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Abstract 
This study investigates the dynamic stability of the Euler-Bernoulli functionally graded (FGM) 

nanobeam based on the nonlocal elasticity theory while considering surface effects. Nanoparticles pass 

over nanobeam sequentially with a constant velocity, and the nanoparticle inertia is also considered. A 

thermal gradient with constant temperature changes is applied to this nanobeam. The functionally 

graded nanobeam properties, including Young’s modulus, density, surface residual stress, and surface 

modulus are taken by the power law. The classical equations of motion are obtained by applying the 

Hamilton’s principle according to the energy method. The governing equations are extracted using 

nonlocal elasticity theory, and the surface effects are taken by Gurtin-Murdoch theory. The dynamic 

stability graphs will be presented on nanoparticle mass-velocity coordinates. This article investigated 

the small scale effect parameter, temperature changes, Pasternak environment shearing and elastic 

constants, and the volume fraction parameter in power law. The results show that increasing Pasternak 

foundation constants increase the functionally graded nanobeam stability, and increasing small scale 

parameter reduces its stability. Increasing nanobeam temperature shifts the functionally graded stability 

region of nanobeam towards faster nanoparticle velocity, which indicates a higher dynamic stability for 

the nanobeam. 

Keywords: Dynamic stability, Nanobeam, FGM, Moving nanoparticle, Nonlocal elasticity theory.

1- Introduction 

Due to the growing importance of 

nanotechnology and nanostructure 

applications, understanding their properties 

and mechanical behavior is very important. 

Nano-electro-mechanical-systems (NEMS) 

are very sensitive to external excitation. 

Therefore, in their production, there is a 

need for more information on nanobeam 

vibrational behavior and stability. At first, 

Mindlin [1] (using the strain gradient 

theory) and then Eringen [2] (using the 

nonlocal elasticity theory) were able to 

provide a more accurate analysis of 

structures compared to classical theories by 

taking the small scale effect. In classical 

theories, stress at one point results from 

strain at the same point, while in nonlocal 
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theories, stress at one point is a function of 

strain at all points of the system [3]. 

Peddieson et al. [4] used the nonlocal 

elasticity theory on nanostructure materials. 

Their study indicates that the nonlocal 

elasticity theory is applicable to nano-scale, 

but inapplicable to micro-electro-

mechanical-system (MEMS). Ansari and 

Sahmani [5] investigated the bending and 

buckling of nanobeams while considering 

surface effects. The results show the 

difference between the behaviors of the 

nanobeam predicted by the classical and 

non-classical theories which depends on the 

value of the surface elastic constants. In 

addition, researchers in many of the studies 

[6-8] have used the nonlocal elasticity 

theory and the results illustrate that in static 

and dynamic analysis of nanobeams, 

nonlocal small scale parameter has 

noticeable effect.  

A type of nanotube which is used for 

injecting drug into the body is a nano-

mechanism that can be considered a beam 

problem with moving mass. In this 

condition, the drugs are the sequentially 

moving nanoparticles and the nanotube can 

be considered a nanobeam. Hashemi and 

Khaniki [9] investigated the dynamic of 

multiple nanobeam system under a moving 

nanoparticle. The results show that small 

scale effect plays a principal role in the 

value of the dynamical deflection. Simsek 

[10] investigated the single walled carbon 

nanotube vibration under action of a 

moving load based on nonlocal theory. The 

results illustrate that dynamic deflection of 

the nanotube increase with increase in the 

small scale parameter. This means that the 

local beam theory is not a suitable method 

for dynamic deflection since it is not an 

accurate approximation and the effects of 

nonlocal parameters depend on nanotube 

dimensional ratio. Kiani and Mehri [11] 

studied the nanotube structures under a 

moving nanoparticle using nonlocal beam 

theories. The results of this study and others 

[12-18] also signify the importance of using 

nonlocal theories, especially for movement 

of low-velocity nanoparticles over 

nanostructures. 
Regarding their unique properties and 

advantages, including increased thermal 

resistance and lowered stress intensity 

factor, functionally graded materials are 

widely used in nanostructure systems. The 

properties of functionally graded materials 

making them useful to reaching high 

sensitivity design applications [19, 20]. 

