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Abstract 

This paper investigates the bending vibration of single-walled carbon nanotubes (SWCNTs) based on a 

new theory called doublet mechanics (DM) with a scale parameter. A sixth order partial differential 

equation that governs the bending vibration for such nanotubes is derived. It is the first time that DM is 

used to model the bending vibration of carbon nanotube. Euler-Bernoulli beam model is used in this 

paper. Using DM, the relation between natural frequency and scale parameter is derived in the bending 

vibration mode. It is proven that scale parameter plays significant role in the vibration behavior of such 

nanotubes in lateral direction. Such effect decreases the natural frequency compared to the predictions 

of the classical continuum mechanics (CCM) models. However, with increasing the tube length, the 

scale effect on the natural frequency decreases. To show the accuracy and capability of this method, the 

results obtained herein are compared with the existing nonlocal and molecular dynamics (MD) results 

and good agreement is observed. It is notable that the results generated herein are new and can be used 

as a benchmark for future works. 

Keywords: Doublet mechanics; Natural frequency; Scale parameter; Bending vibration; Single-walled 

carbon nanotubes 

1- Introduction 

The mechanical behavior of heterogeneous 

solids is divided in two general viewpoints 

depending on whether the material phases 

are distributed as either continuous or 

discrete. Under continuous distribution, 

theories are based on continuum mechanics 

and have provided many useful solutions to 

problems of engineering interest. However, 

these theories generally develop models 

that do not contain scaling effects and this 

is normally regarded as a limitation to 

predicting micromechanical material 

behavior. 

At nanoscale, the mechanical 

characteristics of nanostructures are often 

significantly different from their behavior 

at macroscopic scale due to the inherent 

size effects. Such effects are essential for 

nanoscale materials or structures and the 

influence on nanoinstruments is great. Size 

effects exist not only for mechanical 

http://jsme.iaukhsh.ac.ir/
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properties but also for electronic, optical 

and some other properties. Classical 

continuum mechanics (CCM) [1] used to 

study vibration of nanostracture do not 

consider scale effects. In order to overcome 

this limitation, various elegant 

modifications to CCM have been proposed 

to incorporate scale and microstructural 

features into the theory. On the other hand, 

discrete modeling develops particular 

microforce–deformation relations between 

the various material phases within the solid. 

Discrete models normally lead to theories 

with one or more length scales resulting in 

nonlocal behavior where the stress at a 

point will depend on the deformation in a 

neighborhood about the point. These length 

scales may represent the sizes and/or 

separations of particles, dimensions of 

internal cells, characteristic ranges of 

particle or phase interactions, etc. One of 

the most popular theories in 

micromechanics is nonlocal theory. The 

nonlocal elasticity theory was first 

developed by Eringen [2] and it assumes 

that the stress tensor at a point is a function 

of strains at all points in the continuum. The 

nonlocal theory is developed following a 

simplified pattern without considering a 

particular microstructure. Under such an 

approach the parameters of the 

microstructure are not included in the 

mathematical model directly. The 

microstructural parameters enter the non 

local theory indirectly because it is 

implicitly contained in the macro tensors of 

elasticity. Consequently, the total number 

of elastic macroconstants in the nonlocal 

theory is considerably large [3]. Another 

popular theory in micromechanics is 

molecular dynamics (MD) theory. This 

theory studies vibrations of the atomic 

nuclei of solid crystals, the nuclei being 

considered as material points (particles) 

mutually bonded by elastic interatomic 

forces. MD is based on the following far-

reaching. First, any crystal is an infinite 

lattice structure and second, the crystal 

obeys some devised periodic boundary 

conditions (PBC). It is seen that MD can 

exist as a general theory only on the basis 

of a particular boundary condition (the 

PBC) and it is, in general, incompatible 

with arbitrary boundary conditions [3]. 

One particular theory that has recently been 

applied to granular materials is the DM 

model. This approach originally developed 

by Granik (1978) [4], has been applied to 

granular materials by Granik, Ferrari 

(1993) [5] and Ferrari et al. (1997) [3]. DM 

is a micromechanical discrete model 

whereby solids are represented as arrays of 

points, particles or nodes at finite distances. 

