coordination. As shown in this figure, the 

left cable end (O) is considered as the origin 

of the coordinate system and the cable is 

initially placed in the x-z plane. According 

to the X axis, the cable has a chord length, 

Lch, and inclination angle,θ. Following 

equation presents for force equilibrium in 

local direction, x . 

x
T +(q + q )dx =

x dxs s

2
u u

              m.dx + c .dx + k .dx u
x x2 tt


 

 
   

 

 
 
 

∂ ∂

∂ ∂

∂ ∂

∂∂

         (1) 

Applying the chain rule of                            





∂ ∂ ∂x
= .

∂s ∂x ∂s
  and substituting   x = x +u , 

we get: 

x x
T (x +u ) dx +(q + q )dx =

x dxs s s

2
u u

                m.dx + c .dx + k .dx u
x x2 tt


   

 

 
   

 

 
 
 

∂ ∂ ∂

∂ ∂ ∂

∂ ∂

∂∂

      (2) 
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Suppose that equation (2) is written as 

follow: 

u
H 1+ dx +(q + q )dx =

x dxxs

2
u u

                  m.dx + c .dx + k .dx u
x x2 tt


  

 

 
   

 

  
  
  

∂ ∂

∂∂

∂ ∂

∂∂

     (3) 

Simplifying, we have: 

2
u H u

H 0 + + 1+ +(q + q ) =
x dxx x x

2
u u

                               m + c . + k .(u )
x x2 tt

  

   

 


 

   
       

   
       

′ ∂ ∂ ∂

∂ ∂ ∂

∂ ∂

∂∂

    (4) 

Similarly, the following expressions can be 

obtained and equilibrium forces in          

direction of y,z   : 

  

2v H v
H 0+ + 0+

2 x xx

2v
+(q +0)= m. +

y 2t

v
c +k .(v )

y yt

    
        

 
 

  
 

 
   

∂ ∂ ∂

∂ ∂∂

∂

∂

∂

∂

     (5)           

2 2
z w H z w

H + + + +(q + q ) =
z dz2 2 x x xx x

2
w w

                    m. + c + k .(w )
z z2 tx

    


    

 


 


   
       

   
       

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂∂ ∂

∂ ∂

∂∂

    (6) 

where: 

T  : total cable tension (static+ dynamic) 

 H = H +ho (t)
     : Cable tension in x   

direction (static+ dynamic) 

m : cable mass in the cable length unit 

q , q , q
x y z    : Applied dynamic force per unit 

cable length in the direction of , ,x y z  and

C , C , C
x y z  Cable Damping 

 Component per unit of length in , ,x y z  

direction. K , K , K
x y z    stiffness(external) 

per unit of lemgth in the direction of 

, ,x y z   . 

( , ) ( , ) ( , ), ,x t x t x tu u v v w w  
        are 

displacement copmponents due to 

vibrations in , ,x y z  directions. 

2-2- Motion equation normalization 

Every modeling problem has its own 

solution space related to dependent and 

independent variables. Accurate calculation 

of these variables is a fundamental step to 

mathematical model formulation [7]. The 

difference in variable spaces is applicable 

for analytical and computational analysis of 

both models. Where all values are 

dimensionless, the normalization 

transformation technique creates a linear 

scaling value for each of dependent and 

independent variables and transforms the 

equations based on governing relations. 

Any forcing functions for the problem are 

scaled in a similar manner [8]. 
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Fig. 1 3D cable model for dynamic analysis 

 
 

2-2-1- Need for normalization 

Math based optimization methods need to 

have optimum answer to start problem 

solution [9]. One of these methods is 

normalization. The importance of 

normalization is just as for linear systems 

and it can often provide solutions with 

independent parameter. Using 

normalization, the probability of round-off 

errors in numerical solution of equation can 

be reduced. The importance of 

normalization becomes clear when we have 

to solve a set of differential equations. In 

these cases, the variables are different in 

terms of numerical values, which are cause 

of problems. Sometimes these problems are 

related to selection of variable units [10]. 