Material scientists in the Sendai region of 

Japan proposed using FGM as materials 

with high thermal tolerance for the first 

time. Functionally graded materials are 

composite heterogeneous materials and 

their mechanical properties moderately and 

continuously change from one surface to 

another [21]. The properties of these 

materials are approximated based on 

exponential or power functions. Hossein-

Hashemi and Nazemnejad [22] investigated 

the nonlinear free vibration of functionally 

graded nanobeams while considering 

surface effects. The results showed that 

increasing FG nanobeam dimensions 

reduced the effects of surface on natural 

frequency. Hossein-Hashemi et al. [23] also 

studied surface effects on free vibration of 

FG nanobeams using the nonlocal elasticity 

theory. The results show that as surface 

effects increase, the impact of nonlocal 

parameters decrease. Simsek [15] studied 

the FG Timoshenko beam vibration under a 

moving harmonic load. According to this 

study, using power law for expressing beam 

property plays an important role on the 

stresses of the beam. Ke et al. [24] 

investigated the size effect on dynamic 

stability of FG microbeams. Results show 
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that the size effect on the dynamic stability 

is important only when the thickness of 

beam has a similar value to the material 

length scale parameter. Rahmani and 

Pedram [25] analyzed the vibration of FG 

nanobeams based on nonlocal beam theory. 

According to the results, the impact of 

length scale parameter and the thickness to 

length ratio is very important in analyzing 

nanobeam vibrations.  

The difference between the Euler-Bernoulli 

and Timoshenko theories is that in the 

Euler-Bernoulli beam theory (EBT), the 

cross section of each surface remains flat 

after deflection, and the rotation of cross 

section surface is neglected in beams that 

have low thickness [26]. In the Timoshenko 

beam theory (TBT), it is no longer assumed 

that the surface remains vertical after 

deflection and shear deformation is shown 

through surface angle variations [27]. In 

dynamic stability analysis, movements 

resulting from excitations are compared as 

being time dependent. In comparing of 

dynamic stability and forced vibration of 

system, analyzing forced vibration 

excitations appear as a somewhat 

heterogeneous term in governing equations, 

but in analysis of dynamic stability, 

excitations enter the differential equation 

coefficients and the equations are 

homogeneous [28]. Saffari et al. [29] 

analyzed the dynamic stability of FG 

nanobeam using nonlocal beam theory. 

According to this study, increasing surface 

stress makes nanobeam more stable. 

Talimiyan and Beda [30] investigated the 

dynamic stability of a size-dependent 

microbeam. The results show that 

microbeam in classical theories is more 

stable than nonlocal theories. There are 

many mathematical methods for analyzing 

dynamic stability of systems such as 

Runge-Kutta Method and the incremental 

harmonic balance method (IHBM) [31]. 

Among these methods, the IHBM is useful 

and highly accurate for nonlinear problems 

with periodic excitation.  Therefore, this 

method is widely used for nonlinear 

stability analysis. Wang et al. [32] analyzed 

the vibrations of nonlinear systems using 

the IHBM. The results show that this 

method is capable of analyzing the 

dynamics of these systems. Gao et al. [33] 

analyzed dynamic stability of Euler-

Bernoulli beams using Chebyshev 

Surrogate Model. The results show that the 

method proposed in the study can help 

design useful, optimized beam-type 

structures more efficiently than other 

methods. 

In this study, dynamic stability of an Euler-

Bernoulli FGM nanobeam is analyzed 

according to the nonlocal elasticity theory 

with a sequence of nanoparticle moving 

over the beam. The properties of FGM 

nanobeam including Young’s Modulus, 

density and surface residual stress are taken 

into account as power law. Nanobeam 

dynamic stability is analyzed linearly and 

equations of motion are obtained by 

applying the Hamilton’s principle and 

according to the energy method. The 

nonlocal equation of motion can be 

obtained by combining classical equations 

with the nonlocal elasticity theory and the 

Gurtin-Murdoch continuum theory. After 

extracting the governing equations, 

dynamic stability of nanobeam is analyzed 

using the incremental harmonic balance 

method. According to knowledge of 

authors, the nanobeam dynamic instability 

region (DIR) is drawn in the dimensionless 

mass-velocity diagram, for the first time in 

this paper. This diagram clearly shows the 

mass and velocity impact of moving 

nanoparticle in the DIRs of the nanobeam.  
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2- Governing Equation of motion for an 

Euler-Bernoulli nanobeam 

According to Fig. 1, the nanobeam made 

from functionally graded material will be 

assumed to have a length of L , the width 

of b , and the thickness of h . Nanobeam 

will be in a Pasternak environment with the 

Winker elasticity constant of Kw and the 

shearing constant of GK . Nanoparticles 

with a mass of m  and the velocity of U are 

moving over the nanobeam continuously. 