The theory has shown promise is predicting 

observed behaviors that are not predictable 

using continuum mechanics. These 

behaviors include the so-called Flamant 

paradox (Ferrari et al., 1997) [3], where in 

a half-space under compressive boundary 

loading, continuum theory predicts a 

completely compressive stress field but 

observations indicate regions of tensile 

stress. Other anomalous behaviors include 

dispersive wave propagation. Ferrari et al. 

reformulated DM using a finite element 

approach with the aim of expanding even 

more the potential applications of such an 

approach [6]. Some application of doublet 

mechanics in biomedical and 

nanomechanics is given in [7-9] and for 

civil engineering is given in [10, 11]. Fang 

et al. [12] studied the plane wave 

propagation in a cubic tetrahedral assembly 

with DM. Some other application of 

doublet mechanics is given in [13, 14]. 

There are few works that investigate 

vibrations of nanostructure with DM. 
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Fatahi-Vajari and Imam studied axial and 

radial vibration of single-walled carbon 

nanotubes using DM in [15] and [16], 

respectively. They obtained a theoretical 

formula for natural frequency dependent to 

scale parameter. 

Carbon nanotubes (CNTs) have been 

invented by Iijima in 1991 [17]. CNTs have 

many unique properties. Their electro-

mechanical property has explained in [18, 

19]. Owing to nanoscale dimensions of 

CNTs, it is difficult to set up controlled 

experiments to measure the properties of an 

individual CNT [20, 21]. Also, atomistic 

methods [22-24] are costly and time 

consuming to implement particularly for 

large-scale systems. With rapid 

development in nanotechnology, nanotubes 

have great potential for wide applications as 

components in nano-electronic-mechanical 

systems (NEMS). Some method for 

producing CNTs are given in [25- 27]. Such 

nanostructures have received growing 

interest recently. Very often, these 

components are subjected to external 

loadings during work operation and then, 

their resonant properties are of much 

concern. As a result, nanotechnological 

research on free vibration properties of 

nanotubes under certain support conditions 

is important because such components can 

be used as design components in 

nanosensors and nanoactuators. Elishakoff 

and Pentaras evaluated the fundamental 

natural frequencies of double-walled 

carbon nanotubes under various boundary 

conditions [27]. Ansari et al. investigated 

the vibrational characteristics of SWCNTs 

based on the gradient elasticity theories 

[28]. Sohani and Eipakchi  derived the 

governing equations of a vibratory beam 

with moderately large deflection using the 

first order shear deformation theory [29]. 

Hosseini–Hashemi et al. considered surface 

effects including surface elasticity, surface 

stress and surface density, on the free 

vibration analysis of Euler-Bernoulli and 

Timoshenko nanobeams using nonlocal 

elasticity theory [30]. Ghorbanpour Arani 

et al. studied nonlinear free vibration of 

double-walled carbon nanotubes 

(DWCNTs) embedded in an elastic medium 

based on classical (local) Euler-Bernoulli 

beam theory [31]. Bocko and Lengvarský 

studied the free bending vibration and 

natural frequency of SWCNTs based on 

nonlocal theory of beam bending [32]. 

Ranjan studied the development of 

alternative beam finite elements using hp-

spectral nodal expansions to eliminate shear 

and membrane locking [33]. 

However, most of the previous works on 

the vibration analysis methods of SWCNTs 

are usually restricted to the nonlocal theory 

and atomistic methods which are time 

consuming and have voluminous 

calculations. The purpose of this work is to 

present a modeling for bending vibration of 

SWCNTs using DM. First, the basic 

equation of motion for bending vibration of 

SWCNTs which considers small scale 

effect is derived using DM and then the 

governing equation is solved to obtain the 

frequency equation for bending vibration 

mode of SWCNTs. 

2- Brief review of DM 

Originally developed by Granik (1978) [1], 

DM is a micromechanical theory based on 

a discrete material model whereby solids 

are represented as arrays of points or nodes 

at finite distances. A pair of such nodes is 

referred to as a doublet, and the nodal 

spacing distances introduce length scales 

into the microstructural theory. Each node 

in the array is allowed to have a translation 

and rotation, and increments of these 

variables are expanded in a Taylor series 

http://jsm.iau-arak.ac.ir/?_action=article&au=523334&_au=F++Sohani
http://jsm.iau-arak.ac.ir/?_action=article&au=523334&_au=F++Sohani
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about the nodal point. This allowable 

kinematics develops microstrains of 

elongation, shear and torsion (about the 

doublet axis). Through appropriate 

constitutive assumptions, these 

microstrains can be related to 

corresponding elongational, shear and 

torsional microstresses. Applications of this 

theory to geomechanics problems have 

been given by Granik and Ferrari (1993) [2] 

