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Abstract 

In this paper, free vibration analysis of sandwich micro beam with piezoelectric layers based on 

modified couple stress and surface elasticity theories are investigated. The Hamilton’s principle is 

employed to derive the sandwich micro beam with piezoelectric based on modified couple stress 

theory incorporating with Gurtin- Murdoch surface theory. Generalized differential quadrature method 

is used to discretize the partial differential equation into the ordinary differential equation. The effect 

of various parameters such as thickness to material length scale parameter ratio, surface residual stress, 

Young's modulus of surface layer, surface mass density and surface piezoelectric constant are 

investigated by comparing the results obtained using the modified couple and classical theories. 

Numerical results of this problem evaluate the effect of micro length scale parameters on natural 

frequency. The results show that surface parameter effects are significant when the model is small, but 

can be neglected with increasing model size. 

Keywords: Micro-beam, Modified couple stress elasticity theory, Gurtin- Murdoch surface theory, 

Free vibration analysis 

1- Introduction 

Nowadays, many researchers have focused 

on material behavior at the field of micro 

and nano electro-mechanical systems 

(MEMS and NEMS). MEMS and NEMS 

have an important role in different 

mechanical engineering applications such 

as atomic forces micro-scopes (AFMS), 

micro-switches, micro and nano sensors 

and actuators, micro rate gyros and micro 

flexible joints. Experimental researches 

have illustrated when the length 

characteristic is on the order of microns, 

size effect must be taken into account in 

mechanical behavior of micro scale 

structure. Fleck et al. [1] studied 

mechanical behavior of thin micro copper 

wire. Their experiment showed that shear 

strength increased three times as the wire 

diameter decreased from 170μm to 12μm. 

Stolken and Evasns [2] found that 

fluctuation of beam thickness had a great 

effect on normalized bending hardening. 

The size dependence of deformation 

observed in micro and nano mechanical 

behaviors showed that classical theory 
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cannot interpret accurately because of 

lacking in intrinsic length scales. Non 

classical continuum theories considering 

the size effect have been presented to 

predict static and dynamic behaviors of 

micro and nano scale. Therefore, many 

theories which are more accurate and 

reliable results of mechanical behavior 

such as nonlocal elasticity [3], couple 

stress theory [4], modified couple stress [5] 

and strain gradient theory [6] have been 

already introduced.  

Modified couple stress and strain gradient 

are two theories which have been 

developed using higher order nonlocal 

theories considering length scale 

parameters. Many researches have been 

carried out to analyze the linear and 

nonlinear behavior of micro and nano 

beams model based on introduced theories. 

Young et al. [5] presented modified couple 

stress theory which involves material 

length scale. Lam et al. represented the 

strain gradient theory including three 

material length scale parameters by 

applying dilatation gradient, deviatoric 

gradient and symmetric rotation gradient 

tensors. 

 Afterwards, the analysis of mechanical 

behavior of micro-beams based on 

modified couple stress and strain gradient 

theories have received considerable 

attention by researchers. Zhao and Park [7] 

analyzed static deflection of Euler-

Bernoulli micro-beam with different 

boundary conditions based on modified 

couple stress theory. Good agreement has 

been achieved between their provided 

results and experimental data. Kong et al. 

[8] calculated the natural frequency of 

Euler-Bernoulli micro-beam based on 

modified couple stress theory. In the 

mentioned research, the moment of inertia 

was neglected and analytical solution was 

employed to find natural frequency 

problem and Alashti et al. [9] represented 

size-dependent behavior of micro-beam by 

employing the couple stress theory to study 

static and free vibration problem. The 

natural frequency results are compared 

with classical beam theory. They results 

showed that predicted deflection by the 

aforementioned method is lower than of 

the classical theory. Dynamical behavior of 

geometrical imperfect micro-beam 

developed by Farokhi et al.  [10] based on 

modified couple stress. They used Galerkin 

method to discretize equation of motion 

and nonlinear frequency behavior was 

evaluated. Buckling analysis of axially 

micro-beam based on modified and strain 

gradient theory were extended by Akgöz 

and Civalek [11]. They investigated critical 

buckling load under different type of 

boundary conditions. Kong et al. [12] 

