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Abstract 

This work aims to develop models to investigate the effects of flank wear on cutting forces 

during the turning of ck45 steel using carbide tools. Therefore, various turning experiments 

were performed with different cutting conditions. Flank wear and cutting forces were 

recorded at different stages of each experiment. The data obtained from the experiments 

showed that the tangential component of the cutting force was not significantly correlated 

with the tool flank wear. Instead, there was a good correlation between the axial and radial 

components of the cutting forces against flank wear. Since the cutting forces depend on both 

the cutting conditions and the tool flank wear, different cutting forces and cutting condition 

ratios were used to find the cutting force models that are more sensitive to tool wear. These 

ratios were used to develop artificial neural network models. The statistical results showed 

that the tool wear obtained from the artificial neural network models was very close to the 

results obtained from the experiments. In addition, the accuracy of the models including the 

axial component of cutting force was higher than in other models. 

Keywords: Tool wear, Cutting forces, Cutting condition 

1- Introduction 

At present, in automated machining 

systems, tool wear is one of the important 

and influential factors in production 

efficiency. Knowledge of the tool's wear 

during the machining process will lead to 

better product quality based on better 

surface properties, more accurate 

geometric sizes, and better tolerances [1]. 

On the other hand, in systems that do not 

have any information about the status of 

the tool during the machining process, tool 

replacement is estimated, conservative, and 

based on previous data on the wear and life 

of the tool. In this case, the sudden failure 

of the tool and chipping of the cutting 

edge, which is common in machining 

processes, is not considered. Thus, in some 

cases, the tools have a shorter useful life 

and, in some cases, more than their useful 

life, which in the first case, the time and 

the cost of tool replacement increases, and 
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in the second case the machine tool or 

workpiece may be damaged [2]. 

Awareness of the condition of the tool and 

the amount of wear is done in two ways, 

direct and indirect [2], [3]. In direct 

methods, the actual amount of tool wear is 

measured. Various methods such as direct 

imaging of tool worn points [4], analysis of 

chips to find worn tool particles in them 

[5], continuous measurement of tool 

distance from a fixed axis [6], and resizing 

dimensions of Parts [7] are used for direct 

tool wear monitoring. In indirect methods, 

some parameters that are affected by tool 

wear, are measured, and by finding the 

relationship between them, the amount of 

tool wear is determined. Motor power [8], 

Electric current of main drive motor or 

feed motor [9], Cutting temperature [2], 

Roughness of machined surfaces [10], 

Vibration of tool [11], Changes in acoustic 

emission during machining [12] and 

cutting forces [13-22] are some of the 

methods that can be used to indirectly 

measure tool wear. The use of machining 

forces is one of the indirect methods of 

measuring tool wear. Some of the 

following researchers agree that the signals 

obtained from the machining forces 

contain appropriate information about the 

status of the machining process and their 

use is one of the methods of knowing the 

status of tool wear. 

Korn and Lens [13] presented a simple 

mathematical model for estimating tool 

wear in turning. In this model, the abrasive 

wear of the tool is modeled by the cutting 

forces and the diffusion wear is modeled 

by using the cutting temperature. S. K. 

Sikdar and M. Chen [14] found that the 

tangential force has the largest increase 

with flank wear while the radial force is 

the smallest increase in turning of low 

alloy steel (AISI 4340). V.S. Sharma and 

others [15] analyzed the changes in cutting 

forces, vibrations, and acoustic emissions 

with cutting tool wear. They observed that 

the tangential component of force is more 

sensitive to tool wear as compared to the 

axial component and radial component. 

Using cutting force signals, Jaharah A. and 

others [16] develop a new regression 

model based on the I-Kaz method for tool 

wear prediction. It is shown that the three 

components of cutting force signals 

provide a sensitive measure of flank wear. 

V. D. Patel [17], set some turning 

Experiments on hardened AISI D2 steel 

using CBN tools with different cutting 

conditions (cutting speed, feed rate, and 

nose radius). A cutting force model is 

extended according to flank wear based on 

Waldorf’s theory. The results showed that 

there is a close relationship between total 

radial cutting force and flank wear. 

Recently, the use of artificial neural 

networks to find suitable models for tool 

wear and shear forces has been considered . 

Many researchers have considered the use 

of artificial neural networks to find suitable 

models for tool wear and cutting forces. 