and Ferrari et al. (1997) [3]. For these 

applications, a granular interpretation of 

DM has been employed, in which the 

material is viewed as an assembly of 

circular or spherical particles. A pair of 

such particles represents a doublet as shown 

in Fig. 1. Corresponding to the doublet (A, 

B) there exists a doublet or branch vector 𝜻𝑎 

connecting the adjacent particle centers and 

defining the doublet axis. The magnitude of 

this vector 𝜂𝑎 = |𝜻𝑎| is simply the particle 

diameter for particles in contact. However, 

in general the particles need not be in 

contact, and for this case the length scale 𝜂𝑎 

could be used to represent a more general 

microstructural feature. For example, the 

internal characteristic scale for the crystal 

lattice parameter of carbon is 𝜂𝑎 = 1.421 𝑎 

[23]. As mentioned, the kinematics allow 

relative elongational, shearing and torsional 

motions between the particles, and this is 

used to develop an elongational microstress 

𝑝𝑎, shear microstress 𝑡𝑎, and torsional 

microstress 𝑚𝑎 as shown in Fig. 1.  

 

Fig. 1 Doublet. 

It should be pointed out that these 

microstresses are not second order tensors 

in the usual continuum mechanics sense. 

Rather, they are vector quantities that 

represent the elastic microforces and 

microcouples of interaction between 

doublet particles. Their directions are 

dependent on the doublet axes which are 

determined by the material microstructure. 

These microstresses are not continuously 

distributed but rather exist only at particular 

points in the medium being simulated by 

DM.From Fig. 2, suppose doublet (𝑎, 𝑏𝛼) 

converts to doublet (𝑎′, 𝑏𝛼
′ ) because of 

kinematic translation. The superscript 0 for 

vectors indicates the initial state. If  , tu x  

is the displacement field coinciding with a 

particle displacement, then the increment 

function at     Ax x   is written as [3]: 

   0 , ,t t    u u x ζ u x  (1) 

where Ax  is the position vector of the 

particle A and 0

ζ  is the initial branch 

vector. 

Here,   1,..., n   while n is referred to the 

numbers of doublets. In many practical 

applications, it can be assumed that the 

shear and torsional microdeformations and 

microstresses are negligible and thus only 

extensional strains and stresses will exist. 

 

Fig. 2 Translations of the doublet nodes 𝑎 ∈ 𝐴, 

𝑏𝛼 ∈ 𝐵𝛼. 
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As in linear elasticity, it is assumed that the 

relative displacement u is small 

compared to the doublet separation distance 

  (  u ) so that the initial and final 

configuration of the system can be assumed 

to coincide. That means that 0

 τ τ . 

The extensional microstrain scalar measure 

 , representing the axial deformation of 

the doublet vector, is defined as [3]: 

. 






τ u

 (2) 

This can be interpreted as the compatibility 

equation within the linear DM. The 

increment function in Eq. (2) can be 

expanded in a Taylor series as [15]: 

 
 

1

0 0

1

. .
!

M




  











 τ τ u  (3) 

where   is the Del operator in general 

coordinate and   is the internal 

characteristic length scale. The order at 

which the series is truncated defines the 

degree of approximation employed. The 

lowest order case using only a single term 

in the series will not contain any length 

scales, while using more than one term will 

produce a multi length scale theory. 

It may be written that 
0 0

j j τ e  where 
0

j  

are the cosines of the angles between the 

directions of microstress and the 

coordinates. 

In DM with such assumptions and 

neglecting temperature effect, the relation 

between microstrain and microstress for the 

linear elasticity is written by the following 

equation [3] 

1

n

p A  



  (4) 

where p  is axial microstress along doublet 

axes in the case of linear and homogeneous 

inter nodal central interactions. Eq. (4) can 

be interpreted as the constitutive equation 

in the linear and homogeneous DM theory, 

and A  is the matrix of the micromodules 

of the doublet. 

In the isotropic media with local 

interaction, Eq. (4) is reduced to [3] 

0p A   (5) 

The relation between microstress and 

macrostress can be written as [16]:                           

   
 

1
1

0 0 0

1 1

.
!

n M
M

ij i j p




   

 


  






 


  τ   

 

(6) 

Superscript M indicates that macrostresses 

incorporate scale effect. 

