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Abstract 

In this paper, the solution of an isotropic hollow cylinder, with an isotropic coating, weakened 

by multiple radial cracks is studied. The hollow cylinder and its coating are under Saint-

Venant torsional loading. The series solution is then derived for displacement and stress fields 

in the cross section of the cylinder containing a Volterra-type screw dislocation. The 

dislocation solution is employed to derive a set of Cauchy singular integral equations for the 

analysis of multiple curved cracks. The solution to these equations is used to determine the 

torsional rigidity of the domain and the stress intensity factors (SIFs) for the tips of the cracks. 

Finally, several examples are presented to show the effect of the coating on the reduction of 

the mechanical stress intensity factor in the hollow cylinder. 

Keywords: Saint-Venant torsion; several cracks; isotropic coating; Stress intensity factor; 

Distribution dislocation technique; Torsional rigidity 

1- Introduction 

Shafts in a machine are bars to hold or turn 

other parts that move or spin. Due 

to simplicity of manufacturing, they are 

generally produced in the form of the bars 

with circular cross-section. Shafts are often 

subjected to torsion in the process of 

working; therefore cracking is one of their 

major issues. Therefore, it is important to 

examine the shafts from the point of view 

of fracture mechanics. Though the torsion 

problem of a hollow cylinder is rather old 

in the theory of elasticity, but the effect of 

coating structure on stress intensity factors 

in a hollow cylinder with multiple cracks 

has not been adequately developed at 

present time. 

The problems of elastic cylindrical shafts 

under torsional loading have been 

investigated by numerous researchers. In 

order to review torsion problems, it is 

convenient to categorize them into two 

major groups: those primarily dealing 

domains without any crack, and those 

studying shafts contained with single or 

several cracks. Within the first category, 

number of researchers has studied torsion 

problems in the intact bars [1-4]. 

There are other investigations studying the 

shafts with single or several cracks which 
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the shafts with multiple arbitrary oriented 

curved cracks have not been developed 

sufficiently. The defects in the following 

papers were assumed to be extended 

throughout the shaft axis. At the first we 

review the shafts with circular cross 

section. 

The complete analysis of the torsional 

rigidity of a solid cylinder with radial 

cracks was obtained by Lebedev et al. [5]. 

The authors investigated the problem of 

the twisting of an elliptical cross section 

containing two edge cracks extending to its 

foci. Xiao-chun and Ren-ji [6] presented an 

analytical solution for a solid cylinder 

weekend by a screw dislocation. The 

problem was reduced to solve a singular 

integral equation for the unknown 

dislocation density with aid of the 

dislocation distribution technique. The 

stress intensity factor and torsional rigidity 

were calculated by solving the ensuing 

singular integral equation 

numerically.Torsion analysis of a hollow 

cylinder with an orthotropic coating 

containing several cracks were done. A 

formulation for a hollow cylinder 

weakened by cracks with an  orthotropic 

coating was presented by Karimi, et al. 

[7].Analysis of a solid cylinder with the 

curvilinear cracks subjected to Saint-

Venant torsion was treated by Wang and 

Lu [8]. With aid of the boundary element 

method, the authors evaluated boundary 

integral equations only on the cracks 

surfaces. Also, stress intensity factor of the 

crack tip and torsional rigidity were 

determined for a straight, kinked or 

eccentric circular-arc crack. The analysis 

of the hollow cylinder with four edge 

cracks normal to the inner boundary of the 

cylinder under torsion was the subject of 

study done by Chen [9]. The author made 

use of a method similar to that used in 

reference [8]. The problem was reduced to 

a Dirichlet problem of the Laplace 

equation and evaluated with help of the 

finite difference method. Finally, the stress 

intensity factors of the crack tips and the 

torsional rigidity were calculated 

numerically. Tweed and Rooke [10] 

analyzed the Saint-Venant torsion problem 

of a circular cross section with containing a 

symmetric array of edge cracks. By 

symmetry, the problem reduced an integral 

equation to that of finding the warping 

functions in some sectors. Finally, the 

stress intensity factor and crack energy 

were computed by solving the ensuing 

integral equation.Yuanhan [11] studied 

problem of a thick-walled cylinder with a 

radial edge crack under torsional loading. 