carried out an analytical approach for static 

and dynamic analysis of micro cantilever 

beam using strain gradient theory. In other 

attempts, static, buckling and free vibration 

analysis of micro-beam utilized by Lingan 

et al. [13]. It can be seen from their results 

that the frequency decreases with 

increasing thickness. Also, influence of the 

thickness and Poisson's ratio on frequency 

are examined. It should be mentioned that 

determining material length scale 

parameter is still a challenging issue and 

there are some ambiguities in this research 

field. Lazopoulos and Lazopoulos [14] 

demonstrated bending and buckling of thin 

elastic beam. By the strain gradient theory, 

they deduced that the dependence of the 

cross-section area increases when the beam 

thickness decreases. This effect is 

attributed to the thin beam stiffness 

increase. 
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As a new field in very small scale 

structures, researchers considered micro 

scale beam integrated with piezoelectric 

layer. Piezoelectric layers are widely used 

in flexible structures as sensors and 

actuators. These materials are used for 

vibration suppression, shape control and 

active damping. The finite element model 

developed by Trindade and Benjeddou [15] 

to evaluate vibrational response of classical 

sandwich beam including dynamic 

piezoelectric actuator and sensor. Stability 

of transvers motion analyzed by Ghaznavi 

et al. [16]  for cantilever micro-beam 

integrated with sensor and actuator 

piezoelectric layers. Sahmani et al. [17] 

elucidated dynamic stability of micro-

beam actuated by piezoelectric voltage 

using strain gradient theory. Moreover, 

they compared critical piezoelectric 

voltages including various values for 

length scale parameter with those predicted 

by the classical theory. Ghorbanpour Arani 

et al. [18] discussed vibration of coupled 

piezoelectric nano-beams enclosing elastic 

medium which is simulated as Pasternak 

foundation. They derived the equations of 

motion using the strain gradient theory and 

Hamilton’s principle. They employed 

DQM to solve the partial equation of 

motion. Most of these studies have 

performed their models without 

considering surface stress effect. Surface 

stress is one of the most important effects 

which ignoring it may cause some unusual 

behavior in micro and nano structures. A 

continuum surface energy theory has been 

introduced by Gurtin and Murdoch [19]. 

Stability of electromechanical bridges 

using Gurtin-Murdoch elasticity theory 

have conducted by Fu and Zhang [20]. 

Mohammadimehr et al. [21] have applied 

Gurtin–Murdoch elasticity theory to 

demonstrate the impact of surface energy 

on free vibration and bending on nonlocal 

single-layer graphene sheet. 

In the present study, a cantilever sandwich 

piezoelectric micro-beam has been 

analyzed based on modified couple stress 

and Gurtin-Murdoch surface elasticity to 

calculate free vibration behaviors. Most 

studies in the field of micro and nano beam 

have focused on higher order elasticity 

theories. Hence, surface elasticity theory 

and modified couple stress are considered 

in the developed model.  The governing 

equations of motion are obtained by the 

Hamilton’s principle and then discretized 

using GDQM. Finally, the effects of small 

length scale, geometric properties and 

surface parameters on the vibrational 

behavior are studied in detail. 

2- Governing equations of motion 

Fig. 1 shows a schematic of micro 

cantilever beam integrated with 

piezoelectric layers. In this model, length 

and width of micro-beam are   and  , 

respectively. Also,    and    denote two 

thickness parameters associated with the 

bulk and piezoelectric thickness, 

respectively. 

 
Fig. 1- Schematic of micro beam with piezoelectric 

layers 

The displacement field of an Euler-

Bernoulli beam is stated as [22]: 

     
  (   )

  
 

       

    (   ) 

(1) 
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where   ,    and    are displacements in 

  ,   and   direction, respectively. The 

strain energy based on modified couple 

stress theory and electrical field is defined 

as [23]: 

  ∫(   

 

 

               )   (2) 

where     and     are Cauchy stress and 

strain tensors which are defined as Eqs. (3) 

and (4), respectively [18]. 

