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Abstract 

Based on the distributed dislocation technique, an analytical solution for the orthotropic layer with 

functionally graded material (FGM) orthotropic coating containing multiple axisymmetric interfacial 

cracks subjected to torsional loading is investigated. It is assumed that the material properties of the 

FGM orthotropic coating vary power-law form along the thickness of the layer. At first, by using the 

Hankel transform, the solution for Somigliana-type rotational ring dislocation in the layer and its coating 

is obtained. Then, the dislocation solution is used to derive a set of singular integral equations for a 

system of coaxial axisymmetric interface cracks, including penny-shaped and annular cracks.  cracks 

with Cauchy type kernel. The integral equations are of Cauchy singular type, which are solved by 

Erdogan’s collocation method for dislocation density on the surface of interfacial crack and the results 

are used to determine stress intensity factors (SIFs) for axisymmetric interface cracks. Finally, several 

examples are provided to study the effects of the non-homogeneity constant, orthotropy parameter and 

thickness of FGM coating on the SIFs for interfacial cracks. The effects of the non-homogeneity 

constant, orthotropy parameter and thickness of FGM coating as well as the interaction of multiple 

interfacial cracks on the SIFs are investigated. The results reveal that the value of the SIFs decreases 

with increasing the non-homogeneity parameter, orthotropy and thickness of FGM coating. The SIFs 

for inner tips of annular interface crack are larger than the outer tips.    

Keywords: Stress intensity factor; Torsion; FGM orthotropic coating; Axisymmetric cracks; 

Dislocation density. 

1- Introduction 

In recent years, functionally graded 

materials (FGMs) as coating and interfacial 

zones have been widely applied in 

structures exposed to harsh environments 

and severe thermal shocks. FGMs coating 

and FGMs interlayer help reduce 

mechanically- and thermally-induced 

stresses caused by material property 

mismatch; they also improve bonding 

strength. Typical applications of FGMs 

comprise thermal barrier coatings (TBCs) 

of high temperature components in gas 
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turbines and as inter-layers in 

microelectronic and optoelectronic 

components. Therefore, fracture analysis of 

the FGMs coating-substrate system and the 

FGMs interlayer is an important design 

consideration and has attracted the attention 

of many researchers. 

Delale and Erdogan identified the stress 

intensity factors for a crack situated in the 

interfacial nonhomogeneous layer between 

two dissimilar elastic half-planes under 

tension [1]. Ozturk and Erdogan determined 

axisymmetric solutions for a penny-shaped 

crack in an interfacial nonhomogeneous 

layer between two dissimilar elastic half-

spaces under torsion [2] and under tension 

[3]. Choi et al. investigated the embedded 

collinear cracks in a layered half plane with 

a graded nonhomogeneous interfacial zone 

under static mechanical load [4]. Shbeeb 

and Binienda analyzed an interface crack in 

an FGM strip sandwiched between two 

homogeneous layers of finite thickness and 

determined the stress intensity factors and 

strain energy release rate [5]. Itou directed a 

study of a crack in an FGM layer between 

two homogeneous half planes. In his paper, 

the integral equation was solved using the 

Schmidt method, and a stress intensity 

factor was calculated [6]. An analytical 

model for fracture analysis of an FGM 

interfacial zone with a Griffith crack under 

the anti-plane shearing load was developed 

by Wang et al. [7]. Jin and Batra [8] 

investigated the interface cracking between 

ceramic and/or FGM coatings and a 

substrate under anti-plane shear. The 

interface crack problem between the 

functionally graded ceramic coating and the 

homogeneous substrate was studied by 

Chen and Erdogan [9]. In this study, the 

mixed mode crack problem was formulated 

for a crack subjected to surface tractions. 

Huang et al. developed a brand-new model 

for the approximate analysis of FGMs, the 

properties of which may vary arbitrarily, 

and solved the problem of a crack in an 

FGM coating bonded to a homogeneous 

substrate under a static anti-plane shearing 

load [10]. The crack problem of an FGM 

coating-substrate structure with an internal 

or edge crack perpendicular to the interface 

was investigated under an in-plane load by 

 Guo et al. [11]. A multi-layered model for 

the crack problem of FGMs under plane 

stress state deformation with arbitrarily 

varying Young’s modulus was proposed by 

Huang et al. [12]. A study by Chen and 

Chue [13] dealt with the anti-plane 

problems of two bonded FGM strips 

weakened by an internal crack normal to the 

interface. Asadi et al. [14] obtained the 

stress fields for an orthotropic strip with 

defects and imperfect FGM coating using 

the Volterra screw dislocation. Cheng et al. 

[15] studied the plane elasticity problem of 

two bonded dissimilar FGM strips 

containing an interface crack in which 

material properties varied arbitrarily. In 

relation to the dynamic crack problem, 

Ueda et al. [16] reported the torsional 

impact response of a penny-shaped crack on 

a biomaterial interface. They determined 

the dynamic stress intensity factor and 

discussed its dependence on time and 

material constants. Itou obtained the 

dynamic stresses of a crack in a 

nonhomogeneous interfacial layer between 

two elastic half-planes under tension [17]. 

Li and Weng considered the elastodynamic 

response of a penny-shaped crack located in 

an FGM interlayer between two dissimilar 

homogeneous half spaces and subjected to a 

torsional impact loading [18]. The transient 

response analysis of an FGM coating-

substrate system with an internal or edge 

crack perpendicular to the interface under 

an in-plane impact load was carried out by 
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Guo et al. [19]. Li et al. [20, 21] investigated 

the static and dynamic behavior of an 

annular interfacial crack between dissimilar 

magneto-electro-elastic materials. Ren et al. 