An expansion for the stress function was 

employed so that the resultant stresses to 

have the square root singularity at the 

crack tip. The unknown coefficients of the 

expansion were calculated by boundary 

collocation method. At the end, the 

torsional rigidity of the thick-walled 

cylinder and the stress intensity factor of 

crack tip were achieved.Chen et al. [12] 

analyzed a circular cross section bar 

weekend by a straight edge crack under 

Saint-Venant torsion with aid of dual 

boundary element method. The authors 

indicated that the dual boundary element 

method provides excellent accuracy and 

simplifies the modeling. The dual 

boundary element method involved 

modeling only on the boundary without 

considering the artificial boundary as the 

multi-zone method. The domain cell was 

not discretized, since the domain of the 

integral for calculation of the torsion 

rigidity was divided into two boundary 

integrals by means of the Green’s second 

identity and Gauss theorem.The problem 
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of an orthotropic bar with circular cross 

section under Saint-Venant torsion was 

treated by Hassani and Faal [13]. The 

solution of a Volterra-type screw 

dislocation was first obtained with aid of a 

finite Fourier cosine transform. Next, the 

dislocation solution was employed to 

derive a set of Cauchy singular integral 

equations for analysis of the bar with 

multiple cracks. Chen [14] studied a 

hollow bars with outer or inner keys under 

torsion by the harmonic function 

continuation technique and conformal 

mapping. Fang-ming and Ren-ji [15] 

addressed the torsion problem of a circular 

bar weekend by internal crack that 

reinforced by a ring of rod, made of 

different material of the cylinder. By 

means of the Muskhelishvili single-layer 

potential function solution and the single 

crack solution for the problem of a cylinder 

under Saint-Venant torsion, the problem 

was reduced to a set of mixed-type 

generalized Cauchy singular integral 

equation. The analysis for the flexure and 

torsion of cylindrical bars containing some 

edge and embedded cracks was treated by 

Sih [16]. The problem was evaluated based 

on three complex flexure functions 

including the classical torsion function. 

Renji and Yulan [17] presented solutions 

for torsion problems of a circular bar with 

a rectangular hole and a rectangular bar 

weekend by an embbeded crack. Li et al. 

[18] conducted problem of a circular bar 

containing a polygonal opening and an 

embedded crack. This portion of the 

review is related to the torsion problems of 

bars with rectangular cross section and 

begins with a study done by Chen [19] 

who analyzed a rectangular bar with one or 

two edge cracks perpendicular to the cross 

section sides. Chen et al. [20] presented a 

solution for problem of an orthotropic 

rectangular cross section with an edge 

crack, bisecting and perpendicular to one 

boundary of the cross section. Recently, 

Hassani and Faal [21] focused on study an 

orthotropic bar with rectangular cross 

section with aid of the distribution 

dislocation technique. The bar was under 

Saint-Venant torsion.  

According to the above review, the fracture 

problem of the shafts under torsion is an 

interesting problem. It is worth noting that 

all of the above mentioned works were 

limited to the shafts with particular 

orientation and geometry. Also, no paper 

has been published concerning effect of the 

coating on the stress intensity factor of the 

crack tips in the hollow cylinder subjected 

to torsional loading. Nevertheless, to 

authors’ knowledge, no analytical solution 

hasn’t been presented yet on the Saint-

Venant torsion of a hollow cylinder 

reimforced by an isotropic coating 

weakened by multiple cracks by 

considering effect of the coating. In this 

paper, the closed form solution of the 

stress fields and warping functions are 

achieved for a hollow cylinder with 

isotropic coating containing a Volterra-

type screw dislocation (Section 2.1). The 

torsional rigidity of the cracked shaft with  

its coating is evaluated in the term of the 

dislocation density (Section 2.2). The 

problem is reduced to the solution of a 

Cauchy singular integral equation. (Section 

3). The numerical examples are presented 

in Section 4 and results are validated by 

employing available results from the 

literature. Finally, Section 5 offers 

concluding remarks. 
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2- Problem Formulation: 

2.1 Dislocation Solution 

 

 
Figure 1. Cross-section of a hollow cylinder with an 

isotropic coating weakened by a screw dislocation 

Consider a prismatic hollow cylinder with 

an isotropic coating as shown in Fig. 1. R1  

and R2 are the inner and outer radius of the 

cylinder, respectively and thickness of the 

coating is assumed to be R3-R2. 