The three-dimensional equation of motion 

in DM is written by the following equation 

[34] 
  2

2

M

ji i
i

j

u
F

x t




 
 

 
 (7) 

where   is the mass density, iu  are the 

displacement vector, iF  body force and t is 

the time. 

Now, the form of matrix [𝑨] in Eq. (4) 

containing elastic macroconstant for plane 

problem (two-dimensional) is obtained. For 

this reason, consider Fig. 3. According to 

Fig. 3, in the 𝑥1 − 𝑥2 plane, there are only 

three doublets with equal angels between 

them. The solution for the scale-less 

condition can be calculated directly from 

the associated CCM problem for an 

isotropic material.  
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Fig. 3 Three doublets with equal angle 
0120  

between them. 

For the plane problems in the homogeneous 

media,   A  is a symmetric matrix of order 

3 with the most general form [35] 

 

a b b

b a b

b b a

 
 


 
  

A  
(8) 

It can be shown that the coefficients of 

matrix  A  are independent to chirality of 

doublets rendering the material isotropic. 

Furthermore, the coefficients a and b in 

matrix  A  for plane stress conditions are 

found to be [3]:  

4 7 10 4 2
 , 

9 2 9 2
a b

   
 

   

 
 

 
 (9) 

One could use 0b   as a quantitative guide 

to the applicability of the simpler 

constitutive relations such as Eq. (5). If 

2   (or 
1

3
  ) in plane stress condition 

from Eq. (9), it is concluded that [36] 

0

8

3
a A E


    (10) 

3- DM model for bending vibration of  SWCNTs 

Specific applications of DM have been 

developed for two-dimensional problems 

with regular particle packing 

microstructures. One case that has been 

studied in this paper is the two-dimensional 

hexagonal packing without internal atoms 

as shown in Fig. 3. This geometrical 

microstructure establishes three doublet 

axes with equal angles between them. This 

structure is coincident with nanostructure.  

Now, consider a SWCNT with length L, 

mean radius R, Young’s modulus E, 

Poisson’s ratio  , mass density  , cross-

sectional area A and cross-sectional 

moment of inertia I as shown in Fig. 4. 

 

Fig. 4 A schematic of  SWCNT. 
Using the Euler–Bernoulli beam model in 

conjunction with DM, the governing 

equations for the bending vibration of 

SWCNTs are derived as follows. 

The Euler–Bernoulli beam theory (EBT) is 

the simplest beam theory in which it is 

assumed that the straight lines which are 

vertical to the mid-plane will remain 

straight and vertical to the mid plane after 

deformation. Based on the EBT, the 

displacement field at any point can be 

written as [28]: 

 , ,
w

u x z t z
x


 


 

 , , 0v x z t   

   , , ,w x z t w x t  

(11) 

(12) 

(13) 

wherein u, v and w are the displacements of 

the tube in x, y and z directions, 

respectively. The strain–displacement 

relations corresponding to EBT can be 

given as [28]: 
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2

2xx

w
z

x



 


 (14) 

And other macrostrains are zero. 

2 0xz xz    (15) 

Expanding Eq. (7) in Cartesian coordinate 

in the absence of body forces in the x and y 

directions yields 

      2

2

MM M
yxxx zx u

x y z t

 


  
  

   
 

      2

2

M M M

xy yy zy v

x y z t

  


   
  

   
 

      2

2

MM M
yzxz zz

z

w
f

x y z t

 


  
   

   
 

(16) 

 

(17) 

 

(18) 

Integration of Eq. (16) and Eq. (17) with 

respect to the cross-area of the tube (A) and 

neglecting shear macrostresses 
   , 
M M

yx zy   

in the upper and lower planes of the tube 

with considering Eq. (12) yield 

2

2

xx xzN N u
h

x z t


  
 

  
 (19) 

where 

    , 
M M

xx xx xz xy

A A

N dA N dA     (20) 

Eq. (19) is the equation of motion of the 

tube in longitudinal (x) direction. Now, the 

equation of motion in the lateral (z) 

direction is obtained. Differentiating Eq. 