[22] studied the transient response of an 

annular interfacial crack between dissimilar 

piezoelectric layers under mechanical and 

electrical impacts. Singh et al. [23] analyzed 

the dynamic stress intensity factor of a finite 

crack with finite depth under impact 

response and in-plane shear loadings 

located at the interfacial of two orthotropic 

semi-infinite strips with different elastic 

properties. Xu et al. [24] studied a mixed 

mode interfacial crack in three-dimensional 

biomaterials by singular integral equation 

on the basis of the body force method.  

According to the above review, the stress 

analysis of nonhomogeneous medium under 

dynamic loading was mainly restricted only 

to a single interface crack. Following 

introduction in recent years of a powerful 

semi-analytical method called the 

distributed dislocation technique, the 

problem of the multiple interfacial cracks 

has been studied for out-of-plane and in-

plane loadings based on the principle of the 

superposition. A brief review of relevant 

articles is given below. The behavior of 

interface cracks in two bonded dissimilar 

materials subjected to in-plane loading was 

studied by Monfared et al. [25]. The 

dislocation density on the faces of the 

cracks was obtained numerically and, then, 

was used to calculate the mixed mode stress 

intensity factors of multiple interfacial 

cracks. In another work, the interaction of 

several interfacial cracks located between a 

FGM layer and an elastic layer under anti-

plane deformation based on the distributed 

dislocation technique was analyzed by 

Monfared [26]. Asadi et al. [27] solved the 

anti-plane shear problem of orthotropic 

strips with multiple defects and imperfect 

FGM coating. The dynamic behavior of two 

bonded elastic and piezoelectric layers with 

multiple interfacial cracks under time-

dependent mechanical load was 

investigated by Ayatollahi et al. [28]. 

Fartash et al. [29] investigated the transient 

problem of multiple interfacial cracks in 

dissimilar piezoelectric layers under sudden 

electro-mechanical impacts. Bagheri et al. 

[30] studied the problem of interaction 

between multiple cracks with arbitrary 

patterns in a piezoelectric strip reinforced 

with FGM coating under anti-plane loading. 

The aim of the present work is the fracture 

behavior of multiple axisymmetric interface 

cracks between an orthotropic layer with 

FGM orthotropic coating subjected to 

torsional loading using the distributed 

dislocation technique. The distributed 

dislocation technique is an efficient means 

for treating multiple axisymmetric cracks 

with smooth geometries. Based on the 

distributed dislocation technique, the 

governing equations of the motion and the 

outer boundary conditions of the domain are 

satisfied analytically. However, 

determining stress fields due to a single 

dislocation in the region has been a major 

obstacle to the utilization of this method. 

We take up this task for an FGM coating-

substrate system containing an 

axisymmetric rotational Somigliana ring 

dislocation.  

The paper is organized as follows. By using 

the Hankel transform the solution of the 

axisymmetric rotational Somigliana ring 

dislocation in orthotropic layer with FGM 

orthotropic coating is given in section 2. 

Section 3 presents the distributed 

dislocation to formulate and solve the 

Cauchy-type singular integral equations for 

the orthotropic layer with FGM orthotropic 

coating weakened by several axisymmetric 

cracks. In section 4 several examples of 
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cracks are solved to illustrate the influence 

of material non-homogeneity and 

orthotropy as well as thickness of FGM 

coating on the SIFs. Concluding remarks 

are included in Section 5. 

2- Formulation of Problem 

We consider an orthotropic layer with 

thickness ℎ reinforced by an FGM 

orthotropic layer having thickness ℎ1.  For 

the problem in question, the only non-zero 

displacement component is 𝑤(𝑟, 𝑧) being 

independent of 𝜃, and two other elastic 

displacements, 𝑢 and 𝑣, oriented in the 𝑟 

and 𝑧  axes vanish. Consequently, the 

constitutive equations relationships read as 

𝜏𝑟𝜃 = 𝜇𝑟(𝑧) (
𝜕𝑢𝜃
𝜕𝑟

−
𝑢𝜃
𝑟
),  

𝜏𝜃𝑧 = 𝜇𝑧(𝑧)
𝜕𝑢𝜃
𝜕𝑧

,       

 0 ≤ 𝑧 ≤ ℎ1 

𝜏𝑟𝜃 = 𝜇𝑟0 (
𝜕𝑢𝜃
𝜕𝑟

−
𝑢𝜃
𝑟
), 

 𝜏𝜃𝑧 = 𝜇𝑧0
𝜕𝑢𝜃
𝜕𝑧
,  

 −ℎ ≤ 𝑧 ≤ 0 

 

 

 

(1) 

where 𝜇𝑟(𝑧) and 𝜇𝑧(𝑧) are material 

constants of FGM orthotropic strip, and  𝜇𝑟0 

and 𝜇𝑧0 are the elastic shear modulus of 

orthotropic layer in the 𝑟 and 𝑧 directions, 

respectively. By substituting Eq. (1) into 

equilibrium equation 𝜏𝑖𝑗,𝑗 = 0 one can 

obtain: 

𝜕2𝑢𝜃
𝜕𝑟2

+
1

𝑟

𝜕𝑢𝜃
𝜕𝑟

−
𝑢𝜃
𝑟2
+
𝜇𝑧
′ (𝑧)

𝜇𝑟(𝑧)

𝜕𝑢𝜃
𝜕𝑧

 

+
𝜇𝑧(𝑧)

𝜇𝑟(𝑧)

𝜕2𝑢𝜃
𝜕𝑧2

= 0,          0 ≤ 𝑧 ≤ ℎ1 

 

𝜕2𝑢𝜃
𝜕𝑟2

+
1

𝑟

𝜕𝑢𝜃
𝜕𝑟

−
𝑢𝜃
𝑟2

 