 
Fig. 1 FG nanobeam in a Pasternak Foundation 

According to the power law, the properties 

of the functionally graded material are as 

follows [34]. 
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The above equations represent elasticity 

modulus, density, shearing modulus, 

residual surface stress, surface elasticity 

modulus, thermal expansion coefficient and 

the surface thermal expansion coefficient, 

respectively. The subscript c represents 

the ceramic section of the FGM nanobeam 

and the subscript m  represents its metal 

component. N indicates the volume 

fraction gradient index, which determines 

the profile variation of material properties 

across the FG nanobeam thickness. The 

displacement field for the FG nanobeam on 

the x, y, and z axis is shown according to 

the Euler-Bernoulli beam Theory as follows 

[35] 
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w x t

U x z t u x t zx
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(8b)  , , 0U x z ty 

 (8c)  , , ( , )U x z t w x tz 

 where  ,u x t
 

and  ,w x t  are the 

displacement coordinates of the nanobeam 

middle surface in the x and z axis. The 

linear form of the strain displacement 

equation is assumed as in Eq. (9) in which 

xx  is the axial strain of the functionally 

graded material nanobeam [35]. 

(9) 
2

( , ) ( , )

2

u x t w x t
zxx

x x


 
 

 
 

The force resulting from the thermal 

gradient will be as follows 

)10( ( ) ( )N E z A z TxT 
 

where NT  is the axial force due to the 

influence of temperature changes, T is the 

temperature changes,   is Poisson’s ratio 

and A  is nanobeam cross section. The 

stress field for the bulk of nanobeam is as 

(11a)   ( )E z z Txx xx x zz      
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(11b) 0xz 
 

where zz  can be considered as follows 
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According to the Gurtin-Murdoch theory 

[36], the stress field of surface layers is 

shown in Eq. (13).   
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wher s  superscript represents the 

parameters related to the nanobeam surface. 

s
  and 

s
  represent the surface density and 

surface residual stress, respectively. 

2-1 Energy of system 

In this section, the energies of system’s 

components will be calculated. All energies 

in the FG nanobeam structure is taken into 

account, including the nanobeam strain and 

kinetic energies, the kinetic and potential 

energies of nanoparticle and the energy 

created by the Pasternak foundation. The 

strain energy and its variable form in the FG 

nanobeam are as Eq. (14) and Eq. (15), 

respectively. 
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N and M  are the FG nanobeam axial force 

and bending torque. The Euler-Bernoulli 

beam kinetic energy and its variable form 

are calculated in Eqs. (18) and (19).  
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(19) 

where bV  in Eq. (17) is the velocity field of 

the nanobeam and 0 1 2, ,I I I  are as follows  
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The energy created by the Pasternak 

foundation and its variable form are 

calculated as follows [12]. 
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The potential energy of nanoparticles over 

the Euler-Bernoulli functionally graded 

nanobeam is shown in Eq. (24). 

(24) PE mgwmass x Ut

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In Eq. (25), g is the earth’s gravitational 

acceleration and ( )x Ut  is the Dirac 

delta function. The kinetic energy of the 

nanoparticle passing over the nanobeam is 

shown in Eq. (26). 
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2-2 Hamilton’s principle 

According to the Hamilton’s principle [37], 

the total energy variation in the entire 

period is zero. The equations of motion will 

be obtained using the Hamilton’s principle 

according to the Eq. (29).  
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By replacing the coefficients of u and w

in Eq. (30) with zeros, classical equations 

of motion will be obtained as follows  
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2-3 Axial force and bending torque of FG 

nanobeam 

The FG nanobeam axial force for bulk and 

surface is as follows  
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Replacing Eq. (11) and (13) into Eq. (33) 

will lead to 
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Also the bending torque of the FGM 

nanobeam for the bulk and surface is 

according to Eq. (35). 
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Replacing Eq. (11) and Eq. (13) will 

simplify Eq. (35) as follows 
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where in Eq. (34) and Eq. (36) bellow 

parameters are define 
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2-4 Nonlocal elasticity theory 