Equation normalization has effect on the 

problem of variables creating and their 

derivatives, and if used in numerical 

methods of solving equations, it can show 

different values. Normalization provides 

important information about the problem 

and can often reduce the complexity of 

problem because of specifies the 

importance of each term governing 

equations. 

2.2.2- Non dimensionalization 

Using the normalization technique by 

applying a new set of non- dimensionalized 

variables can rewrite equations (4), (5) and 

(6) and provide non- dimensional equations 

for motion of single inclined cable. 

ˆˆ ˆ
ˆ ˆˆ

ˆ ˆˆ

ˆ ˆ
ˆˆ ˆ ˆ

ˆˆ

2
u H u

H + 0 + . 1+ + (q + q ) =x dx2
x xx

2
u u

                               m. + c . + k .ux y2
tt

   
   

  

   
   

  

∂ ∂ ∂

∂ ∂∂

∂ ∂

∂∂

  (7) 

ˆˆ ˆ
ˆˆ

ˆ ˆˆ

ˆ ˆ
ˆˆ ˆ ˆ

ˆˆ

2
v H u

H +0 + . 0 + + q =y2 x xx

2
v v

                    m. + c . .+ k .vy y2 tt

   
       

   
       

∂ ∂ ∂

∂ ∂∂

∂ ∂

∂∂

      (8) 
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ˆˆ ˆˆ ˆ
ˆ ˆˆ

ˆ ˆ ˆˆ ˆ

ˆ ˆ
ˆˆ ˆ ˆ

ˆˆ

2 2
w z H z w

H + + . + +(q + q ) =y dz2 2 x x xx x

2
w v

                                   m. + c . .+ k .wy y2 tt

   
       

   
       

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂∂ ∂

∂ ∂

∂∂

 (9)  

where: , ,x y z are normalized functions in 

, ,x y z  directions. 

1 1 1
ˆ ˆ ˆx = x y = y z = z

L L L
ch ch ch

  
     
          
     

    (10-1) 

ˆ
EA

t = t
2

mL
ch

 
 
 
 

                                       (10-2) 

t  and  m     are normalized time and cable 

mass per unit length, respectively. 

1m   

( , ) ( , ) ( , ), ,x t x t x tu u v v w w  
       )3-10(          

 are normalized displacement components 

due to  vibration in the , ,x y z  direction. 

1 1 1
ˆ ˆ ˆu = u v = v w = w

L L L
ch ch ch

  
     
          
     

   (10-4) 

H is cable tension component in the x           

normalized direction  (static-dynamic). 

H + ho (t)
Ĥ =

EA

  
 
 
 

                                       (10-5) 

( )th is dynamic tension component in      

direction of x  . 

ˆ ,q q
dx dz

are the normalized self-weight 

component per unit length, 

ˆ
L L

ch chq = q ; q = q
dx dx dz dzEA EA

   
   
   

            (10-6)                                                         

ˆ ˆ ˆq ,q ,qx y z  are normalized dynamic force in 

per unit length. 

ˆ ˆ ˆ
L L L

ch ch chq = q ;q = q ,q = qx x y y z z
EA EA EA

     
     
     

 (10-7) 

, ,x y zc c c are normalized damping  

 component in per unit cable length.                

x y

z

EA EAL L
ch chm m

= c ; = c ;
x yEA EA

EAL
ch m

= c ;
zEA

c c

c

 



   
   
      
   

 
 
  
 

  (10-8) 

x y zk ,k ,k are hardness normalized 

 component in per unit cable length.   

x y z

2 2 2
L L L
ch ch ch= k ; = k ; = k ;

x y zEA EA EA
k k k  

     
     
     
     

(10-9) 

ˆ ˆ ˆ

ˆ ˆ ˆ

u v w
, ,

t t t

     
     
     

∂ ∂ ∂

∂ ∂ ∂
 is normalized speed 

component and 
ˆ ˆ ˆ

ˆ ˆ ˆ2 2 2

u v w
, ,

t t t

     
     
     

∂ ∂ ∂

∂ ∂ ∂
                                 

is acceleration normalized component 

regarding to vibration, respectively. 