+
𝜇𝑧0
𝜇𝑟0

𝜕2𝑢𝜃
𝜕𝑧2

= 0,          − ℎ ≤ 𝑧 ≤ 0 

(2) 

where 𝜇𝑧
′ (𝑧) is the derivative of 𝜇𝑧(𝑧). Let 

a Somigliana-type rotational ring 

dislocation with the magnitude of Burgers 

vector 
𝜀

𝑟
𝑏𝜃 be situated at 𝑧 = 0, 𝑟 = 𝜀 with 

dislocation cut in radial direction. The 

boundary and dislocation conditions of the 

problem can be expressed as 

𝑢𝜃(𝑟, 0
+) − 𝑢𝜃(𝑟, 0

−) =
𝜀

𝑟
𝑏𝜃𝐻(𝑟 − 𝜀) 

𝜏𝜃𝑧(𝑟, 0
+) = 𝜏𝜃𝑧(𝑟, 0

−) 
𝜏𝜃𝑧(𝑟, ℎ1) = 0 

𝜏𝜃𝑧(𝑟, −ℎ) = 0 

(3) 

where 𝐻(. ) is the Heaviside step-function. 

Applying the Hankel transform of the first 

order and letting 

𝑈𝜃(𝜂, 𝑧) = ∫ 𝑢𝜃(𝑟, 𝑧) 𝑟𝐽1(𝑟𝜂)𝑑𝑟
∞

0

 (4) 

Application of the Hankel transforms to Eq. 

(2), assuming that the medium is initially 

stationary, leads to 

𝜇𝑧(𝑧)

𝜇𝑟(𝑧)

𝜕2𝑈𝜃
𝜕𝑧2

+
𝜇𝑧
′ (𝑧)

𝜇𝑟(𝑧)

𝜕𝑈𝜃
𝜕𝑧

 

−𝜂2𝑈𝜃 = 0,                 0 ≤ 𝑧 ≤ ℎ1 

𝜇𝑧0
𝜇𝑟0

𝜕2𝑈𝜃
𝜕𝑧2

− 𝜂2𝑈𝜃 = 0,    

                                       −ℎ ≤ 𝑧 ≤ 0 

(5) 

 The material properties of FGM 

orthotropic coating such as, shear moduli 

𝜇𝑟  and 𝜇𝑧 , can be described power-law 

form of the type 

𝜇𝑟(𝑧) = 𝜇𝑟0(1 + 𝛼𝑧)
2 

𝜇𝑧(𝑧) = 𝜇𝑧0(1 + 𝛼𝑧)
2 

(6) 

where 𝜇𝑟0, 𝜇𝑧0 and  𝛼 are the material 

constants of FGM. Substituting Eq. (6) into 

Eq. (5), the equation of motion can be 

rewritten as 

𝜕2𝑈𝜃
𝜕𝑧2

+
2𝛼

(1 + 𝛼𝑧)

𝜕𝑈𝜃
𝜕𝑧
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−(𝜉2 +
𝜌0𝑝

2

𝜇𝑧0
)𝑈𝜃 = 0,   

                            0 ≤ 𝑧 ≤ ℎ1 

𝜕2𝑈𝜃
𝜕𝑧2

− 𝜆2𝜉2𝑈𝜃 = 0,

−ℎ ≤ 𝑧 ≤ 0 

 

 

 

 

(7) 

Letting 𝜉 = 𝜆𝜂 and the orthotropy 

parameter 𝜆 = √𝜇𝑟0/𝜇𝑧0.  The solutions to 

Eq. (7) are 

𝑈𝜃(𝜂, 𝑧) = 𝐴1(𝜂)
ⅇ𝑛1𝑧

1 + 𝛼𝑧
 

 +𝐴2(𝜂)
ⅇ𝑛2𝑧

1 + 𝛼𝑧
,         0 ≤ 𝑧 ≤ ℎ1 

𝑈𝜃(𝜂, 𝑧) = 𝐵1(𝜂)ⅇ
𝑛1𝑧 +𝐵2(𝜂)ⅇ

𝑛2𝑧,  

                                      −ℎ ≤ 𝑧 ≤ 0 

(8) 

where 𝐴1(𝜂), 𝐴2(𝜂), 𝐵1(𝜂) and 𝐵2(𝜂) are 

unknowns to be solved. By taking the 

inverse Hankel transform of Eq. (8) and 

utilizing Eq. (1), yields the displacement 

field and stress components 

𝑢𝜃(𝑟, 𝑧) = ∫
1

(1 + 𝛼𝑧)
[𝐴1(𝜂)ⅇ

−𝜉𝑧
∞

0

+ 𝐴2(𝜂)ⅇ
𝜉𝑧]𝜂𝐽1(𝑟𝜂)𝑑𝜂,    

                            0 ≤ 𝑧 ≤ ℎ1 
 

𝜏𝑟𝜃(𝑟, 𝑧) = −𝜇𝑟0∫ (1 + 𝛼𝑧)[𝐴1(𝜂)ⅇ
−𝜉𝑧

∞

0

+ 𝐴2(𝜂)ⅇ
𝜉𝑧]𝜂2𝐽2(𝑟𝜂)𝑑𝜂, 

                           0 ≤ 𝑧 ≤ ℎ1     
 

𝜏𝜃𝑧(𝑟, 𝑧)

= 𝜇𝑧0∫ (1
∞

0

+ 𝛼𝑧) {

− [𝜉 +
𝛼

(1 + 𝛼𝑧)
]𝐴1(𝜂)ⅇ

−𝜉𝑧

+ [𝜉 −
𝛼

(1 + 𝛼𝑧)
] 𝐴2(𝜂)ⅇ

𝜉𝑧
}𝜂𝐽1(𝑟𝜂)𝑑𝜂, 

                                  0 ≤ 𝑧 ≤ ℎ 1       

 