                         (3) 

    
 

 
(         ) 

(4) 

In which   and   are the Lame constants,   

and    are the piezoelectric coefficient and 

kronecker delta. Also    ,     ,    and    

denote the deviatoric part of couple stress 

tensor, symmetric curvature tensor, 

electrical displacement and electrical field, 

respectively which are given as Eqs. (5)-

(8) [18]: 
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        (8) 

where   ,  ,       and    are the 

infinitesimal rotation vector, the dielectric 

permittivity constant, the electric potential, 

shear modulus and length scale parameter 

associated with symmetric rotation 

gradients, respectively. The classical 

model will be achieved with    equal to 

zero. The Rotation vector is considered as 

Eq. (9) [17]: 

   
 

 
    (    ) 

(9) 

The electrical potential distribution in the 

thickness direction of the piezoelectric 

micro layer is assumed as Eq. (10) [18]: 

 ( )(     )

     (  ) (   )  
    
 ( )

 

(10) 

where       ⁄
and    is the external 

electric voltage. According to Gurtin-

Murdoch continuum mechanics theory, the 

strain energy in the surface layer can be 

explained as [24, 25]: 
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           ) 
(11) 

where    is the residual surface stress 

under uncertain condition. Also     is the 

in-plane components of surface stress 

tensor which can be explained as Eqs. (12) 

and (13) [26]. 

     
 (         ) 

 (     )        

   (        ) 

 

(12) 

     
 (    ) (13) 

    and    are surface elastic constants 

which are assumed as follows [23]: 
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(15) 

where    and    are Poisson’s ratio and 

Young’s modulus, respectively. 
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Substituting relations (3)-(15) in Eq. (2), 

after some mathematical elaboration, the 

strain energies of micro beam integrated 

with piezoelectric layers and surface strain 

energies can be expressed as Eqs. (16) and 

(17): 
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(17) 

Kinetic energies of bulk model and 

piezoelectric layers can be found as Eq. 

(18) and (19) [18]: 
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Also   
( )
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( )

,   
( )

and   
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 can be 

obtained as Eqs. (20) and (21), 

respectively: 
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where    and     are density of bulk and 

piezoelectric, respectively. 

  is the total potential energy of model 

which can yield form Eq. (22): 

                   (22) 

where 
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(23) 

         ( )   ( ) (24) 

 

where  ( ) ,  ( ) ,   
( )

 and   
( )

are the 

strain energies of bulk, piezoelectric layer 

and surface strain energies of  bulk and 

piezoelectric, respectively. Substituting 

Eqs. (23) and (24) into Hamilton’s 

principle and variational method given by: 
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 ∫ (               )
  

  

     
(25) 

yields the following partial differential 

governing equations of motion for micro-

beam integrated with piezoelectric layers 

as follows: 
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in which    (      )  and   
  (  

    ) are coefficients of relations, defined 

in Appendix. The boundary conditions of 

micro cantilever beam are obtained from 

Eq. (27): 
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3- Solution and discretization 

In order to discretize the governing 

equations, the generalized differential 

quadrature method (GDQM) was utilized. 

In this method, derivative of a function 

assumed as weighted linear summation of 

function values at intended grid points 

along the coordinate direction. Therefore, 

the partial differential is converted to a set 

of algebraic equations. The partial 

derivatives of a function   at a point    can 

be defined as: 

 ( )(  )

 ∑ ( ) (  )              

 

   

 

(28) 

where    ,                            ( ) 

and ( ) are the number of grid points and 

order of derivation, respectively. First 

derivative of weighting coefficients can be 

achieved as Eq. (29). 

 
(29) 

   
( )

 

{
 
 

 
 ∏ (     )

 

       

∏ (     )  

 

       

⁄

∑
 

(     )

 

       

                   (   )  

     

 

The weighting coefficients of higher order 

derivatives are given by: 
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Considering the grid points are distributed 

by shifted Chebyshev–Gauss–Lobatto grid 

points as follows [27]: 
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 Employing the GDQM, discretized 

governing differential equations can be 

derived as following: 
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 Equation (32) can be rewritten in the 

matrix form as: 

[ ]{ ̈}  [ ]{ }  { } (33) 

in which [ ] and [ ] are the mass and the 

global stiffness matrices, respectively. In 

order to investigate free vibration, the 

formulation of micro-beam can be obtained 

as: 

[ ]{ }    [ ]{ } (34) 

By solving Eq. (34), the natural 

frequencies and vibrational behavior of 

model can be extracted. 

 

4- Results and discussion 

 

In this section, the effect of various 

parameters such as thickness to material 

length scale parameter ratio, surface 

residual stress, Young's modulus of surface 

layer, surface mass density and surface 

piezoelectric constant of integrated 

cantilever micro beam based on modified 

couple stress continuum theory are 

investigated. 