Considering cylindrical coordinate system, 

it is assumed that the origin of cylindrical 

coordinate is located at O and Z-axis is 

coincided with the axis of the hollow 

cylinder. The coating is made of an 

isotropic material, where G are the shear 

moduli of the coating. A Volterra type 

screw dislocation, having the Burgers 

vector bz, is located at r=a with the line of 

dislocations in radial direction 

2( 0, )a r R   . We divide the whole 

domain into three regions 1R r a  , 

2a r R   and 2 3R r R  .  

When the shaft is subjected to Saint-

Venant torsional loading, components of 

displacement in the directions of , x y  and 

z  axes denoted as , u v and w , 

respectively, that are given in terms of the 

angle of twist per unit length of the bar   

and of the warping function  ,x y as 

[22] 

u zy   
v zx  

 ,w x y
 

(1) 

 

It is convenient to treat this problem in the 

cylindrical coordinate system; therefore, 

the cylindrical transformation is applied to 

Eqs. (1). Thus, we have 

0ru 
 

u rz 
 

 ,w r 
 

(2) 

The non-vanishing stress components in 

term of warping function can be expressed 

as follows 

 
1 2

,
,       rz

r
R r R

r

 
 


  

  

 
1 2

,1
,       z

r
r R r R

r


 
 



 
    

   

 
2 3

,
,       rz

r
G R r R

r

 
 


  

  

 
2 3

,1
,       z

r
G r R r R

r


 
 



 
    

   

(3) 

where   denotes shear modulus in the bar. 

These stress components must satisfy the 

equilibrium equation: 

1 1
0zrz

rz
r r r







  

   

we obtain the governing equation of the 

coating as follows 

     2 2

2

2 2

, , ,
0

r r r
r r

r r

     



  
  

    

(4) 

The above partial differential equation is 

solved by means of the finite Fourier sine 

transform for a regular function ( , )f r   as 
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     
0

, , sinsF r n f r n d



   
 

(5) 

The inverse of the finite Fourier sin 

transform is expressed as 

     
1

2
, , sins

n

f r F r n n


 
 

 
 

(6) 

It should be mentioned here that the hollow 

cylinder and its coating twisted by an 

applied moment M  and then the 

dislocation cut is made in the cross section 

of the hollow cylinder. 

The boundary condition representing a 

Volterra-type screw dislocation is 

   

   2

,0 ,0

[ ]z

r r

b
H r a H r R

  

  

 



 (7) 

Where (.)H  is the Heaviside step function. 

The continuity of stress components along 

the dislocation cut requires that 

   ,0 ,0r r 

 

  


   

(8) 

The problem is anti-symmetric with 

respect to the diameter of the cross section 

containing the dislocation line, therefore 

we consider a dislocation solution for the 

region 0    and the boundary 

conditions (7) and (8) are expressed by 

     2,0 [ ]
2

zb
r H r a H r R


   

 

 , 0r  
 

(9) 

By using the integral transform (6), the 

partial differential equation (4) can be 

reduced to the form 

 

 

   

   

 

2

2

2

2

1

, ,

, [
2

]

s s

z
s

r n r n
r r

r r

b n
n r n H r a

H r R

  


 

    

 



 (10) 

The general solution to Eq. (10) can be 

expressed as 

  1 1

1

,           

       

n n

s n nr n A r B r

for R r a

  

 
 

  2 2

2

,     
2

      

n n z
s n n

b
r n A r B r

n

for a r R

   

 

  

  3 3

2 3

,     

     

n n

s n nr n A r B r

for R r R

  

 
 

(11) 

According to Eq. (6), the warping function 

in the whole domain is written as 

     1 1 1

1

1

2
, sin  

         

n n

n n

n

r A r B r n

for R r a





 

 




  


 

 

 

2

2 2

1

2

  ,

2
sin    

2

        

n n z
n n

n

r

b
A r B r n

n

for a r R







 
  

 

 




 


 

 

 

   

3

3 3

1

2 3

,

2
sin        

     

n n

n n

n

r

A r B r n

for R r R









 




 




 

(12) 

 

Upon substituting the above relations into 

the Eq. (6), the warping functions in the 

whole domain are obtained. Also the 

stresses are then obtained from Eq. (3) as 
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 