𝑢𝜃(𝑟, 𝑧) = ∫ [𝐵1(𝜂)ⅇ
−𝜉𝑧

∞

0

+ 𝐵2(𝜂)ⅇ
𝜉𝑧]𝜂𝐽1(𝑟𝜂)𝑑𝜂,  

                         −ℎ ≤ 𝑧 ≤ 0 

𝜏𝑟𝜃(𝑟, 𝑧)

= −𝜇𝑟0∫ [𝐵1(𝜂)ⅇ
−𝜉𝑧

∞

0

+ 𝐵2(𝜂)ⅇ
𝜉𝑧]𝜂2𝐽2(𝑟𝜂)𝑑𝜂,        

                         −ℎ ≤ 𝑧 ≤ 0 
 

𝜏𝜃𝑧(𝑟, 𝑧)

= 𝜇𝑧0∫ 𝜉[−𝐵1(𝜂)ⅇ
−𝜉𝑧

∞

0

+ 𝐵2(𝜂)ⅇ
𝜉𝑧]𝜂𝐽1(𝑟𝜂)𝑑𝜂,     

                       −ℎ ≤ 𝑧 ≤ 0 

 

 

 

 

(9) 

 

Applying the boundary conditions in Eq. (3) 

to Eq. (9) leads to 

𝐴1(𝜂) = 

𝜀𝑏𝜃𝜉(ⅇ
−2ℎ𝜉 − 1)

[𝛼 − 𝜉(𝛼ℎ1 + 1)] 𝐽0(𝜀𝜂)

𝜂Λ
 

𝐴2(𝜂) = 

−

𝜀𝑏𝜃𝜉ⅇ
−2ℎ1𝜉(ⅇ−2ℎ𝜉 − 1)

[𝜉(𝛼ℎ1 + 1) + 𝛼] 𝐽0(𝜀𝜂)

𝜂Λ
 

 
𝐵1(𝜂)

=

−𝜀𝑏𝜃

{
 

 
(𝜉 + 𝛼)

[𝛼 − 𝜉(𝛼ℎ1 + 1)]

−ⅇ−2ℎ1𝜉(𝛼 − 𝜉)

[𝜉(𝛼ℎ1 + 1) + 𝛼]}
 

 

 𝐽0(𝜀𝜂)

𝜂Λ
 

 
𝐵2(𝜂) = 

−𝜀𝑏𝜃 ⅇ
−2ℎ𝜉

{

(𝜉 + 𝛼)[𝛼 − 𝜉(𝛼ℎ1 + 1)]

−ⅇ−2ℎ1𝜉(𝛼 − 𝜉)

[𝜉(𝛼ℎ1 + 1) + 𝛼]

} 𝐽0(𝜀𝜂)

𝜂Λ
 

(10) 

 

wherein 

Λ = −ⅇ−2ℎ1𝜉[𝛼(1 + ⅇ−2ℎ𝜉)

− 2𝜉][𝜉(𝛼ℎ1 + 1)

+ 𝛼] 

       +[𝛼(1 + ⅇ−2ℎ𝜉)

+ 2𝜉ⅇ−2ℎ𝜉] [−𝜉(𝛼ℎ1 + 1) + 𝛼] 

 

 

 

 

(11) 
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The stress components in view of Eqs. (9) 

and (10) can be achieved as 

𝜏𝑟𝜃(𝑟, 𝑧) = 

𝜀𝜇𝑟0𝑏𝜃∫

𝜉

Λ
(1 + 𝛼𝑧)(ⅇ−2ℎ𝜉 − 1)

{
[𝜉(𝛼ℎ1 + 1) + 𝛼]ⅇ

−𝜉𝑧

+[𝜉(𝛼ℎ1 + 1) − 𝛼]

ⅇ−2ℎ1𝜉ⅇ𝜉𝑧
}

 𝜂𝐽0(𝜀𝜂)𝐽2(𝑟𝜂)𝑑𝜂,

∞

0

 

0 ≤ 𝑧 ≤ ℎ1      
 

 

 

𝜏𝜃𝑧(𝑟, 𝑧) = 

𝜀𝜇𝑧0𝑏𝜃∫

𝜉

Λ
(1 − ⅇ−2ℎ𝜉)

{
 
 

 
 [𝜉(1 + 𝛼𝑧) + 𝛼]

[−𝜉(𝛼ℎ1 + 1) + 𝛼]ⅇ
−𝜉𝑧

+[𝜉(1 + 𝛼𝑧) − 𝛼]

[𝜉(𝛼ℎ1 + 1) + 𝛼]ⅇ
−2ℎ1𝜉ⅇ𝜉𝑧}

 
 

 
 

𝐽0(𝜀𝜂)𝐽1(𝑟𝜂)𝑑𝜂,

∞

0

 

 0 ≤ 𝑧 ≤ ℎ1      
 

𝜏𝑟𝜃(𝑟, 𝑧) = 

𝜀𝜇𝑟0𝑏𝜃∫

1

Λ
(ⅇ−𝜉𝑧 + ⅇ−2ℎ𝜉ⅇ𝜉𝑧)

{

(𝜉 + 𝛼)[𝛼 − 𝜉(𝛼ℎ1 + 1)]

−(𝛼 − 𝜉)

[𝜉(𝛼ℎ1 + 1) + 𝛼]ⅇ
−2ℎ1𝜉

}𝜂𝐽0(𝜀𝜂)𝐽2(𝑟𝜂)𝑑𝜂

∞

0

, 

−ℎ ≤ 𝑧 ≤ 0  
 

𝜏𝜃𝑧(𝑟, 𝑧) = 

𝜀𝜇𝑧0𝑏𝜃∫
𝜉

Λ
(ⅇ−𝜉𝑧

∞

0

− ⅇ−2ℎ𝜉ⅇ𝜉𝑧)

{
 

 
(𝜉 + 𝛼)

[𝛼 + −𝜉(𝛼ℎ1 + 1)]