The mechanical and geometrical properties 

of bulk and piezoelectric layers are 

considered as Table.1 [17]. It is assumed 

that the micro-beam consists of silicon 

material properties with PZT-4 



40 

M. khaje khabaz et al./ Journal of Simulation & Analysis of Novel Technologies in Mechanical Engineering 10 (2017) 0033~0048 

piezoelectric integrated to the lower and 

upper surfaces of bulk. 

Table 1- The geometric and material constant of the 

micro-beam and piezoelectric layer. 

Piezoelectric 

layer 
Bulk Parameters 

3 3 Thickness(µm)  

450 450 Length(µm)   

50 50 Width(µm)  

64 210 
Young’s modulus 

(Gpa) 

7500 2331 
Mass 

density(    ⁄ )  

0.27 0.24 Poisson’s ratio 

-10 -    (   ⁄ ) 
1.0275×10

-8 
-     (    ⁄  ) 

17.6 17.6   (  ) 

Fig. 2 shows the GDQ convergence 

diagram and illustrates comparison results 

of classical and couple stress theories for 

different number of grid points on the 

convergence and accuracy of natural 

frequency. It can be concluded that by 

increasing the number of grid points, the 

accuracy of the natural frequency increases 

and the convergence of results happen for 

13 grid points and higher. 

 

Fig. 2- Comparison between the classical and 

modified couple tress theories convergence of 

natural frequency with respect to the number of 

sample grid points 

 

4-1- Validation 

 Several comparisons are applied to verify 

the accuracy and compatibility of the 

present method for analyzing the frequency 

response. Since no published literature is 

available for validating the results directly, 

the frequency results are compared with 

simple micro-beam offered by Kong et al. 

[12] in which piezoelectric layers are 

ignored. The mechanical and geometrical 

properties of the structure are considered 

the same as presented values by Kong et al. 

[8]. Fig. 3 shows the comparison results of 

Kong et al. [8] and present work. In this 

figure, the effect of thickness on natural 

frequencies based on classical and 

modified couple stress has been plotted. It 

is clearly shown that excellent agreement 

is achieved, according to the compare with 

the analytical solution presented by Zhao. 

 

Fig. 3- The comparison between the results of 

present study and [12] for effect of thickness on the 

variation of the first natural frequency 

4-2- Length parameters effects 

Fig. 4 shows the variation of natural 

frequency versus thickness in different 

beam lengths. The thickness of each layer 

including bulk and piezoelectric is 

assumed to be constant in order to 

investigate the natural frequency. Different 

length scales have been compared in this 

figure where the value of natural frequency 

for L=5H is larger than the others. The 

lowest curve introduces L=20H where the 

natural frequency has the minimum value 
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respect the other cases. Then, it can be said 

that in the same values of thickness 

parameters, the natural frequency of local 

system is decreased where the values of 

beam length increases. As illustrated, the 

maximum frequency is achieved aspect 

ratio variation of the micro-beam model 

becomes larger and the thickness value is 

3- 12   .  

 

Fig. 4- Effect of natural frequency on the variation 

of the thickness of micro cantilever beam with 

different length scale parameters. 

Fig. 5 depicts the effect of width to 

thickness ratio variation between CT and 

MCST cantilever sandwich micro-beam 

with piezoelectric layers versus aspect ratio 

on the first natural frequency. It is clearly 

observed that the natural frequency 

increases in MCST. This is due to the fact 

that, the stiffness matrix of MCST contains 

material length scale parameter, which 

increases the natural frequency of MCST 

micro-beam. Moreover, it is clearly seen 

that when the width to thickness ratio 

increases, the value of natural frequency 

decreases. 

 

Fig. 5- Width to thickness ratio variation effect 

between CT and MCST 

The effects of the micro-scale parrameter 

   on natural frequency and size-

dependency are indicated in Figs. 6 and 7. 

Different length scale parameter values of 

    are evaluated in those figures. Fig. 6 is 

the distribution of the first natural 

frequency of the sandwich micro-beam in 

terms of the different size-dependent. 

Increasing the values of    results 

increasing model stiffness and yields upper 

frequencies. 

 

Fig. 6- Effect of natural frequency on the variation 

of the thickness of micro cantilever beam with 

different size-dependent  

Fig. 7 shows the distribution of the first 

natural frequency in terms of length to 

thickness ratio for different values of 
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length scale parameter   .The obtained 

results in this figure indicate that by 

increasing the length scale ratio   , the 

natural frequencies of the model increases 

considerably. It is worth mentioning that 

decreasing length to thickness parameter 

follows this trend upward.  