(16), Eq. (17) and Eq. (18) with respect to x 

,y and z respectively and using Eqs. (11)- 

(15) along with combining the results, it is 

found that 

   2 2

2 2

3 4

2 2 2

M M

xx zz

z

x z

f w w
z

z z t x t

 

 

 
 

 

  
 

    

 

 

 

(21) 

Multiplication both side of Eq. (21) by z and 

then integrating it according to cross-area 

of the beam and neglecting 
 M

zz yields 

2 2 4

2 2 2 2

xxM w w
A I

x t x t
 

  
 

   
 (22) 

where 

 
2

2

2

 , 

t

M

xx xx

t A

M z dA I z dA



    
(23) 

and 
2

2

h

z

h

f
q z dA

z





  is the transverse force 

per unit length of the tube. 

 

Fig. 5 A Zigzag SWCNT. 

As is known, the nanotube is constructed 

with three doublets arranged with equal 

lengths and angles. Now, for example 

consider a Zigzag nanotube ( 0   in Fig. 

3) shown in Fig. 5. From this figure, the 

director vectors in Cartesian coordinates are 

written as: 

0 0 0

1 2 31 , 60 ,  60x x xcos cos        

0 0 0

1 2 30, 30 ,  30y y ycos cos       

0 0 0

1 2 30 ,  30 ,  30z z zcos cos       

(24) 

 

(25) 

(26) 

If Eq. (3) is substituted into Eq. (5) and then 

the result is substituted into Eq. (6) and 

neglecting the terms with order  3O   and 

higher, it can be found that 
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  

   

0 0 0 0

1

2 0 0 0

. .

1
. . .

12

n
M

   



  



 





σ τ τ τ τ u

τ τ τ u



  

 

 

(27) 

This equation is the relation between 

macrostress and displacement with order 

 2O  . Noting that in Cartesian coordinate 

ix





ie , Eq. (27) can be reduced to: 

  0 0 0 0

0

1

2
2 0 01

12

n
M

ij i j m n mn

mn
t s

t s

A

x x

   



 

     


  



 




  


  

(28) 

where mn  is the linear elastic macrostrain 

tensor defined by 
1

2

m n
mn

n m

u u

x x


  
  

  
 in 

Cartesian coordinate. 

It is further assumed that all doublets 

originating from a common node have the 

same magnitudes; i.e.    1,2, ,a a n     

and the interactions are purely axial (no 

shear or torsional microstresses is present). 

For local interaction in the plane, there will 

be two micromoduli  , a b  and the 

constitutive relationship between 

elongation microstress and microstrain is 

expressed by Eq. (4). If 
1

3
  , matrix  A  

will be diagonal and there will be one 

micromodulus 0A  and the constitutive 

relationship between elongation 

microstress and microstrain is expressed by 

Eq. (5). In this paper, Eq. (5) is used 

because volume of calculation with two 

micromoduli is overbearing. 

It can be seen from Eq. (28) that nonlocal 

behavior enters into the problem through 

the constitutive relations. Expanding Eq. 

(28) and setting ,i j x  and using Eqs. (14) 

and (15) along with Eqs. (23)- (25), it is 

found that 

2 4
2

0 2 4

1

12
xx

w w
A z

x x
 

  
   

  
 (29) 

This equation is relation between 

macrostress and displacement. 

It is clear that the nanotube in bending 

vibration mode is in plane stress condition 

then from Eq. (10), it is concluded that 

0A E . If Eq. (29) is substituted into the 

first part of Eq. (23) and integrating is 

performed, the following equations for 

moments can be obtained 

2 4
2

2 4

1

12
z

w d w
M EI

x dx


 
   

 
 (30) 

If Eq. (30) is substituted into the Eq. (21), 

the following equation of motion in term of 

w can be obtained 

4 6 2
2

4 6 2

4

2 2

1

12

0

w d w w
EI A

x dx t

w
I

x t

 



  
    

  




 

 
 

(31) 

According to Eq. (31) a sixth order 

governing equation is obtained. However, 

the governing equation derived from the 

DM principle turns out to be an infinite 

order differential equation in terms of   . 

Because it is almost impossible to solve the 

infinite order differential equation, only 

lower order terms in the infinite series in 

Eq. (3) and Eq. (6) are retained. 

For the general case which the scale 

parameter is present, Eq. (30) is the basic 

equation of motion with scale effect for 

bending vibration of Zigzag SWCNTs. 

