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Abstract 

In the current research work, the problem of fracture mechanics in a plate with a central hole under 

tensile loading is studied. The stress intensity factors are calculated for a finite plate containing two 

symmetrical hole-edge cracks. The problem is solved by two different methods, namely the finite 

element method and the FRANC software analysis. At first the finite element method is used and by 

writing a program in MATLAB software the stress intensity factors at the crack tips are calculated. 

The same problem is then reanalyzed with the Franc software and the results are compared. The 

effects of various factors such as the hole diameter, crack length and crack angle have been 

investigated on stress intensity factors. The results show that for small crack lengths, the effect of 

cracks length is more than that of the hole diameter on variation of normalized stress intensity factors, 

while it is the opposite for   large crack lengths, the effect of hole diameter is more than that of the 

cracks length on variation of normalized stress intensity factors. 
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1- Introduction 

The presence of cracks in a structure can 

lead to its failure at stresses below the 

yield strength. A special situation that is 

often of practical interest is a crack 

growing from a stress raiser, such as a hole 

or notch. Experimental, numerical and 

analytical methods are used to investigate 

fracture mechanics problems. Yan [1] has 

discussed a numerical analysis of cracks 

emanating from an elliptical hole in a plate 

using the boundary element method. 

Cirello et. al. [2] have calculated the stress 

intensity factor (SIF) by numerical 

simulation and experimental measurements 

in perforated plates. Chakherlou et. al. [3] 

have investigated and calculated the effect 

of bolt clamping force on the fracture 

strength and the SIF of a plate containing a 

fastener hole with edge cracks. Zhao [4] 

has calculated the SIF in an infinite plate 

containing multiple hole-edge cracks. 

Torshizian and Molazem [5] by using the 

finite element method (FEM) have studied 

the SIFs in a cracked gear for different 

states of loading cases. Torshizian and 

Kargarnovin [6] have considered the 

mixed-mode fracture mechanics analysis 

of an arbitrarily oriented crack in a two 

dimensional functionally graded material 

using plane elasticity theory. Evans et. al. 

[7] have devised a method for calculating 
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the geometric correction of the SIF and 

calculated four different configurations of 

the SIFs using the innovative formula. 

Torshizian [8] has studied mode III 

fracture in a functionally graded materials 

plate with an internal crack and determined 

the SIFs at crack tips using the  analytical 

method and finite element method. 

Torshizian and Andarzjoo [9] have 

considered the mixed-mode fracture 

mechanics analysis in a plate containing 

two symmetrical hole-edge cracks, which 

is bonded with two dissimilar planes. 

Dowling [10] has proposed an approximate 

equation to determine the stress intensity 

factor for an infinite plate containing two 

symmetrical hole-edge cracks.  

The almost of previous works have 

considered the hole-edge crack in infinite 

plate.  In this study, the SIFs are calculated 

in a finite plate containing two 

symmetrical hole-edge cracks, as shown in 

Figure 1. The effects of various factors 

such as the hole diameter, crack length and 

crack angle on the SIF have been 

investigated and the author offer an 

approximate solution for SIFs at the crack 

tips in a finite plate, containing two 

symmetrical hole-edge cracks. To 

determine the SIF the finite element 

method is used. A program is coded in 

MATLAB to obtain the displacement of 

surrounding nodes of the crack. Based on 

the displacement field stress intensity 

factors at the crack tips are calculated. The 

same problem is investigated by FRANC 

program and the results are compared with 

the previous values. 

 

Fig. 1 The finite plate containing two symmetrical 

hole-edge cracks. 