−(𝛼 − 𝜉)

[𝜉(𝛼ℎ1 + 1) + 𝛼]ⅇ
−2ℎ1𝜉}

 

 

 𝐽0(𝜀𝜂)𝐽1(𝑟𝜂)𝑑𝜂,  

−ℎ ≤ 𝑧 ≤ 0 

(12) 

To study the singular behavior of stress 

component 𝜏𝜃𝑧(𝑟, 𝑧) at the dislocation 

location, we set 𝑧 = 0 in the related 

equation in Eq. (12), Therefore we have 

𝜏𝜃𝑧(𝑟, 0) =                                            (13) 
𝜀𝜇𝑧0𝑏𝜃 

∫
𝜉(1 − ⅇ−2ℎ𝜉)

𝛬

{
 
 

 
 

(𝜉 + 𝛼)

[𝛼 − 𝜉(𝛼ℎ1 + 1)]

−ⅇ2−ℎ1𝜉

(𝛼 − 𝜉)

[𝜉(𝛼ℎ1 + 1) + 𝛼]}
 
 

 
 

 𝐽0(𝜀𝜂)𝐽1(𝑟𝜂)𝑑𝜂
∞

0

 

 

Since the integrand of integral at Eq. (13) is 

continuous function of 𝜂 and also finite at 

𝜂 = 0, the singularity must occur as 𝜂 tends 

to infinity. To circumvent the difficulty an 

asymptotic analysis of the integrand is 

carried out as 𝜂 → ∞, arrives to 

𝜏𝜃𝑧
∞ (𝑟, 0) = −

1

𝜋𝑟
√𝜇𝑧0𝜇𝑟0𝑏𝜃 

{
 
 

 
 

𝑟𝜀

𝑟2 − 𝜀2
𝑬(

𝜀2

𝑟2
)                       𝑟 > 𝜀

𝑲(
𝑟2

𝜀2
) +

𝜀2

𝑟2 − 𝜀2
𝑬(

𝑟2

𝜀2
)     𝑟 < 𝜀

 

(14) 

where 𝑲(𝑘) = ∫ 𝑑𝑥/√1 − 𝑘2𝑠𝑖𝑛2𝑥
𝜋/2

0
 and 

𝑬(𝑘) = ∫ √1 − 𝑘2𝑠𝑖𝑛2𝑥
𝜋/2

0
𝑑𝑥 are the 

complete elliptic integrals of the first and 

second kind, respectively. Finally, the stress 

component at the dislocation point can be 

evaluated by addition and subtraction of the 

asymptotic term of the stress component as 

follows  

𝜏𝜃𝑧(𝑟, 0) = 
𝜀𝜇𝑧0𝑏𝜃 

∫

[
 
 
 
𝜉(1 − ⅇ−2ℎ𝜉)

Λ
{
 

 
(𝜉 + 𝛼)

[𝛼 − 𝜉(𝛼ℎ1 + 1)]

−ⅇ−2ℎ1𝜉

(𝛼 − 𝜉)[𝜉(𝛼ℎ1 + 1) + 𝛼]}
 

 ∞

0

+
1

2
𝜂λ

]
 
 
 

𝐽0(𝜀𝜂)𝐽1(𝑟𝜂)𝑑𝜂 

 −
1

𝜋𝑟
√𝜇𝑧0𝜇𝑟0𝑏𝜃 

{
 
 

 
 

𝑟𝜀

𝑟2 − 𝜀2
𝑬(

𝜀2

𝑟2
)                                        𝑟 > 𝜀

𝑲(
𝑟2

𝜀2
) +

𝜀2

𝑟2 − 𝜀2
𝑬(

𝑟2

𝜀2
)                   𝑟 < 𝜀

 

(15) 

From Eq. (15), it is observed that the stress 

component 𝜏𝜃𝑧(𝑟, 0) exhibit the familiar 

Cauchy-type singularity at dislocation 

location, i.e., 𝜏𝜃𝑧(𝑟, 0) ∼
1

𝑟−𝜀
 𝑎𝑠  𝑟 → 𝜀. 

This kind of singularity was previously 

reported by Pourseifi & Faal [31] for an 

infinite isotropic cylinder with a climb and 

glide edge dislocations. 
 

3- Formulation of multiple axisymmetric 

interface cracks 
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In this section, we implement the 

dislocation solutions accomplished in the 

prior section to analyze multiple 

axisymmetric interface crack problems in 

an orthotropic layer with FGM orthotropic 

coating. Consider an orthotropic layer 

bonded to an FGM orthotropic layer 

weakened by 𝑁 = 𝑁1 + 1 axisymmetric 

interfacial cracks, including 𝑁1 annular and 

one penny-shaped crack. The inner and 

outer radii of the annular interface cracks 

are 𝑎𝑗 and 𝑏𝑗 , 𝑗 = 1,2, … ,𝑁1 and the radii of 

the penny-shaped interface crack is 𝑐1. 

These cracks can be presented by the 

following parametric equations 

𝑟𝑗(𝑠) = 𝐿𝑗𝑠 + 0.5(𝑏𝑗 + 𝑎𝑗), 

−1 ≤ 𝑠 ≤ 1     
              𝑓𝑜𝑟 𝑎𝑛𝑛𝑢𝑙𝑎𝑟 𝑐𝑟𝑎𝑐𝑘𝑠 
𝑟𝑗(𝑠) = 𝐿𝑗(1 − 𝑠), 

−1 ≤ 𝑠 ≤ 1     (𝑗 = 1)  
             𝑓𝑜𝑟 𝑝ⅇ𝑛𝑛𝑦 𝑠ℎ𝑎𝑝ⅇ𝑑 𝑐𝑟𝑎𝑐𝑘 

(16) 

Noting that, 

𝐿𝑗 = 

0.5

{
  
 