2-3- Direct time integration method 

Unlike superposition methods, direct time 

integration technique is limited to linear 

systems but it can easily be expanded in 

nonlinear systems. This method can be used 

as much as possible for components with 

high frequency in a straightforward manner. 

Although equations of the direct time 

integration cannot be used as a black box. 

Indeed, the parameters of this method 

should be controlled correctly according to 

the necessary accuracy and stability 

according to the numerical damping control 

[11]. Also, each of them has different 

relationships relating displacement, 

velocity and acceleration in step by step 

algorithms to obtain structural dynamic 

response. 
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2-3-1- Classification 0f time integration methods 

The time integration algorithms used in the 

structure dynamics can be classified under 

four broad categories: single step multi 

value, multi- step, multi- stage and predictor 

and corrector methods. Each method can be 

categorized as implicit or explicit. Either 

explicit or implicit integration can be used, 

depending on nature of the problem to be 

solved.  Most of implicit methods can be 

absolute and stable and create large time 

steps. However compared to explicit 

method, the cost per time steps and storage 

requirements is more. Therefore it is 

necessary to have simulated equations 

system to provide more appropriate 

solutions (for example, more computational 

efforts per time step). On the other hand, 

most of explicit methods are stable and need 

small time steps for numerical stability [12]. 

It is compensated based on this fact that the 

cost of each time step and the storage 

requirements is relatively low and it is not 

necessary to solve the simulated equations 

(for example, less computation per time 

step). Of course, the time integration 

method is a critical choice that combines 

accuracy and efficiency. Regarding to the 

applications, choice of method is guided 

and its usage limitation has been specified. 

Usually, the implicit methods are effective 

for structural dynamic problems; whereas 

explicit methods are used for wave 

propagation problems. In a general way, 

multi- stage integration methods for the first 

order systems are expressed in this form: 

m m
u = α u - Δt β uj jn+1 n+1- j n+1- jj=1 j=0

     (11)                                                           

where: n+1 nΔt = t - t     is time step and 

    T T T

n+1 n+1 n+1u = q q 
  is the state vector at 

tn+1 calculated from state vector at the n time 

from their derivatives and also un+1 

derivation. 

If 0β =0 , the integration plan in the 

equation (12) is absolute (implicit) because 

quality vector in tn+1 shows time derivative 

therefore the integration relations reform 

before solving equations. Solving method 

repeats in non- linear manner. If 0 0                 

, the time vector in 1tn can be provide 

directly using the presented results in 

previous time steps. This method is explicit.  

Also, when for j˃1 we consider αj=0 and

0j  , equation (11) is according to one- 

step method and in tn+1, the system shows 

previous manner in tn. 

2-3-2- Time integration using Newmark-β 

The effective numerical algorithm has 

follow specifications: 

1-uncoditional stability 

2-controllable algorithmic damping 

3-motion stability of structure 

4-high accuracy 

5-lacking historical affiliation 

So, because of high accuracy and 

unconditional stability, the single step multi 

value method creates balance between 

numerical effective dispersion therefore it is 

a suitable algorithm for dynamic 

application of structure. For time integrity, 

Newmark method has necessary 

specifications for effective integrity and 

numerical stability and accuracy. This 

method is a single integrated formula [13]. 

The state vector of system 1n nt t t                                    

is driven from manner vector in t in which 

development of Taylor sets are seen for 

displacements and velocities.  
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2
Δt

f(t + Δt)= f(t )+ Δt.f (t )+ f (t )n n n n
2

2
Δt s

                                      + ...+ f (t )+ Rn s
S!

 
    (12-1) 

Here SR is expansion of S formula: 

t +Δtn
tn

1 (S+1) s
R = f (τ)[t + Δt - τ] dτnS S!

