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Abstract 

In this work, thermo – elastic analysis for functionally graded thick – walled cylinder with temperature 

- dependent material properties at steady condition is carried out. The length of cylinder is infinite and 

loading is consist of internal hydrostatic pressure and temperature gradient. All of physical and 

mechanical properties expect the Poisson's ratio are considered as multiplied an exponential function 

of temperature and power function of radius. With these assumptions, the nonlinear differential 

equations for temperature distribution at cylindrical coordinate is obtained. Temperature distribution is 

achieved by solving this equation using classical perturbation method. With considering strain – 

displacement, stress – strain and equilibrium relations and temperature distribution that producted 

pervious, the constitutive differential equation for cylinder is obtained. By employing mechanical 

boundary condition the radial displacement is yield.  With having radial displacement, stresses 

distribution along the thickness are achieved. The results of this work show that by increasing the 

order of temperature perturbation series the convergence at curves is occurred and also dimensionless 

radial stress decrease and other stresses with dimensionless radial displacement increase. 

 

Keywords: Infinite thick – walled cylinder, nonlinear heat transfer, classical perturbation method, 

temperature-dependent properties, functionally graded material. 
  

1- Introduction 

Functionally graded materials (FGMs) are 

microscopically inhomogeneous in which 

the mechanical properties vary smoothly 

and continuously from one surface to the 

other [1-3]. FGMs are regarded as one of 

the most promising candidates for future 

advanced composites in many engineering 

sectors such as the aerospace, aircraft, 

automobile, and defense industries, and 

most recently the electronics and 

biomedical sectors [4-6]. All of these 

industries use piping systems and thick-

walled cylinders. Many studies for thermal 

stresses of functionally graded cylinders 

are available in the literature. 

Jabbaria et al. [7] represented a general 

analysis for one-dimensional steady-state 

thermal stresses in a hollow thick – walled 

FGM cylinder. They considered that the 

material properties, except Poisson’s ratio, 

are assumed to depend on variable the 

radius and they are expressed as power 

function. Their results revealed that the 

magnitude of the radial stress is increased 

as the material parameter (m) is increased. 

Shao and Ma [8] studied thermo-

mechanical analysis of functionally graded 

hollow circular cylinders subjected to 

mechanical loads and linearly increasing 

boundary temperature. They assumed that 

the thermo-mechanical properties of FGM 

to be temperature independent and vary 
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continuously in the radial direction of 

cylinder. They obtained time-dependent 

temperature and unsteady thermo-

mechanical stresses by Laplace transform 

techniques and series solving method. Dai 

and Fu [9] presented exact solutions for 

stresses and perturbations of the magnetic 

field vector in FGM hollow cylinders using 

the infinitesimal theory of 

magnetothermoelasticity. Their results 

illustrated that the inhomogeneity constant 

has a major effect on the 

magnetothermoelastic stresses, a negative 

values yields compressive radial and 

circumferential stresses in the whole FGM 

hollow cylinder, while a positive values 

gives a contrary result. Axisymmetric 

displacements and stresses in functionally-

graded hollow cylinders subjected to 

uniform internal pressure using plane 

elasticity theory and Complementary 

Functions method described by Tutuncu 

and Temel [10]. Shao and Wang [11] 

investigated analytical solutions of the 

three-dimensional temperature and thermo-

elastic stress fields in the FGM cylindrical 

panel with finite length. They considered 

that the thermal and mechanical properties 

of the FGM to be temperature independent. 

Their results showed that the axial stress is 

larger than the radial stress and is smaller 

than the circumferential stress. Tutuncu 

[12] also obtained power series solutions 

for stresses and displacements in FG 

cylindrical vessels subjected to internal 

pressure alone using infinitesimal theory of 

elasticity. It is concluded from his results 

that a negative inhomogeneity constant 

would create a stress amplification effect. 

His study may be useful for specific 

applications to control the stress 

distribution. Mohammad and Mahboobeh 

Azadi [13] carried out nonlinear transient 

heat transfer and thermoelastic stress 

analyses of a thick-walled FGM cylinder 

with temperature - dependent materials 

using the Hermitian transfinite element 

method. The temperature distribution and 

the radial and circumferential stresses are 

investigated versus time, geometrical 

parameters and index of power law in their 

research. Their research represented that 

by increasing of thickness, stresses 

decrease due to decreasing of temperature 

gradient. A novel method for thermoelastic 

analysis of a cylindrical vessel of FGMs 

presented by Peng and Li [14].The thermal 

and thermoelastic parameters assumed to 

arbitrarily vary along the radial direction of 

the hollow cylinder in their work. They 

combined the boundary value problem 

with a thermoelastic problem and then 

converted to a Fredholm integral equation. 