  
 

𝑏𝑗 − 𝑎𝑗   

  𝑓𝑜𝑟

 𝑎𝑛𝑛𝑢𝑙𝑎𝑟 𝑐𝑟𝑎𝑐𝑘𝑠  (𝑗 = 1,2, … ,𝑁1)
 𝑐𝑗           

  𝑓𝑜𝑟 
𝑝ⅇ𝑛𝑛𝑦 − 𝑠ℎ𝑎𝑝ⅇ𝑑 𝑐𝑟𝑎𝑐𝑘  (𝑗 = 1) 

 
(17) 

By employing the superposition principle, 

the components of the stress on a given 

crack surface are obtained. Assume the 

dynamic rotational ring dislocations with 

unknown density 𝑏𝜃𝑗(𝑞) are distributed on 

the infinitesimal segment at the surfaces of 

the j-th interface crack located at 0z  . So, 

the following integral equation is 

represented as 

𝜏𝜃𝑧(𝑟𝑖(𝑠), 0)

=∑𝐿𝑗∫ 𝑘𝑖𝑗
𝑙 (𝑠, 𝑞)𝑏𝜃𝑗(𝑞)

1

−1

𝑑𝑞

𝑁

𝑗=1

,                𝑖

= 1,2, … ,𝑁 

(18) 

From Eq. (15), the kernel of the integral 

equation 𝑘𝑖𝑗(𝑠, 𝑞), respectively, are given 

by 

𝑘𝑖𝑗(𝑠, 𝑞) = 

𝑟𝑗𝜇𝑧0∫

[
 
 
 
 
 
 
 

𝜉(1 − ⅇ−2ℎ𝜉)

Λ

{

(𝜉 + 𝛼)[𝛼 − 𝜉(𝛼ℎ1 + 1)]

−ⅇ−2ℎ1𝜉(𝛼 − 𝜉)

[𝜉(𝛼ℎ1 + 1) + 𝛼]

}

+
1

2
𝜂λ ]

 
 
 
 
 
 
 

𝐽0(𝑟𝑗𝜂)𝐽1(𝑟𝑖𝜂)𝑑𝜂

∞

0

 

 −
1

𝜋𝑟𝑖
√𝜇𝑧0𝜇𝑟0 

{
 
 

 
 

𝑟𝑖𝑟𝑗

𝑟𝑖
2 − 𝑟𝑗

2 𝑬(
𝑟𝑗
2

𝑟𝑖
2)                            𝑟𝑖 > 𝑟𝑗

𝑲(
𝑟𝑖
2

𝑟𝑗
2) +

𝑟𝑗
2

𝑟𝑖
2 − 𝑟𝑗

2 𝑬(
𝑟𝑖
2

𝑟𝑗
2)         𝑟𝑖 < 𝑟𝑗

 

(19) 

The left-hand side of Eq. (18), with opposite 

sign, is stress component caused by applied 

traction on the presumed crack surfaces in 

the intact layer. The crack opening 

displacement across the j-th crack is 

represented using the definition of 

dislocation as 

𝑢𝜃𝑗(𝑠) − 𝑢𝜃𝑗(𝑠)

=
𝐿𝑗

𝑟𝑖(𝑠)
∫ 𝑟𝑗(𝑞)𝑏𝜃𝑗(𝑞)
𝑠

−1

𝑑𝑞,                     

          𝑗 = 1,2, … , 𝑁 

(20) 

For an embedded interfacial crack between 

two bonded dissimilar materials, Eq. (18) 

should be complimented with the following 

well-known closure conditions 

∫ 𝑟𝑗(𝑞)𝑏𝜃𝑗(𝑞)
1

−1

𝑑𝑞 = 0,             

      𝑗 = 1,2, … ,𝑁 

(21) 
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Eq. (18) and Eq. (21) are in terms of 

dislocation density and must be solved 

simultaneously. The stress fields at the tips 

of the annular and penny-shaped 

interface cracks behave like 1/√𝑟, where 𝑟 

is the distance from the crack tips. 

Consequently, the dislocation densities for 

each kind of the interfacial cracks are taken 

to be as 

𝑏𝜃𝑗(𝑞) =
𝑔𝑎𝑗(𝑞)

√1 − 𝑞2
,       

                   𝑓𝑜𝑟 𝑎𝑛𝑛𝑢𝑙𝑎𝑟 𝑐𝑟𝑎𝑐𝑘𝑠 

𝑏𝜃𝑗(𝑞) = √
1 − 𝑞

1 + 𝑞
𝑔𝓅𝑗(𝑞),       

     𝑓𝑜𝑟 𝑝ⅇ𝑛𝑛𝑦 − 𝑠ℎ𝑎𝑝ⅇ𝑑 𝑐𝑟𝑎𝑐𝑘𝑠 

(22) 

Substituting Eq. (22) into Eq. (18) and Eq. 

(21) and applying the numerical technique 

devised by Erdogan et al. [32] result in 

𝑔𝑥𝑗(𝑞), 𝑥 = {𝑎, 𝓅}. The SIFs for an annular 

and penny-shaped interface cracks are 

defined, respectively, as 

𝑘𝐼𝐼𝐼,𝐿 = 𝑙𝑖𝑚
𝑟→𝑎−

√2(𝑎 − 𝑟 )𝜏𝜃𝑧(𝑟, 0) 

𝑘𝐼𝐼𝐼,𝑅 = 𝑙𝑖𝑚
𝑟→𝑏+

√2(𝑟 − 𝑏) 𝜏𝜃𝑧(𝑟, 0) 
(23) 

and 

𝑘𝐼𝐼𝐼 = 𝑙𝑖𝑚
𝑟→𝑐+

√2(𝑟 − 𝑐) 𝜏𝜃𝑧(𝑟, 0) (24) 

where subscripts L and R designate as inner 

and outer tips of annular crack, respectively. 