 

Fig. 7- Distribution of first natural frequencies of 

sandwich micro-beam in terms of length scale 

parameter    

4-3- Surface effects  

The effect of the thickness to length ratio 

of cantilever micro-beam based on MCST 

and CT model are considered on the 

responses of natural frequency in Fig. 8. 

The effects of various surface residual 

stress values have been shown. It is 

observed that the natural frequency 

increases with the growth of the surface 

residual stress. 

 

 

Fig. 8- The natural frequency for micro-beam 

model versus aspect ratio for different values of 

surface residual stress based on CT and MCST. 

Fig. 9 shows the natural frequency of 

cantilever micro-beam integrated with 

piezoelectric layers based on MCST and 

CT versus aspect ratio for different values 

of surface elastic modulus. It is concluded 

that employing surface elastic modulus on 

the natural frequency is considerable. It is 

noted that with the increase of the surface 

elastic modulus terms, the natural 

frequency of the micro-beam will show a 

slow growth. 

 

Fig. 9- The natural frequency for micro-beam 

model versus aspect ratio for different values of 

surface elastic modulus based on CT and MCST 
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The values of the different cases of surface 

effects were defined in Table 2.The 

influence of different cases on variations of 

first the natural frequency for the micro 

cantilever beam model based on MCST is 

shown in Fig. 10. 

 In this simulation, the total thickness of 

the model is assumed to be 3     It is 

obvious that the stiffness of micro beam 

increases at lower thickness to length 

aspect ratios. In other words, it can be 

concluded that the natural frequency 

decreases with the growth of the thickness 

to length aspect ratio. Comparison of the 

results in Fig. 10 indicates that the surface 

density can decrease the natural 

frequencies of model. Also, the effective 

stiffness of the model can be strengthened 

by surface elastic modulus and surface 

residual stress. Hence, the highest natural 

frequency values were related to case 3, 2 

and 1 and the lowest natural frequency 

belongs to case 6 and 7, respectively. The 

result shows that there has been a slight 

influence on the natural frequency with 

surface piezoelectric constant assumption. 

It is concluded that employing surface 

piezoelectric constant on the natural 

frequency is negligible. 

 

Fig. 10- Variations of the first natural frequencies 

of micro cantilever beam model based on MCST 

under different surface effect defined in Table 2. 

 

Table 2 Different cases of surface effect model defined in the work, considering surface elastic modulus, surface 

residual stress, surface density and surface piezoelectric constant [23, 28].

Surface effect parameters 
Case type 

   
  (  ⁄ )   (    )⁄    (  )⁄     (  )⁄  

3×10
-8

- 3.17×10
-7

 10.036 0.605 Case-1 

3×10
-8

- 0 10.036 0.605 Case-2 

0 0 10.036 0.605 Case-3 

0 0 10.036 0 Case-4 

0 0 0 0.605 Case-5 

0 3.17×10
-7

 0 0 Case-6 

0 0 0 0 Case-7 

 

 

Table 3. illustrates the numerical result of 

first natural frequency under different 

surface effect cases for micro cantilever 

beam integrated with piezoelectric layers 

based on MCST which have been defined 

in Table 2. 

 

 

 

 

Table 3. The effect of various surface effect cases 

on first natural frequency of micro cantilever beam 

integrated with piezoelectric layers based on MCST 

for length 42    

  (  ) Case type 

72762427.62 Case-1 

72762437.73 Case-2 

72762438.55 Case-3 

72761544.7 Case-4 

72762410.71 Case-5 

72761301.3 Case-6 

72761516.51 Case-7 
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5 -Conclusion: 

In this work, the free vibration analysis of 

sandwich micro-beam with piezoelectric 

layers including modified couple stress and 

surface stress elasticity was presented. The 

governing equations of motion were 

obtained based on the variational method. 

Then, these equations discretized by the 

GDQ method. Thus, the set of partial 

differential equations were converted to the 

set of ordinary differential equations. The 

results of this study imply to considering 

the independent material length scale 

parameter associated symmetric rotation 

gradients, leads to increase stiffness of 

model and natural frequency. In addition, it 

was revealed that surface stress 

conjunctive with   modified couple stress 

theory predicted natural frequency more 

accurately than classical model. Also, it 

was found that natural frequency with 

considering surface residual stress is 

greater than other surface effect 

frequencies. It is observed that natural 

frequencies increase nonlinearly when the 

material length scale    value increases. 
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