2- Finite element modeling 

Based on the division of the cracked plate 

to small components with relatively simple 

forms, the FEM is able to model the stress 

field and displacement in the area 

surrounding the crack. Therofore, this 

method is widely used in the context of 

linear fracture mechanics. In this section, 

by employing the weak form formulation 

on equilibrium equations, appropriate finite 

element matrices are obtained. Then by 

using a singular isoparametric eight-node 

element that is able to model discontinuities 

of  the stress field at the crack tip, weak 

form equilibrium equations have become 

equivalent to a system of algebraic 

equations. The solution proposed by this 

system of algebraic equations makes it 

possible to calculate the stress intensity 

factor at the crack tip. In the fracture 

problem, to which only an in-plane external 

mechanical loads are applied and in the 

absence of body forces, the strong form of 

the equilibrium equation can be written as: 

[ ] { } 0 T
ijL  (1) 

Also displacement-strain and stress-strain 

relations are as: 

{ } [ ]{ } , { } [ ]{ }   ij i ij ij ijL u D  (2) 
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where  ij and ij are the stress and strain 

components, respectively and iu s are the 

displacement components. For an isotropic 

material, for plain stress, the displacement, 

strain and stress vector are defined as: 

{ } , { } , { }

 

   

 

   
         

       
      

      

x x
x

y y
y

xy xy

u
u

u

 

(3

) 

And the operator of [ ]L  and elastic matrix 

[ ]ijD are defined as follows: 
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(4

) 

Considering the equivalence of internal 

and external works in conjunction with the 

variational formulation of the boundary 

value problem, one can obtain: 

{ } { } { } { } 0     
T T t

V S
dV u f dS  (5) 

where { }tf  represents function of any 

force applied on crack surfaces. By 

substituting Eq. (3) and (4) into Eq. (5) the 

weak form of the equilibrium equation can 

be written as follows: 

([ ] { }) [ ]([ ]{ }) { } { } 0   
T T t

V S
L u D L u dV u f dS

 

(6

) 

Now, the domain can be discretized using 

eight-node quadrilateral elements. For the 

problem under consideration, the nodal 

displacement vector on each element is 

defined as: 

1 1 8 8{ } {       . . .     } T
e x y x yU u u u u  (7) 

In the finite element analysis, the trial 

function for the displacement field is 

written in terms of the shape function. The 

finite element approximation of the trial 

solution on each element can be expressed 

as follows: 

{ } [ ] { } e eu N U  (8) 

where the elements of  shape functions can 

be written as follows: 

1 2 8

1 2 8

N 0 N 0 ... ... N 0
[ ]

0 N 0 N ... ... 0 N

 
  
 

eN

 

(9

) 

By inserting Eq. (8) into Eq. (6) one can 

obtain: 

([ ] { } ) [ ] ([ ] { } )

([ ] { } ) { } 0













T
e e e e eV

T t
e eS

B U D B U dV

N U f dS
 

(10) 

 

where, the strain-displacement matrix  [ ]eB  

is defined as: 

81 2

81 2

8 81 1 2 2
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(11

) 

 

Equation (10) can be summarized as 

follows: 

[ ] { } { }e e eK U F  (12) 

 

where in this case { }eU  is the displacement 

vector element node, [ ]eK  is the element 

stiffness matrix and { }eF  is the force 

vector element which are defined as 

follows: 

[ ] [ ] [ ] [ ] 
T

e e e eV
K B D B dV  (13) 

{ } [ ] { } 
T t

e eS
F N f dS  (14) 

By superposition of stiffness matrices, 

force vectors and node displacement 

vectors of all the elements, the relationship 

between the total stiffness matrix, total 

external force vector and total 

displacement vector can be written as 

follows: 
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[ ]{ } { }K U F  (15) 

Quadrilateral eight-node elements will be 

used for singular elements, which takes 

care of singularity condition at the crack 

tips.  It is shown that in an eight-node 

isoparametric element if the mid-side node 

along the edge neighboring the crack is 

placed at the quarter distance to the crack 

tip, the singularity characteristic of the 

linear elastic fracture mechanic can be 

obtained. Positions of mid-side nodes 

along the edges in singular elements 

around the crack tip are shown in Fig. 2.  