The results of their research show that the 

models obtained between tool wear and 

cutting forces through artificial neural 

networks can be estimated tool wear with 

good accuracy based on cutting forces [18-

22]. 

In this work, the relationship between tool 

flank wear and cutting forces in the turning 

process of ck45 steel with carbide tools is 

investigated (this steel is one of the most 

common steels and has many applications 

in various industries). Since the cutting 

forces depend on both the cutting 

parameters and the tool flank wear, 

different cutting forces and cutting 

parameters ratios were used to find the 

cutting force models that are more 
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sensitive to tool wear. These ratios are: 

Fx/A, Fx/d, Fx/f, Fy/A, Fy/d, Fy/f. In these 

ratios, “Fx” and “Fy” are axial and radial 

component forces, “A” is cutting area, “f” 

is feed rate and “d” is the depth of cut. 

These ratios were used to develop artificial 

neural network models. 

2- Details of experiments 

The scheme and the close-up view of the 

experimental setup are shown in Figs. 1 

and 2. 

 
Fig. 1 Scheme of Experimental setup 

 

 
Fig. 2 Close-up view of the  experimental setup 

The range of cutting conditions and details 

of tools and materials are given in Table 1. 

According to the mentioned conditions, 12 

experiments were designed (Table 2). Each 

experiment was performed in 15 stages. 

After each stage of the experiment, which 

lasted between 40 and 190 seconds, the 

insert was opened and the amount of flank 

wear was measured by an optical 

microscope. To measure the forces during 

turning, the tool holder was mounted on a 

piezoelectric dynamometer and the output 

force signals were recorded by a computer. 

All experiments were performed in a dry 

state (without lubricant or cutting fluid). 

To prevent the chips from twisting on the 

tool and increasing the forces, the chips 

were carefully and continuously kept away 

from the tool surface. 

Table 1: Specification of work material, tool, and 

cutting conditions 

Ck45 

82 mm×150 mm 

(Diameter×Long) 

Workpiece material  

 

 

Cutting speed: 70 ~ 190m/min 

Feed rate: 0.13 ~ 0.22 mm/rev 

Depth of cut: 1.0 ~ 1.7 mm 

Dry (without lubricant or 

cutting fluid) 

Cutting condition 

 

SPUN 120308 GX(P25-P35) Tool insert  

CSDPN 25 25 M12 

Back rake angle: 6° 

Side cutting edge angle: 5° 

Tool holder 

 

Kistler 3-D force 

dynamometer  

(Type 9257B) 

Dynamometer 

 

Table 2: Experimental details 

No. 

Depth of cut: d 

(mm) 

Feed rate: f 

(mm/rev) 

Cutting speed: v 

(m/s) 

Time: t 

(min) 

1 1 0.13 105 30 

2 1 0.18 190 15 

3 1 0.22 175 25 

4 1.3 0.13 145 30 

5 1.3 0.18 125 22 

6 1.3 0.22 70 25 

7 1.7 0.13 170 28 

8 1.7 0.18 170 15 

9 1.7 0.22 150 12 

10 1.6 0.22 80 18 

11 1.3 0.22 80 25 

12 1.4 0.14 93 30 
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3- Background of artificial neural networks 

Artificial neural networks are one of the 

common methods for detecting patterns in 

various manufacturing processes. They 

have been used to optimize processes such 

as casting [23], deep drawing [24], forging 

[25], and machining [26]. 

Multilayer perceptron neural networks are 

one of the most practical types of these 

networks. Fig. 3 shows a multilayer 

perceptron neural network that is trained 

whit experimental. Experiment data is 

entered into the neural network as input 

data through the first layer. Data 

processing is done in the middle layers. 

The number of middle layers can be one 

layer or more. The expected output data is 

extracted through the last layer. As shown 

in Fig. 3, the neural networks used in this 

work are of the Three Layer Perceptron 

type with an error backpropagation 

learning algorithm. In each of these 

networks, machining parameters include 

cutting speed, cutting depth, advance rate, 

machining time, and cutting force ratios as 

the first layer input and lateral wear, third 

layer output. The number of neurons in the 

middle layer to achieve optimal neural 

networks was determined by trial and error 

using EasyNN software. The training 

pattern of one of the neural networks is 

shown in Figure 5. 