It is assumed that the boundaries forces of 

the tubes are independent to scale. Then the 
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displacement fields can be written by the 

following equation [3] 

2

0 2w w w   (32) 

Suppose that the boundaries of the tube are 

simply supported. Then it can be concluded 

that 

     , , 0    0, 
M

xxw x t M x t at x L    (33) 

Substituting Eq. (32) in to Eq. (33) yields 

 
 2

0

0 2

,
, 0,  0    0, 

w x t
w x t at x L

x


  


 

 
 2

2

2 2

,
, 0,  0    0, 

w x t
w x t at x L

x


  


 

 

(34) 

 

(35) 

To find the frequency of lateral vibration of 

nanotube, the following solution for the 

lateral vibrations of nanotube is considered 

as 

   2 . .n n n

n
w A B sin y sin t

L


    (36) 

wherein nA  and nB  are the amplitudes of 

lateral vibration,  
 
n


  is the frequency of 

lateral vibration and n  is mode number, 

respectively. Substituting Eq. (36) into Eq. 

(31) yields 

  

4 6
2

2

2

1

12

n

n n
EI

L L

n
A I

L



 





 

    
    

     


 
  

 

 

 

(37) 

This is the frequency equation of lateral 

vibration of nanotube considering scale 

effect. 

For Armchair nanotubes, similar 

calculations yield 

  

4 6
2

2

2

1

16

n

n n
EI

L L

n
A I

L



 





 

    
    

     


 
  

 

 

 

(38) 

The advantage of these simple expressions 

is that they show the dependency of the 

bending natural frequency on the 

mechanical and geometrical properties of 

the SWCNT. In particular, these 

expressions show that by increasing the 

Young’s modulus ( E ) and the moment of 

area ( I ) of the SWCNT, their bending 

frequency increases; however by increasing 

the mass density (  ), the scale parameter (

 ), their bending frequency decreases. 

In the scale-less condition where 0  , 

from Eq. (36) and/or Eq. (38), it is found 

that 
4

2

2n

n
EI

L

n
A I

L






 

 
 
 

 
  

 

 

 

(39) 

This equation is exactly in agreement with 

frequency obtained in [22, 23] for lateral 

vibration with simply supported beam. 

It is evident from Eqs. (37)- (39) that using 

a continuum beam model in the frequency 

analysis of nanotube can cause an 

overestimate. However as the length of the 

tube increases, the difference between 

natural frequency of lateral vibration with 

and without scale parameter becomes 

smaller and the frequencies of the two 

models converge to a single value. It is also 

seen that the presence of the nanoscale   

decreases the natural frequency but as the 

length of the tube increases the effect of 

scale decreases. 

4- Results and discussion 

To validate the present approach, the result 

obtained herein using DM are compared 
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with available MD and nonlocal simulation 

results for simply-supported (8, 8) SWCNT 

with different aspect ratios ranging from 8.3 

to 39.1 [28]. In the current study, the 

effective thickness of the SWCNTs is 

assumed to be equal to the spacing of 

graphite (h = 0.34 nm). In addition, 

Poisson’s ratio  , mass density   and 

Young’s modulus E are assumed to be 0.3, 

3
2300 

Kg

m
 and 1.1 TPa, respectively [28]. 

Table 1 present the values of fundamental 

frequency obtained from DM, MD 

simulations and the nonlocal stress gradient 

elasticity theory for (8, 8) Armchair 

nanotube with different aspect ratios 

(length to diameter; L/D). The results 

predicted by the present model are found to 

be in good agreement with the ones 

obtained from MD and nonlocal simulation 

which indicates the capability of the present 

approach in accurately predicting 

frequencies of SWCNTs. 

Table 1: Fundamental frequencies (THz) for (8, 8) 

Armchair SWCNTs with simply support boundary 

condition 
L/D DM MD [28] Nonlocal [28] 

8.3 0.5378 0.5299 0.5376 

10.1 0.3639 0.3618 0.3638 

13.7 0.1982 0.1931 0.1982 

17.3 0.1244 0.1103 0.1244 

20.9 0.0853 0.0724 0.0853 

24.5 0.0621 0.0519 0.0621 

28.1 0.0472 0.0425 0.0472 

31.6 0.0373 0.0358 0.0373 

35.3 0.0299 0.0287 0.0299 

39.1 0.0244 0.0259 0.0244 

From Table. 1, it is observed that 

employing DM leads to highly accurate 

results which are comparable to those 

obtained by MD simulations and nonlocal 

results particularly for low aspect ratios. As 

the aspect ratio increases, the discrepancy 

between various vibration modes decreases 

so that the fundamental frequencies tend to 

converge at an aspect ratio of 

approximately 40. 