    (12-2) 

Equation (12-1) is used to calculate of 

speeds and displacements of system in n+1t . 

tn+1
tn

q = q + q(τ)nn+1                        (13-1)                                                          

tn+1
tn

+ Δt. -
n+1

q = q q + (t τ).q(τ)d(τ)n nn+1  (13-2) 

These equations are calculated integrity of 

equations (13) accompany by evaluation of 

the quadrant of the numerical circle. So, in 

the time interval    1,  ,  n nt t q t is shown as 

1,  n mq q  function and substitution in (12-2) 

and these formula is provided: 

tn+1
tn

+ γ.Δt.q + r
n n+1 n

q(τ)d(τ)= (1 - γ).Δt.q      (14-1) 

tn+1
tn

-
n+1

1 2 2
-β .Δt .q + β.Δt .q + r

n n+1 n2

(t τ).q(τ)d(τ)=

 
 

 



                 (14-2) 

and the errors are calculated as follow: 

2 (3) 3 (4)

n

1
r = γ - .Δt .q (τ)+o(Δt .q )

2

 
 
 

    (14-3) 

3 (3) 4 (4)

n

1
r = β - .Δt .q (τ)+o(Δt .q )

6

 
  

 
  (14-4) 

Substitution equations (13) in (14) lead to 

approximate formula for Newmark method: 

n+1 n n n+1q = q +(1- γ).Δt.q +γ.Δt.q)1-15(      

2

n+1 n n n

2

n+1

1
q = q +Δt.q + - β .Δt .q +

2

β.Δt .q

 
 
   )2-15(       

For that, β and   are parameters related to 

a quarter of circle plane. By choosing 
1

γ =
2

and  
1

β =
6

  a linear interpolation for 

accelerations: n+1 n
n

q - q
q(τ)= qn+(τ - t ).

Δt
 

 in the system of  with time interval (tn, tn+1) 

is provided and equation (15) is written as 

follow: 

n+1 n n n+1

Δt
q = q + (q + q )

2
                     (16-1) 

2

n n+1
n+1 n n

2q +qΔt
q = q +Δt.q + .

2 3

 
 
 

 (16-2) 

In some methods, choosing  ½  and 

 ¼  is provided by considering average 

of acceleration n+1 nq + q
q(τ)=

2
in time 

interval  n n+1t , t and equation (15) is 

written as follow: 

Δt
q = q + .(q + q )n nn+1 n+12

                    (17-1)                                                   

2 q + qΔt n n+1q = q + Δt.q + .n nn+1 2 2

 
 
 

             (17-2) 

3- Conclusion 

According to the equations provided by  

Newmark-β method, it is deduced that the 

cables with high initial tension (small 

sagging ratio) have hardness behavior in the 

lower parts (strain) so their dynamic 

tensions is small. Due to the relatively light 

weight of the structure, the fluctuation and 

change of the mass of cable have no effect 

on the displacement or tensile behavior of 

the cables. Also, the numerical stability in 

the non- linear oscillation problems of cable 

is decisive to the number of cable parts and 

the used time steps. Based on the selected 
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time phase and the number of cable 

divisions in a problem, the stability index is 

determined .By using this index a stable and 

accurate solution can be provided. Although 

having a large number of divisions of Ndiv 

in terms of quality is better than having 

smaller time interval Δt in terms of 

accuracy. The effect of stability index  

/t Ttr on initial strain parameter or initial 

strain index of cable         is in such way that 

when the cable hardness is created, the 

speed of the wave increases and the time of 

wave movement in the cable parts gets 

smaller. In this case, need to use smaller 

time steps. Also, due to definition of 

stability index for guyed cable /t Ttr  

three functions including: 

1 ch 2 ch 3 ch

0 0 0

q .L q .L q .L
, ,

H H H

     
     
     

 are introduced as 

effective parameters in analysis of guyed 

cable. 
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