After determining the total displacement 

vector from Eq. (15) the mode I and mode 

II stress intensity factors can be determined 

by the displacement of nodes near the 

crack tip (Fig. 2), which will be calculated 

as follows [11]: 

2 2
3 4( ) ( )

1

 



      

I

yC yB yD yA yE

K

u u u u u
k L

 

(16) 

 

 
2 2

3 4( ) ( )
1

 
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    


II

xC xB xD xA xE

K

u u u u u
k L

 

(17

) 

 

 

 
 

Fig. 2 Positions of mid-side nodes along the edges 

in singular elements around the crack tip 

3- FRANC software  

The FRANC is a highly interactive 

program for simulation of crack growth in 

layered structures. The program is an 

extension of the FRANC to make possible 

the representation of layered structures 

such as lap joints or bonded repairs. The 

FRANC uses standard eight or six nodded 

serendipity elements with quadratic shape 

functions. These elements perform well for 

elastic analysis and have the advantage that 

the stress singularity at the crack tip can be 

incorporated in the solution by moving the 

side nodes to the quarter-point locations. 

The FRANC can model quasi-static crack 

propagation and crack propagation due to 

fatigue loading. The crack will propagate in 

the direction predicted using any of the 

three propagation theories implemented in 

the FRANC. The FRANC program, 

however, does not have the ability to 

produce the part geometry and networking. 

Piece is modeled by other programs and 

networking event. For this reason a piece of 

software components for network modeling 

is introduced as CASCA. In the CASCA 

program, no analysis has been prepared 

solely for completing the FRANC program. 

The CASCA program is a simple mesh 

generating program. Although strictly 

speaking, it is not part of the FRANC 

program, it is distributed with the FRANC, 

and can be used to generate initial meshes 

for The FRANC simulations. 

 

4- Calculation of stress intensity factor and 

verification 

In this study, a square plate containing two 

symmetrical hole-edge cracks has been 

studied. The side length of the square plate 
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is considered 100 mm with 1 mm 

thickness. It is assumed that uniformly 

distributed tension stress of 1 MPa is 

applied on the typical geometry and 

loading as shown in Fig. 1. For the square 

plate with this size, 720 quadrilateral eight-

node elements are used. As it can be seen 

in Fig. 3, very fine mesh near the crack tips 

is considered. In addition, around each 

crack tip, four singular elements are used. 

 

 

Fig. 3 Mesh with center hole plate in finite 

element method 

 

Thus, Figs. 4 and Fig. 5 show a view of 

meshing the same plate with a central hole 

in the FRANC program and Fig. 6 shows 

the stress field around the crack.  

 

 

Fig. 4 The mesh plate before opening the crack 

 

Fig. 5 The mesh plate after opening the crack 

 

 

Fig. 6 Stress field around the hole and crack 

 

Dowling [10] proposed the following 

approximate equation to determine the 

stress intensity factor for an infinite plate 

containing two symmetrical hole-edge 

cracks:  

30.5(3 ) 1 1.243(1 )      
 IK d d l

 

(18) 

where l and r  are the crack length and 

hole radius respectively, and d is defined 

as / ( ) d l l r .  

Consider a square plate with a hole 

diameter of 6 mm and various crack 

lengths from 1  to 20 mm.  Stress intensity 

factors at crack tips are calculated by FEM 
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and FRANC. The result obtained in the 

present study are shown in Fig. 7 and 

compared with Ref. [10]. 
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Fig. 7 Variations of SIFs at crack tip for various 

crack length with holes diameters 6 mm 

 

In Fig. 7 a very good agreement is 

observed for small crack length. But by 

increasing the crack length the difference 

increases between the results of present 

study and those of Ref. [10]. This is 

because Eq. (18) is defined for an infinite 

plate. Then the results obtained from Eq. 

(18) are committed error for large crack 

that located in a finite plate. Then, it seems 

that Eq. (18) needs a correction factor 

when the plate is finite.  

The author offers an approximate solution 

for the SIFs at the crack tips as:  

2 3

3

1 0.16 3.13 2.11

0.5(3 ) 1 1.243(1 )  

     
 

   
 

IK c c c

d d l

 

(19

) 

 

where c is defined as ( ) / c l r b and b is 

the plate width.  

For example variations of the SIFs at the 

crack tip for a square plate with a hole 

diameter of 6 mm are listed in Table 1.  