 

 
Fig. 3 Multilayer perceptron neural network 

Inputs: d, f, t, v, t, Fy/A – Output: VB (flank wear) 

 

 
Fig. 4 Training pattern of  the neural network 

Inputs: d, f, t, v, t, Fx/A – Output: VB (flank wear) 

4- Results and discussion 

Figures 5 and 6 show a view of the tool 

wear area at the end of each test stage. As 

can be seen, the wear on the tooltip (nose 

wear Vc) is higher than in other areas. The 

average value of the wear area is 

considered flank wear. 
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Fig. 5 Insert sizes and tool flank wear (VB) 

 
Fig. 6 Flank zone wear after the cutting condition of 

d=1.6 mm, f=0.22 mm, v=80m/s, t=18 min 

Fig. 7-a shows the changes in the various 

components of the machining forces during 

an experiment. Large fluctuations are 

observed in all three components of the 

force. These oscillations are due to 

successive shocks of the grains in the 

workpiece to different levels of tools, light 

vibration tools, and other periodic 

oscillations during machining [28]. 

However, machining instabilities such as 

stronger seismic tools or the presence of 

impurities in the workpiece material cause 

disturbances in the force components, as 

shown in Fig. 7-b. 

The different cutting forces in turning are 

shown in Fig. 8. Each of these forces can 

be divided into static and dynamic 

components [28]: F = Fs + Fd 

The static component Fs is the average 

force fluctuations and the dynamic 

component Fd is the force fluctuations 

around the static amount of force. 

Changing cutting conditions (changing 

cutting speed, feed rate, cutting depth, 

 
a) Normal fluctuations 

 

 
b) Abnormal fluctuations 

Fig. 7 Fluctuations of cutting forces during 

machining 

 
Fig. 8 Static cutting force components: Fx: Axial 

force (feed force), Fy: Radial force, Fz: tangential 

force (cutting force) 

changing tool angles, etc.) as well as 

changing the tool wear rate, affect the 

dynamic and static components. The 
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analyzes presented in this research are 

based on the static components of axial 

force Fx, radial force Fy, and tangential 

(cutting) force Fz.  

Figs. 9-a and 9-b show how the axial force 

Fx and the radial force Fy change with tool 

wear. As can be seen, there is an 

acceptable correlation between these force 

components and flank wear. When starting 

with a new tool, its edge is quickly broken, 

causing slight wear on the tool and 

increasing the initial force accordingly. 

The amount and rate of time of wear 

development in the tool depend on cutting 

conditions. At the end of some 

experiments, the width of the zone wear 

was about twice that of other experiments. 

Fig. 9-c shows how the tangential force 

component Fz changes with tool wear. The 

trend of changes in this force is initially 

similar to the progress of wear and 

incremental, but in the middle of the way, 

it loses its incremental trend and, in some 

cases, after a constant zone, decreases. 

 
a) axial force & flank wear comparison 

 
b) radial force & flank wear comparison 

 
c) tangential force & flank wear comparison 

Fig. 9 Cutting forces change with flank wear 

cutting condition1: cutting speed=145 m/s, feed 

rate= 0.13 mm, depth of cut=1.3 mm 

cutting condition2: cutting speed=170 m/s, feed 

rate= 0.18 mm, depth of cut=1.7 mm 

One of the possible reasons for this can be 

considered as increasing the worn hole and 

as a result changing the cutting angle. In 

the first part, the size of the crater wear 

(area and depth) is small and occurs at 

some distance from the edge of the tool. In 

later stages, increases the area and depth of 

the crater wear and get closer to the tool 

edge. This will increase the cutting angle 

and naturally decrease the tangential force 

Fz. In this way, the effect of increasing the 

force due to tool wear is neutralized. In 

addition, the formation of a built-up edge 

changes the cutting conditions such as 

increasing the cutting angle. 

According to the points mentioned, the use 

of Fx and Fy forces, which have a more 

compatible trend with changing tool wear, 

were used to derive the wear and force 

models. As mentioned earlier, since the 

cutting force components depend on both 

the cutting conditions and the tool flank 

wear, different cutting forces and cutting 

condition ratios were used to find the 

cutting force models that are more 

sensitive to tool wear. These ratios are: 

Fx/A, Fx/d, Fx/f, Fy/A, Fy/d, Fy/f.  
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According to Table 3, each of these ratios 

and the cutting conditions were used as 

input data for the first layer of artificial 

neural networks. Flank wear is the third 

layer output of artificial neural networks.  