   1 1

1

1

,

2
cos

   ,     

z

n n

n n

n

r

n A r B r n
r

r R r a









  







 








 

 

   2 2

1

2

,

2
cos

2

  ,    

z

n nz
n n

n

r

b
n A r B r n

nr r

r a r R







  

  







 

 






 

 

   3 3

1

2 3

,

2
cos

   ,    

z

n n

n n

n

r

G
n A r B r n

r

r R r R









  







 








 

     1 1

1

1

2
, sin

   ,       

n n

rz n n

n

r n A r B r n
r

R r a





 

 




  
  

     2 2

1

2

2
, sin

   ,   

n n

rz n n

n

r n A r B r n
r

a r R





 

 




  
  

     3 3

1

2 3

2
, sin    

 ,    

n n

rz n n

n

G
r n A r B r n

r

R r R





 

 




  


 

(13) 

where , , 1,2,3ln lnA B l  are unknown 

coefficients which are determined by 

following boundary and continuity 

conditions 

 1, 0rz R  
 

   , ,rz rza a    
 

   , ,a a    
 

   2 2, ,R R    
 

   2 2, ,rz rzR R    
 

 3, 0rz R  
 

(14) 

Application of the conditions (14) to Eqs. 

(13) and (3) leads to 

1 1 1 1 0n n

n nA R B R  
 

1 1 2 2

n n n n

n n n nA a B a A a B a   
 

1 1 2

2
2

n n n

n n n

n z
n

A a B a A a

b
B a

n





 

 


 

(15) 

2 2 2 2

3 2 3 2

2

n n z
n n

n n

n n

b
A R B R

n

A R B R





 

 

  

 

 

2 2 2 2

3 2 3 2

n n

n n

n n

rz n n

A R B R

G A R B R







 


 

3 3 3 3 0n n

n nA R B R  
 

 

The solution of Eqs. (15) gives: 

    

    

23
1 2

2

23 2 2

2

2 23
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1 /
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 
   

 
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


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B C
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 

 
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2 12
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A a R a
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
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  

 
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(16) 

 

in which: 
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eq

G
C

G







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Upon substituting the above coefficients 

(16) into the Eqs. (13), the warping 

functions in the whole domain are 

obtained. Also the stresses follow from the 

Eqs. (17) as 
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These two functions have features such as 

the high convergence rate and the 

convenience of proving Cauchy's 

singularity, which has led to tensions being 

rewritten based on two features. In order to 

verify the stress relationships, the radius of 

the coating can be considered zero, and the 

interior radius is assumed to be zero for the 

purpose of modeling a non-orthogonal 

bulkhead cylinder. Therefore, solid-state 

cylindrical stresses without isotropic  
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which is exactly the same as that given by 

Hassani and Faal [13] and this proves the 

correctness of the derivation of the stress 

fields in Eq. (20). 

To investigate singularity, as shown in Fig 

(1), a local coordinate is considered at the 



28 

M. Karimi et al./ Journal of Simulation & Analysis of Novel Technologies in Mechanical Engineering 12 (2019) 0019~0040 

 

dislocation site created at the bar level. The 

relationship between the local and global 

coordinate defined is as follows. 
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Substituting Eq. (23) into Eq. (20) and 

some manipulations will yield the 

following results 
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2.2 Calculation of torsional rigidity  

The torsional rigidity, in cylindrical 

coordinate, is determined by the following 

form [22, 23] 
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in which 
 ,z r 

 is the stress components 

given in Eq. (20) and M  is the twisting 

moment to the entire domain. Substituting 

the Eq. (20) into Eq (25), the torsional 

rigidity can be written as 

 2 2

0 2
2
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D D R a
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(26) 

 

in which 
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4 4

2 1
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4 4
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R R
D

G R R

 
 
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 


  

(27) 

 

It is clear from the aforementioned 

equation that the torsional rigidity has 

depending on ,zb and 0D denotes torsional 

rigidity in the intact hollow cylinder with 

the isotropic coating. 