According to Eringen nonlocal elasticity 

theory, the stress equation is as follows [2]. 
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where 0e a   is the small scale effect, 0e  is 

the non-dimensional parameter for each 

material and a  is the internal characteristic 

length.  Also 
l

ij and 
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ij are the local and 

nonlocal stress tensors. The first and second 

equations governing the nonlocal Euler-

Bernoulli FG nanobeam result in Eqs. (41, 

42). 
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Using the Galerkin method for simply 

supported nanobeam as   
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and the non-dimensional groups of Eq. 

(43), the dimensionless equations can be 

obtained.  
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3- Solution Method 

The incremental harmonic balance method 

is highly accurate in finding periodic 

solutions including dynamic stability 

analysis. In this method 
* *( , )M   is 

considered to be a known point on the 

instability boundary. In order to determine 

other points on the boundary of instability, 

an increment is assigned to the specific 

point to find the point neighboring the 

boundary of instability. Therefore, points 

on the instability boundary are determined 

and the stable regions are distinguished 

from instable ones. The IHBM algorithm is 

given in Fig. 2. 

 
Fig. 2 Incremental Harmonic Balance Method 

algorithm 

4- Results and Discussion 

The nanobeam length is equal to 13nm and 

its width and thickness is equal to one tenth 

of its length. The thermal expansion 

coefficient is  61.6 10 1/x K    . The 

Pasternak shearing constant is 

 2.071273 /k N m
G

 , the Winkler 

elasticity coefficient is

 17 3
8.9995035 10 /k N mw   and the 

nonlocal small scale parameter is 

 0 1e a nm . The functionally graded 

nanobeam properties are given in Table 1.  
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Table 1: Properties of FG nanobeam 

Material Aluminum Silicon 

 E Gpa  70 210 

 /
s

E N m  5.1882 -10.6543 

  0.3 0.24 

 3
/kg m  2800 2370 

 /
s

N m  0.9108 0.6048 

 2
/

s
kg m  5.46e-7 3.17e-7 

Fig. 3 shows the DIRs of FG nanobeam for 

solutions corresponding to the T and 2T 

periods. Instable regions are obtained using 

the Fourier series function, respectively for 

the T and 2T periods.  

 
Fig. 3 DIRs of FG nanobeam for T and 2T periods 

As seen in Fig. 3, the instable regions 

obtained using the IHBM determine the 

boundary regions of stability and 

instability. As seen in Fig. 3 there is an 

instable region between each tab. All Euler-

Bernoulli FG nanobeam dynamic stability 

graphs are drawn on the non-dimensional 

mass-velocity coordinates.
  

Comparing the 

instable regions of the T and 2T periods 

shows that, since the DIRs in the T period 

has occurred in lower velocity, the FG 

nanobeam is more instable in the T period 

than in the 2T period. Also width of DIRs 

in the T period is smaller than 2T period.  

Considering that nanobeam dynamic 

stability is nowhere to be seen on the non-

dimensional mass-velocity graphs of 

previous studies, the time response of first 

mode vibration for one of the points inside 

the DIRs in Fig. 4.(a) has been drawn 

according to the Runge-Kutta method in 

order to validate the results. As seen at point 

0.15, 0.8M    which has been chosen 

from the DIRs of the nanobeam in the T 

period, the curve diverges, which indicates 

the instability of this region. Also with 

regards to the dynamic stability point 

0.15, 0.84M    in the T period, the 

periodic response graph drawn in Fig. 4.(b) 

shows that this point in the system is 

dynamically stable.                    