Table 3:  Artificial neural network specifications 

No. 
Input data 

(first layer) 

Output  

(third 

layer) 

nodes in 

second 

layer 

Max. 

error 

Ave. 

error 

1 
d, f, v, t, 

Fx/A 
VB 7 0.0039 0.0003 

2 
d, f, v, t, 

Fy/d 
VB 8 0.0034 0.0003 

3 
d, f, v, t, 

Fx/f 
VB 8 0.0035 0.0003 

4 
d, f, v, t, 

Fy/A 
VB 7 0.0033 0.0003 

5 
d, f, v, t, 

Fx/d 
VB 8 0.0032 0.0003 

6 
d, f, v, t, 

Fy/f 
VB 8 0.0028 0.0003 

Fig. 10 shows a comparison between the 

actual values obtained through two 

experiments and the values predicted by 

artificial neural networks. In these figures, 

the results of different patterns of artificial 

neural networks are compared with each 

other. The input of these patterns is 

different force ratios and cutting 

conditions. After training the neural 

networks based on the experimental data, 

these networks are used to estimate the 

amount of tool wear based on the specified 

cutting parameters. According to the 

figure, it can be seen that the models 

obtained from artificial neural networks 

correspond to the results of experiments 

with a good approximation. 

A comparison of the Statistical analysis of 

artificial neural network models in table 3 

is shown in table 4. As can be seen, based 

on the statistical coefficients RMS (Root 

Mean Square Error) and COV (Coefficient 

Of Variation), patterns 1 and 3, in which 

the Fx/A and Fy/A ratios are used, have 

better results. In the next step, there is 

pattern 5. Overall, according to the table 

above, the patterns in which Fx force ratios 

are used, show better results. 

 
a) cutting speed=80 m/s, feed rate= 0.22 mm, depth 

of cut=1.6 mm 

 
b) cutting speed=80 m/s, feed rate= 0.22 mm, depth 

of cut=1.3 mm 

Fig. 10 comparison between experimental flank 

wear and predicted 

Table 4: Statistical analysis of artificial neural 

network models of table 3 

No. of Artificial neural network  

6 5 4 3 2 1 

0.0061 0.0041 0.0035 0.0060 0.0056 0.0036 rms 

4.6% 2.9% 2.5% 4.2% 4% 2.6% cov 

Root  mean square error (RMS):

 
 

Coefficient of variation (COV): 

 

: Mean experimental flank wear 

VBpi: Predicted flank wear 
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Fig. 11 shows the scatter of data related to 

the values obtained from neural network 

models compared to the data obtained from 

experiments. The points shown on the 

diagrams indicate the percentage 

difference between the experimental values 

and the values obtained from the artificial 

neural network patterns for all data. This 

difference is calculated from the following 

formula: 

 

Where VBe is the experimental flank wear 

and VBp is the flank wear were obtained 

from neural network patterns. Values 

greater than 0 are above the horizontal axis 

and values less than 0 are below the 

horizontal axis. As can be seen, except for 

a few points, for the rest of the points, the 

error range is 10%. 

 
a) percentage error for experimental data & 

prediction based on ANN  No.1 

 
b) percentage error for experimental data & 

prediction based on ANN  No.4 

c) percentage error for experimental data & 

prediction based on ANN  No.5 

 
d) percentage error for experimental data & 

prediction based on ANN  No.6 

Fig. 11 percentage error for experimental data & 

prediction based on 

4- Conclusion 

From the total content of this research, the 

following results are obtained: 

1- In the experimental range, there was a 

good correlation between the axial and 

radial cutting force components against 

flank wear. But the tangential component 

of the cutting force was less correlated 

with tool wear. For this reason, axial and 

radial components of cutting force were 

used in the construction of tool wear 

prediction patterns. 

2- Cutting force components depend on the 

cutting conditions. They are also affected 

by tool wear and increase with increasing 

tool wear. To reduce the effect of cutting 

conditions on cutting force components, 

different cutting force component and 

cutting condition ratios were introduced. 

These ratios were used to obtain tool wear 

patterns in neural networks. The results of 
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the models showed the appropriate 

efficiency of these ratios.  

3- The introduced force ratios were used in 

the development of neural network 

patterns. These patterns were developed 

through three-layer perceptron neural 

networks. The obtained patterns were able 

to predict tool wear with appropriate 

accuracy. Also, the results obtained from 

the models in which the axial component 

of the cutting force was used, were better 

than other models. 
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