3. Analyses with multiple cracks  

 

Fig. 2. Cross section of bar with a curved crack 

In this section, the dislocation solution 

performed in the previous section is 

considered for the analysis of the isotropic 

coating, weakened by several cracks at this 

stage, we define a local coordinate system 

 ,n t attached to the surface of the  i th 

crack (see Fig. 2). The local stress fields on 

the crack surfaces can be expressed by the 

following relations 

   , ,

( , )

tz i i z i i i

rz i i i

r r sin

r cos





    

  
 

 , ( , )

( , )

nz i i z i i i

rz i i i

r r cos

r sin





    

  
 

(28) 

 

Note that i is the angle between the 

tangent to the i th crack and radial 

direction. As an application of the derived 

dislocation solution we analyze the 

problem under consideration weekend by 

multiple cracks. Let dislocations with 

unknown densities to be distributed on the 

surface of the i -th crack. By substituting 

the Eq. (20) into Eq. (28) stress 

components at a point with coordinate 

 ,i ir  are achieved. Since the dislocation 

cut is situated at 0 , i is replaced by 

i j  in the local stress fields. 
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Now, resultant traction on the crack 

surface due to the distribution dislocations 

may thus be obtained by integration of 

above equations with respect to the 

normalized crack length. In the following 

discussion,   /M D , is substituted in the 

Eq. (29). The stress free condition of the 

crack surfaces can be applied to obtain a 

set of integral equations by separating the 

terms without zb , as follow 

    
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1 1

,

,

, 1 1
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i i i
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ij zj

j

Q r s s

k s t b t dt

s

i N
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(30) 

 

The left side of the integral equation (26) is 

 
0

i i i

M
Q s r cos

D
    and  ,ijk s t is 

described in the Appendix. 

It is clear that the integral equations (30) 

must be evaluated under the following                              

single-valuedness condition 

 
1

1

0zj jb t d



 

(31) 

 

in which    ' 2 ' 2[ ] [ ( ) ]j j j jd r t r t t dt    

denotes the infinitesimal segment on the 

surface of j-th crack. 

For embedded cracks the Cauchy singular 

integral Equations (30) and (31) should be 

solved simultaneously to determine 

unknown dislocation density on the cracks 

surfaces. The numerical solution of these 

equations is carried out by the technique 
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developed by Faal et al. [24]. The stress 

fields exhibit square-root singularity at 

crack tips. Therefore, the dislocation 

densities for embedded and edge cracks are 

taken as 
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(32) 

 

With aid of the   /M D   and some 

manipulations the torsional rigidity in the 

hollow cylinder with the orthotropic 

coating can be calculated by the following 

formula 
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(33) 

 

where N  denotes the number of the 

cracks. The determination of the torsional 

rigidity is based on discretizing the domain 

of the integral appeared in Eq. (33) at m  

discrete points                                         

( (2 1) / (2 )), 1,2, ,kt cos k m k m   
. 

Thus, the torsional rigidity is found to be 
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where 
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1                         
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for embedded cracks
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t for edgecracks
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(35) 

After calculating  zjg t , stress intensity 

factors for the cracks were derived by Faal 

and Fariborz [24]. These are 
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(36) 

 

4. Numerical Results 

In this section, several numerical examples 

are presented to prove the correctness of 

the dislocation method to show the 

capability of the current approach in 

handling problems containing several 

cracks. The torsional problem of a hollow 

cylinder with an isotropic layer involved 

multiple radial cracks hasn’t been studied 

by other investigators, yet. In the lack of 

similar studies, the validation is only 

allocated to the papers relating to cracked 

shafts without isotropic layer subjected to 

the torsional loading. We use a 

dimensionless parameter 0.5
G




evaluate 

effect of the coating on the stress intensity 

factors. In the numerical examples the 

dimensionless stress intensity factors, 

0/IIIk k , will be considered in which                          

0 0 2 0/k M R l J   . Also, l refers to a 

half-length of embedded crack. The effect 

of the coating will be discussed with 

3 2 20.1R R R  . 
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Example 1. 

The first example is allocated to a bar 

weakened by a straight radial crack. 

Firstly, by taking this problem as a bar 

without any coating, i.e. 2 3R R , the 

numerical solution will be compared with 

existing results to show accuracy and 

efficiency of the dislocation method. The 

center of the radial crack is located at  

0 20.3r R . The results of dislocation 

method are compared with results of the 

reference [25]. The results show negligible 

difference between the results of the 

present work and those obtained by Tao 

and Tang [25]. The indexes i and o 

designate to the inner and outer tips of the 

crack. The normalized stress intensity 

factors and the normalized torsional 

rigidities have been compared with 

existing results in the reference [25] in 

Table. 1. 