 
 4 (a) 

 
4 (b) 

Fig. 4 (a) 0.15, 0.8M    is instable point and (b) 

0.15, 0.84M    is stable point in DIRs of FG 

nanobeam. 
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Fig. 5. shows the small scale effect 

parameter on instable regions of the 

nanobeam in the T and 2T periods. As seen 

in the dynamic stability graph, increasing 

this parameter causes the DIRs of FG 

nanobeam to shift towards slower 

nanoparticles. Therefore, the FG nanobeam 

becomes more unstable by increasing the 

small scale parameter. By increasing this 

parameter, which represents the bond 

length between atoms, the nanobeam 

hardness decreases and causes it to quickly 

become instable. The mass and velocity for 

small scale parameter variation in the T and 

2T periods are given in Table 2. 

 

 5(a) 

 
5 (b) 

Fig. 5 Effect of small scale parameter on DIRs of 

FG nanobeam for (a) T period and (b) 2T period. 

 

Table 2: The non-dimensional mass and velocity for 

small scale parameter variation in the (a) T and (b) 2T 

periods 

0.1M   
(First branch) 


(Second branch) 

0nm   0.9806 0.037 

0.5nm   0.9735 1.029 

1nm   0.953 1.008 

1.5nm   0.9219 0.9136 

2nm   0.8829 0.933 

(a) 

0.1M   
(First branch) 


(Second branch) 

0nm   1.733 1.961 

0.5nm   1.72 1.947 

1nm   1.684 1.906 

1.5nm   1.629 1.844 

2nm   1.559 1.766 

(b) 

 

Fig. 6 shows the effect of Pasternak 

shearing constant on instable regions. As 

expected, increasing the Pasternak shearing 

constant makes the FG nanobeam more 

stable and the DIRs shifts towards faster 

velocity. The elastic environments 

increasing hardness in this conditions, 

which limits the scope of beam’s 

movement, makes it more stable.  
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Fig. 6 Effect of the Pasternak shearing constant on 

DIRs of FG nanobeam 

Fig. 7 shows the effect of the Winkler 

elasticity constant on unstable region. 

Increasing the Winkler elasticity constant 

makes the FG nanobeam more stable and 

the DIRs of nanobeam shift towards faster 

velocity of nanoparticles.  

 

Fig. 7 Effect of the Winkler elasticity constant on 

DIRs of FG nanobeam  

Fig. 8 shows the effect of temperature 

variation on the FG nanobeam DIRs in low 

temperature conditions. Despite the stress 

put on the FG nanobeam, the thermal 

gradient on the nanobeam is assumed to 

have constant temperature changes. This 

graph shows that increasing temperature 

makes the nanobeam shifts towards further 

stability. In other words, the FG Euler-

Bernoulli nanobeam has become more 

stable with increased temperature. The 

results of the dynamic stability analysis of 

the Euler-Bernoulli FG nanobeam using the 

power law to approximate the behavior of 

the FGM also shows that increasing the 

volume fraction parameter has made the 

nanobeam instable. Fig. 9 shows the effect 

of variations in the volume fraction power 

parameter N in the power law. Increasing 

this parameter shifts the area of instability 

towards lower speeds and the FG nanobeam 

become less stable.  

 
Fig. 8 Effect of temperature variation on the FGM 

nanobeam DIRs    

 
Fig. 9 Effect of variations in the volume fraction 

power parameter N in the power law 

5- Conclusion 
In this study, the dynamic stability of the 

Euler-Bernoulli FGM nanobeam with 

continuum nanoparticles passing over was 

investigated while taking surface effects 

into account, according to the nonlocal 
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elasticity theory. The nanobeam supports 

are normal and it is inn Pasternak 

foundation. Dynamic instability boundaries 

are plotted and instability points are 

marked. The results of this study showed 

that the instability tab for the T periods 

occurred at lower speeds than the instability 

tab in 2T periods. Also, the instability tab in 

T periods is more closed than 2T periods. 

So more points are unstable during the 2T 

periods. Also, the nanobeam exhibits higher 

stability by increasing the Pasternak 

foundation hardness. This stiffness includes 

Pasternak shear constant and Winkler 

spring constant. Increasing temperature 

also makes the FGM nanobeam less stable 

and the DIRs tab in the mass-velocity 

diagram shifts towards lower velocity. With 

increasing small-scale parameter and inter-

atomic bonds, nanobeam has become more 

unstable. The results of this research can be 

used in the design of NEMS and targeted 

drug injection systems. 
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