The free vibration frequency ratio is 

defined as 

Frequency Ratio

 
 

 
 

   
=

 

natural frequency DM theory

natural frequency local theory

 

Then from Eq. (37) and Eq. (39) for 

bending mode vibration, Frequency Ratio 

(F.R.) for Zigzag SWCNTs becomes 

  2

21
. . 1

12

n

n

n
F R

L


 




 
    

 
 (40) 

And for Armchair SWCNTs, from Eq. (38) and Eq. 

(39), it becomes 

  2

21
. . 1

16

n

n

n
F R

L


 




 
    

 
 (41) 

The numerical results for free vibrating 

nanotubes are given in graphical form in 

Figs. 6-11. The unit of length and radius is 

given in angstrom (a). In Figs. 6 and 7, the 

effect of scale parameter on frequency ratio 

in different vibration modes is shown for (8, 

8) Armchair and (16, 0) Zigzag SWCNTs, 

respectively. The boundary conditions of 

the nanotubes are considered to be simply 

support. 

 

Fig. 6 Variation of frequency ratio with scale 

parameter for (8, 8) Armchair nanotube with 

L=100 a for different bending vibration mode. 
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It is found that the frequency ratio decreases 

with increasing in scale parameter for all 

vibration modes.  This decreasing is more 

apparent for higher vibration modes. 

 

 

Fig. 7 Variation of frequency ratio with scale 

parameter for (16, 0) Zigzag nanotube with 

L=70 a for different bending vibration mode 

 

 

Fig. 8 Variation of frequency ratio with tube 

radius for Armchair nanotube with L=100 a for 

different bending vibration. 

 

 

Fig. 9 Variation of frequency ratio with tube 

radius for Zigzag nanotube with L=70 a for 

different bending vibration mode. 

 

 

Fig. 10 Variation of frequency ratios with tube 

length for (8, 8) Armchair nanotube for different 

bending vibration mode. 

 

Fig. 11 Variation of frequency ratios with tube 

length for (16, 0) Zigzag nanotube for different 

bending vibration mode. 

Variation of frequency ratio of the 

SWCNTs as a function of tube radius for 

different mode numbers for Armchair and 

Zigzag nanotubes are plotted in Fig. 9 and 

Fig. 10, respectively. The boundary 

conditions of the nanotubes are simply 

supported. According to these figures, 

frequency ratio is increasing with increase 

in tube radius. This is more apparent for 

lower tube radius. 

In Figs. 10 and 11, variation of frequency 

ratio with tube length L is given for 

different vibration mode for (8, 8) Armchair 

and (16, 0) Zigzag SWCNTs, respectively 

with simply supported boundary 

conditions. According to these figures, with 

increasing in the length of the nanotubes, 

frequency ratio increases. This increasing is 

more pronounced for higher modes of 
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vibration. Since scale effects are more 

effective for smaller wave lengths, after a 

certain tube length L, frequency ratios 

approaches to a certain value. These figures 

also reveal that the difference between 

different vibration modes becomes more 

pronounced for very short SWCNTs. 

 

5- Conclusion 

The DM theory has been employed to 

model the bending vibration of simply 

supported SWCNTs. The governing 

equation of motion in bending mode was 

obtained in terms of lateral displacement 

using DM and was solved analytically to 

obtain a closed form expression for the 

natural frequency of such a nanotube. To 

the best of authors’ knowledge, there is no 

prior work reported in the literature before 

this study. Then, availability of present 

paper gives a possibility of an appropriate 

and effective evaluation of the natural 

frequency in bending vibration mode for 

SWCNTs. The following points are 

particularly noted in this work. Firstly, the 

scale effects decrease natural frequency of 

a nanotube in bending mode vibration 

based on DM model presented here, or the 

nanotube stiffness is lessened in 

comparison with the CCM theory. 

Secondly, for a nanotube with sufficient 

Aspect ratio, the nanoscale effect becomes 

insignificant and thus the governing 

equation can be reduced to the classical 

equation and both DM and classical 

solutions are in complete agreement, and 

validity of the DM model developed here 

for vanishing nonlocal effect is established. 

Then the scale parameter is more effective 

in higher modes of vibration and lower 

Aspect ratios. Lastly, with increase in tube 

length and/or in tube radios, frequency ratio 

increases. This increasing is more apparent 

in higher modes of vibration. 
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