 
Fig 3. Hollow cylinder cross section with one 

embedded radial crack 

In the following, an isotropic coating as an 

actuator with thickness 20.1t R  is 

considered. The hollow cylinder is 

weakened by a straight crack by setting 

20.3l R  and 0 20.4r R .  

 

 

 

Table.1. Comparison between the numerical results 

of the present study and the results of the reference 

[25] for a radial crack. 

/l R  

0/J J
 0/IIIik k

 0/IIIok k
 

Present 

study 

Reference 

[25] 

Present 

study 

Reference 

[25] 

Present 

study 

Reference 

[25] 

0.1 0.9982 0.9981 0.2522 0.2518 0.3525 0.3519 

0.2 0.9922 0.9922 0.2087 0.2070 0.4113 0.4081 

0.3 0.9808 0.9808 0.1695 0.1660 0.4796 0.4703 

0.4 0.9612 0.9612 0.1352 0.1295 0.5650 0.5427 

The effect of thickness of the coating on 

the stress intensity factor has been 

illustrated in Fig 4. The center of the crack 

has been situated at 0 20.5r R  and half-

length of the crack is 20.1l R .As we 

expected, as the radius of coating goes up, 

the dimensionless stress intensity factor for 

each crack tip decreases. This phenomenon 

helps reinforcement of the structure. 
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Fig 4. Variation of the dimensionless stress 

intensity factor against normalized thickness for a 

straight radial crack. 

In the following discussion, the variations 

of dimensionless stress intensity factor and 

torsional rigidity versus the half crack 

length have been illustrated in Fig. 5 and 6. 

The stress intensity factor for the crack 

tip  i  must be gone up with increasing the 

crack length. However, the stress intensity 

factor declines because the crack tip i  
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approaches to stress free surface. In 

addition, we observe a normal trend at the 

crack tip o for the variations of stress 

intensity factor. As expected, the 

dimensionless torsional rigidity is 

decreased by increasing the length of the 

crack which makes a weaker cross section. 
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Fig 5. Variation of the dimensionless stress 

intensity factor against the normalized half crack 

length for a straight radial crack. 
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Fig 6. Variation of the dimensionless torsional 

against normalized half crack length for a straight 

radial crack. 

Example 3. 

In the third example, consider a hollow 

cylinder with an isotropic layer weakened 

by one embedded crack perpendicular to 

the radial direction. The center of the crack 

has been situated at the distance of 

20.5  d R from the origin of the 

cylindrical coordinate, and length of the 

crack has considered  20.1l R , as shown 

in Fig 15.  

 
Fig 7. Hollow cylinder cross section with one 

embedded crack normal to the radial direction 

In the first plot of this example, the 

variations of the dimensionless stress 

intensity factors as a function of 

dimensionless coating thickness have been 

evaluated for 0 20.5r R  and 20.2l R  

(Fig 8). According to the trend of the 

previous examples, stress intensity factors 

decrease as the isotropic layer becomes 

thicker.  
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Fig. 8. The graph of the normalized stress intensity 

factor with normalized coating thickness 

In the following discussion, the variation 

of dimensionless stress intensity factors 

and torsional rigidity have been illustrated 

as a function of the dimensionless half 

crack length in Fig 9 and 10, respectively. 

As expected, the dimensionless stress 

intensity factor at the crack tips is gone up 

by increasing of the crack length. The 
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dimensionless torsional rigidity goes down 

as the crack length increases and this 

makes a weaker bar. 
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Fig. 9. The graph of normalized stress intensity 

factors against normalized half crack length 
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Fig. 10. The graph of normalized torsional rigidity 

against normalized half crack length 

Example 3. 

In the next example, a hollow cylinder 

with an isotropic coating containing two 

inclined cracks is considered. The crack 

lengths are assumed equal and each crack 

tip is located on the circle 20.75a R . In 

the other words, both of the cracks are a 

part of the chord with the central angle 

/ 4  as shown in Fig 11.  