 

Table 1 Variations of the SIFs ( MPa mm ) at the 

crack tip for variation of crack length 

Crac

k 

lengt

h (L) 

Present study Referenc

e [10] Franc 

solutio

n 

F.E. 

metho

d 

Propose

d 

Eq.(19) 

mm 

2 4.197 4.061 4.188 4.134 

4 4.992 4.892 4.882 4.726 

6 5.697 5.524 5.618 5.298 

8 6.392 6.151 6.389 5.841 

10 7.101 6.853 7.191 6.347 

12 7.822 7.434 8.027 6.821 

14 8.574 8.265 8.898 7.266 

16 9.358 9.019 9.804 7.687 

18 10.188 9.865 10.743 8.086 

  

5- Numerical example and discussion 

Consider a square plate containing two 

symmetrical hole-edge cracks with a length 

of 100 mm and thickness of 1 mm under 

uniformly tension stress 1 MPa (Fig. 1). 

The effect of different factors such as hole 

diameter, crack length and crack angle on 

the stress intensity factors are investigated 

and shown in the following figures. As 

shown in these figures, the stress intensity 

factors are normalized by dividing 

into  a  where a  is the sum of hole 

radius and crack length (  a l r  ). 

The variation of the normalized SIFs for 

various crack lengths with different values 

of hole diameter are presented in Fig. (8). 

In Fig. 8, it is assumed that the crack 

length varies from 1 to 20 mm for the hole 

diameters of 6 and 10 mm.  
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Fig. 8 Variations of the normalized SIFs at the 

crack tip for various crack lengths with hole 

diameters of 6  and 10 mm 
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Fig. 9 shows the normalized SIFs for 

various crack lengths with different values 

of the hole diameter. It is assumed that the 

crack length varies from 1 to 10 mm for 

hole diameters of 20 and 30 mm. 
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Fig. 9 Variations of the normalized SIFs at the 

crack tip for various crack lengths with hole 

diameters of 20  and 30 mm 

 

These curves show that for the same crack 

lengths the normalized SIFs increase with 

increasing the hole diameter.   

Fig. 10 and 11 show variations of the 

normalized SIFs for various a  for different 

hole diameters where a  is the sum of the 

hole radius and crack length  (  a l r  ). 
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Fig. 10 Variations of the normalized SIFs for 

various a  for hole diameters of 10 and 20mm 
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Fig. 11 Variations of the normalized SIFs for 

various a  and different hole diameters of 20 and 

30mm 

 

Fig. 12 shows variations of the normalized 

SIFs in the mode I and mode II for various 

crack angle with a hole diameter of 10 mm 

and a crack length of 5 mm.  
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Fig. 12 Variations of the normalized SIFs in mode I 

and mode II for various crack angles 

6- Conclusion 

The fracture behavior of a plate with 

central hole under tensile loading has been 

studied. The stress intensity factors are 

calculated in a finite plate containing two 

symmetrical hole-edge cracks. To 

determine the SIF the finite element 

method is used. The same problem is 

investigated by FRANC program and the 

results are compared with the previous 

values. Several different examples are 

solved and effects of hole diameter, crack 

length and crack angle on the SIF have 

been investigated. 

The results show that for different hole 

diameters, the normalized SIF increases 

with increasing the crack length. Also, for 
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the same crack length the normalized SIFs 

increase with the increase of the hole 

diameter.     

For a certain amount of crack length 

(  a l r  ) for small crack lengths the 

effect of cracks length on variation of 

normalized SIFs is more than the hole 

diameter but for large crack lengths the 

effect of hole diameter on variation of 

normalized SIFs is more than the cracks 

length.   

For any arbitrary crack orientation  , 

when the crack length is not perpendicular 

to the direction of an external load, a 

mixed mode condition occurs. In this case 

by increasing   the normalized SIFs for 

the mode I decrease. Also by increasing  , 

the normalized SIFs for the mode II, first 

increase and then decrease and the 

maximum SIFs at crack tips occur at 

45  .  
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