Substitution of Eq. (22) into Eq. (18) and 

then into Eq. (23) yields the SIFs at the 

annular interface crack tips 1s    for the j-

th crack as  

𝑘𝐼𝐼𝐼,𝐿𝑗 =
1

2
√𝜇𝑟0𝜇𝑧0𝐿𝑗 𝑔𝑎𝑗

∗ (−1) 

𝑘𝐼𝐼𝐼,𝑅𝑗 = −
1

2
√𝜇𝑟0𝜇𝑧0𝐿𝑗  𝑔𝑎𝑗

∗ (+1) 
(25) 

For the penny-shaped interface crack, from 

Eq. (18), Eq. (22) and Eq. (24), the SIFs 

become 

𝑘𝐼𝐼𝐼,𝑗 =
1

2
√𝜇𝑟0𝜇𝑧0𝐿𝑗  𝑔𝓅𝑗

∗ (−1) (26) 

 

4- Numerical examples  

In this section some examples are solved to 

show the capabilities of the distributed 

dislocation technique to treat the problem of 

the orthotropic strip with perfect orthotropic 

FGM coating with multiple axisymmetric 

interfacial cracks under torsional impact 

loading. These defects may include penny-

shaped and annular interfacial cracks. 

Variations of non-homogeneity constant, 

orthotropy parameter and thickness of FGM 

coating on the SIFs investigated, and also 

the interactions between several cracks 

which are located at interface. In all the 

proceeding examples, the thickness of the 

orthotropic layer is assumed as 

ℎ1 = 10𝑐𝑚. Also, the dynamic shear stress 

𝜏𝜃𝑧 = 𝜏0 is applied on the surface of the 

interfacial crack , in which 𝜏0 is constant 

twisting loads. In addition, the SIFs are 

normalized as 𝑘𝐼𝐼𝐼/𝑘0, where we take 𝑘0 =

𝜏0√𝑙, in which 𝑙 is the length of the crack. 

 
Example 1: An infinite medium with a penny-shaped 

crack  

In order to demonstrate and verify the 

solution of the dislocation method given in 

this study with the published results, for our 

first example we consider the problem of an 

infinite domain (ℎ, ℎ1 → ∞, 𝜆 = 1 𝑎𝑛𝑑 𝛼 =

0) containing a penny-shaped crack with 

radius 𝑐1 under loading conditions that 

mentioned above. The dimensionless SIFs 

of the singular crack tip are tabulated in 

Table 1. 
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Table 1:  Normalized 𝑘𝐼𝐼𝐼/𝜏0√𝑐1 for a penny-shaped 

crack at the infinite FGM medium (ℎ, ℎ1 → ∞, 𝜆 =

1) 

𝛼𝑐1 

𝑘𝐼𝐼𝐼

𝜏0√𝑐1
 

 Present work Ref. [2] 

0.0 0.4981 0.5 

The numerical results are compared with 

those of Ozturk & Erdogan [2] to establish 

their accuracy. A good agreement is seen in 

the results. 

 
Example 2: An orthotropic layer with orthotropic FGM 

coating weakened by a penny-shaped interfacial crack  

The next example deals with the orthotropic 

layer with orthotropic FGM coating 

weakened by a penny-shaped interfacial 

crack with length 𝑙 = 𝑐1. The effects of the 

non-homogeneity constant, orthotropy 

coefficient and thickness of FGM coating 

on the SIFs are listed in  

Tables 2 -4. From these Tables, it can be 

seen that normalized SIFs decrease with 

increasing the non-homogeneity constant, 

orthotropy coefficient and thickness of 

FGM coating. 

 
Example 3: An orthotropic layer with orthotropic FGM 

coating weakened by an annular interfacial crack  

In the third example, an orthotropic layer 

with orthotropic FGM coating containing 

annular interfacial crack with length 2𝑙 =

(𝑏1 − 𝑎1), where 𝑎1 and 𝑏1 are the inner and 

outer radii of the annular crack and 𝑏1 =

2𝑎1, is analyzed. In this example, variations 

of the non-homogeneity parameters, 

orthotropy coefficient and the FGM coating 

thickness are investigated on the 

normalized SIFs. From Tables 5-7, as it was 

expected, the normalized SIFs of the crack 

tips decrease by increasing the non-

homogeneity parameters, orthotropy 

coefficient and the FGM coating thickness. 

In addition, it is bserved from these Tables 

that normalized mode III SIFs for inner tips 

of annular cracks are larger than the outer 

tips. 

Table 2: Variation of normalized SIFs of penny-

shaped interface crack with non-homogeneity 

constant 

𝛼𝑙 
ℎ1/ℎ = 0. 1                      𝜆 = 1.5 

𝑘𝐼𝐼𝐼/𝜏0√𝑙 

0.1 0.5555 

0.3 0.5530 

0.5 0.5505 

1.5 0.5383 

2.0 0.5324 

2.5 0.5266 

3.0 0.5208 

Table 3: Variation of normalized SIFs of penny-

shaped interface crack with FGM coating thickness 

ℎ1/ℎ 
             𝛼𝑙 = 1                 𝜆 = 2                     

𝑘𝐼𝐼𝐼/𝜏0√𝑙 

1.0 0.4763 

0.9 0.4795 

0.8 0.4810 

0.7 0.4829 

0.6 0.4842 

0.5 0.4860 

0.4 0.4871 

0.3 0.4890 

0.2 0.4938 

0.1 0.5228 

 
Example 4: An orthotropic layer with orthotropic FGM 

coating weakened by two concentric interfacial cracks  

The final example deals with the interaction 

of two coplanar concentric interfacial 

cracks. The two coplanar concentric 

interacting cracks including an annular 

crack and a penny-shaped crack, where 

crack numbers 1 and 2, respectively 

designates them. 
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Table 4: Variation of normalized SIFs of penny-

shaped interface crack with orthotropic coefficient 

𝜆 
 𝛼𝑙 = 0.5               ℎ1/ℎ = 0.1 

𝑘𝐼𝐼𝐼/𝜏0√𝑙 

0.1 1.4230 

0.5 0.7295 

1.5 0.5505 

2.5 0.5155 

3.0 0.5085 

The cracks are assumed to be on the same 

plane (𝑧1 = 𝑧2 = 0) and have radii 𝑎1, 𝑏1 

and 𝑐2, respectively. The annular crack 

length is 2𝑙 = (𝑏1 − 𝑎1) and the penny-

shaped crack length is 𝑙 = 𝑐2. 