 
Fig 11. Cross section of a hollow cylinder with two 

inclined cracks 

In the continuation of the example, we 

want to evaluate the effect of the effective 

coating thickness on the stress intensity 

factors by setting 20.3l R . Hence, the 

variation of dimensionless stress intensity 

factors as a function of the dimensionless 

half length of the cracks for each of the 

crack tips can be seen in Fig 12 and it 

shows same trend of previous examples. 
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Fig. 12. Variation of normalized stress intensity 

factors against normalized coating thickness 

In the next part of this example, we 

evaluate the effect of crack length on the 

stress intensity factor and torsional rigidity 

in Fig 13 and 14, respectively. The stress 

intensity factors must be gone up by 

growing the cracks because of interaction 

between the cracks. However, there is a 

decrease for the stress intensity factor at 

crack tip 1o  since this tip approaches to the 
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stress free surface. Also, the torsional 

rigidity falls down by growing the cracks. 
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Fig. 13. Graph of normalized stress intensity factors 

against normalized half crack length 
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Fig. 14. Graph of normalized torsional rigidity 

against normalized half crack length 

Example 5. 

In the final example, consider a hollow 

cylindrical shaft with an effective coating 

layer weakened by one straight crack 

normal to the radial direction and one 

eccentric crack, as shown in Fig 15. The 

length of the straight crack is constant and 

it is considered 1 20.5l R . The distance 

between center of the straight crack and 

center of the domain is 20.4d R . The 

center of the eccentric crack is fixed at 

distance of 20.2e R  from the center of 

the bar and its radius is assumed 2   0.5a R . 

The effect of coating thickness has been 

considered and decrease in the normalized 

stress intensity factors with growing 

coating thickness is realized in Fig 16.  

 
Fig 15. Cross section of a hollow cylinder with two 

cracks 
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Fig. 16. Graph of normalized stress intensity factors 

against normalized thickness 

The variation of the dimensionless stress 

intensity factors against the length of the 

eccentric crack, 2 2/l R , can be seen in Fig. 

17. There is a slight decrease in the stress 

intensity factor for the crack tip 1i  since it 

recedes from crack tip 2i by growing the 

circular crack. After that stress intensity 

factor for the crack tip 1i rises 

dramatically, because there is interaction 

between the tips of the cracks. The crack 

tip 1o recedes from crack tip 2i and it 

approaches to crack tip 2o as the length of 

the eccentric crack increases. The stress 

intensity factor at crack tip 2o remains 

steady because of a compromise between 

two different effects. As expected, the 

dimensionless stress intensity factor at the 

crack tip 2i goes up with the circular crack 
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growth. The stress intensity factor of the 

crack tip 2o reduces at beginning of the 

graph. Then it rises by increasing length of 

the circular crack because of interaction 

between the crack tips 2o and 1i . Fig. 18 

illustrates the effect of the crack length on 

the torsional rigidity. The torsional rigidity 

of the bar is decreased with the crack 

length growth which makes a weaker 

domain. 
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Fig. 17. The graph of the dimensionless stress 

intensity factors against dimensionless half length 

of the circular crack 2 2/l R  
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Fig. 18. The graph of the dimensionless torsional 

rigidity against dimensionless half length of the 

circular crack 2 2/l R  

5. Conclusion  

This work presented an efficient 

dislocation approach for the evaluation of 

the stress intensity factors for multiple 

arbitrarily shaped cracks in a hollow 

circular bar with an isotropic coating. A 

solution of the torsion problem of a hollow 

circular bar with an isotropic coating 

weakened by Volterra-type dislocation was 

first presented in terms of dislocation 

density. The problem was reduced to a set 

of singular integral equations of Cauchy 

singular type in the rectangular cross 

section, by using the distribution 

dislocation technique to analyze the 

problem with multiple smooth cracks. The 

integral equations were solved numerically 

by reducing them to a system of algebraic 

equations. Finally, the stress intensity 

factor for the crack tips and the torsional 

rigidity of the domain under consideration 

were evaluated. To summarize, the stress 

intensity factors of crack tips and torsional 

rigidity in the cross section with the 

isotropic coating were found to depend on 

critical factors such as the distance of the 

crack tip from the free boundary of the 

domain, thickness of the coating, crack 

length and the interaction between the 

cracks.   
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Kernels of Eq .(30) are: 
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