Table 5: Variation of normalized SIFs the tips of 

annular interface crack with non-homogeneity 

constant, when 𝑏1 = 2𝑎1 

𝛼𝑙 
ℎ1/ℎ = 0. 1                      𝜆 = 1.5 

𝑘𝐼𝐼𝐼,𝐿/𝜏0√𝑙                𝑘𝐼𝐼𝐼,𝑅/𝜏0√𝑙 

0.1 1.0169                     0.8784       

0.3   0.9956                     0.8629 

0.5   0.9758                      0.8484  

1.5   0.8983                      0.7923 

2.0   0.8711                      0.7728 

2.5   0.8494                      0.7573 

3.0    0.8319                     0.7447 

The variations of dimensionless SIFs for 

two distances between the centers of cracks 

are given in Tables 8 and 9. In comparison 

with the previous examples, we observe that 

interaction between two cracks increases 

the SIFs. In addition, it is clear that the SIFs 

overall amount decrease with the increasing 

amount of crack distances.  

 

 

 

Table 6: Variation of normalized SIFs the tips of 

annular interface crack with FGM coating thickness, 

when  𝑏1 = 2𝑎1 

ℎ1/ℎ 

𝛼𝑙 = 1                 𝜆 = 2 

          𝑘𝐼𝐼𝐼,𝐿/𝜏0√𝑙               𝑘𝐼𝐼𝐼,𝑅/

𝜏0√𝑙   

1.0             0.9440                     0.8235                

0.9  0.9449    08243  

0.8  0.9455 0.8251  

0.7  0.9462 0.8260  

0.6  0.9470 0.8269  

0.5  0.9481 0.8280  

0.4  0.9493 0.8291  

0.3  0.9505 0.8299  

0.2  0.9520 0.8306  

0.1  0.9527 0.8314  

Table 7: Variation of normalized SIFs the tips of 

annular interface crack with orthotropic coefficient, 

when  𝑏1 = 2𝑎1 

𝜆 
𝛼𝑙 = 0.5               ℎ1/ℎ = 0.1 

𝑘𝐼𝐼𝐼,𝐿/𝜏0√𝑙                𝑘𝐼𝐼𝐼,𝑅/𝜏0√𝑙 

0.1  1.0002  0.8660 

0.5  0.9950  0.8622 

1.5  0.9758  0.8484 

2.5  0.8982  0.7922 

3.0  0.7640  0.6960 

 

Table 8: Variation of normalized SIFs the tips of 

concentric interface cracks with 𝛼𝑙 = 1 , ℎ1/ℎ =
0. 1, 𝜆 = 2 

𝑎1 = 1.5𝑐2     𝑏1 = 3.5𝑐2 

𝑘𝐼𝐼𝐼,𝐿1/𝜏0√𝑙                            1.1905 

𝑘𝐼𝐼𝐼,𝑅1/𝜏0√𝑙                          0.9477 

𝑘𝐼𝐼𝐼,2/𝜏0√𝑙                            0.5523 
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Table 9: Variation of normalized SIFs the tips of 

concentric interface cracks  with 𝛼𝑙 = 1 , ℎ1/ℎ =
0. 1, 𝜆 = 2 

𝑎1 = 2𝑐2     𝑏1 = 4𝑐2 

𝑘𝐼𝐼𝐼,𝐿1/𝜏0√𝑙                            1.0786 

𝑘𝐼𝐼𝐼,𝑅1/𝜏0√𝑙                          0.9169 

𝑘𝐼𝐼𝐼,2/𝜏0√𝑙                            0.5335 

5- Conclusion 

In this paper, the fracture behavior of 

multiple axisymmetric interface cracks 

between an orthotropic layer with FGM 

orthotropic coating subjected to torsional 

loading using the distributed dislocation 

technique was studied. A solution for the 

stress field caused by the rotational 

Somigliana ring dislocation in an  

orthotropic layer with FGM orthotropic 

coating is first obtained. Next, using the 

distributed dislocation technique, the 

problem was formulated for an orthotropic 

layer with FGM orthotropic coating with a 

system of coaxial axisymmetric interface 

cracks. The unknown dislocation density on 

the surfaces of the cracks was obtainable by 

solving a set of integral equations of Cauchy 

singular type. To study the effect of the non-

homogeneity constant, orthotropy 

parameter and thickness of FGM coating, 

SIFs are obtained for some examples. The 

following key points are observed: 

1) The non-homogeneity parameter, 

orthotropy constant and thickness of 

FGM coating have quite a 

considerable influence on the SIFs. 

2) The value of the SIFs decreases with 

increasing the non-homogeneity 

parameter, orthotropy and thickness 

of FGM coating. 

3) For the single annular interface 

crack, the modes III SIFs for inner 

tips are larger than the outer tips.  

4) For the case of a penny-shaped 

interface crack surrounded by an 

annular interface crack, the values 

of the SIFs for the annular crack are 

higher than the SIFs of the penny-

shaped crack. 

5) The interaction between the cracks 

is an important factor affecting SIFs. 
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