Accordingly, by numerically solving the 

resulting equation, the distribution of the 

thermal stresses and radial displacement 

was obtained. They that appropriate 

gradient can make the distribution of 

thermal stresses more gentle in found the 

whole structure. Exact and approximate 

solutions of thermoelastic stresses in FG 

cylinders with power law and 

exponentially variations of material 

properties derived by Seifi [15]. He 

concluded that effects of high temperature 

on the stresses are more important than the 

high internal pressure. Exact thermoelastic 

analysis of FG anisotropic hollow 

cylinders with arbitrary material gradation 

provided by Vel [16]. He solved the 

differential equations of heat conduction 

and thermoelasticity using a power series 

solution technique. He found that the 

temperature, displacements and stresses are 

sensitive to the material gradation. 

Loghman and Parsa [17] analyzed the 

magneto-thermo-elastic response for a 

thick double-walled cylinder made from a 

FGM interlayer and a homogeneous outer 

layer. They showed that that under thermo-

magneto-mechanical loading minimum 

effective stress distribution and the 

minimum radial displacement can be 

achieved by selecting an appropriate 

material parameter in the FGM layer. 

Ghorbanpour Arani and his research group 

[18] described electro-thermo-mechanical 

behavior of a radially polarized rotating 

functionally graded piezoelectric cylinder. 

They considered that the material 
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properties except Poisson’s ratio and 

thermal conduction coefficient to be 

exponentially distributed along radius. It is 

concluded form their results that the 

inhomogeneity exponent plays a 

substantial role in radial and 

circumferential stress distributions. 

Thermo-electromechanical behavior of FG 

piezoelectric hollow cylinder under non-

axisymmetric loads studied by Atrin et al. 

[19] Arefi and Rahimi [20] investigated the 

effect of nonhomogeneity and end supports 

on the thermo elastic behavior of a 

clamped-clamped FG cylinder under 

mechanical and thermal loads. They 

employed Hamilton principle and first 

order shear deformation theory (FSDT) for 

derivation of the principle differential 

equations. Their results showed that the 

absolute value of axial displacement of the 

cylinder decreases with increasing the non 

homogenous index. Thermal stresses 

analysis of a FG cylindrical shell under 

thermal shock based on differential 

quadrature method achieved by Zhang et 

al. [21] They illustrated that the thermal 

stresses could be alleviated by means of 

changing the volume fractions of the 

constituents. Thermo-elastic analysis of 

clamped-clamped thick FGM cylinders by 

using third-order shear deformation theory 

indicated by Gharooni et al. [22] They 

solved the set of nonhomogenous linear 

differential equations for the cylinder with 

clamped-clamped ends. It is observed from 

their results that using negative 

inhomogeneities in the cylinder causes 

small decreases under thermal load and 

considerable increase under mechanical 

load in radial displacements. Two – 

dimensional thermoelastic analysis of a FG 

cylinder for different functionalities by 

using the higher – order shear deformation 

theory presented by Arefi [23]. His results 

showed that the radial displacement 

decreases with increasing power low index 

due to an increase in the cylinder stiffness 

with increasing power low index. 

Arefi and his research group [24] 

represented two-dimensional thermoelastic 

analysis of FG cylindrical shell resting on 

the Pasternak foundation subjected to 

mechanical and thermal loads based on 

FSDT formulation. They used energy 

method and Euler equations for governing 

differential equations of system. They 

showed that by increasing the 

nonhomogeneity index both, radial and 

axial displacement decreases.  

In all of previous studies that conducted on 

the FGM, a simply modeling for 

mechanical and physical changes 

properties was selected. These models 

were exponentially distributed or 

expressed by power function along the 

radius. In current work, we aimed to 

consider changes all physical and 

mechanical properties (except for Poisson's 

ratio) as a power function versus radius 

and a function of exponentially versus 

temperature. This action lead to nonlinear 

differential equation for heat transfer that 

by solving of it using perturbation 

technique we can use the temperature 

distribution at thermoelastic analysis. 

 

2- Geometry, loading condition and 

assumptions 

An infinitely long, functionally graded 

thick – walled hollow cylinder with inner 

radius a  and outer radius b is considered. 

This cylinder is subjected to an internal 

hydrostatic pressure aP and uniform 

temperature field with inner surface 

temperature aT and outer temperature of 

bT . One – dimensional and steady state 

heat conduction are selected for 

temperature distribution. Center cylindrical 

coordinates is on the center of the cylinder 

and axial symmetry in geometry and 

loading will be considered. Figure 1 shows 

the schematic view of the cylinder and its 

loading. 
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Figure1. Schematic of FG cylinder 

under mechanical and thermal loads 

 

3- Heat conduction problem 

The heat conduction equation with regard 

to the above-mentioned assumptions and 

without any heat source is written in 

cylindrical coordinate as follow: 

1
0

  
 

  

T
kr

r r r
 (1) 

In which ,r k and T are radius, nominal 

heat conductivity coefficient and 

temperature distribution respectively. 

It is assumed that the thermophysical and 

mechanical properties expect the Poisson's 

ratio are considered as product of an 

exponential function of temperature and 

power function of radius. Furthermore, the 

nominal heat conductivity coefficient is 

assumed to depend on temperature as 

follow [25]: 

  0 1, ( ) ( )k r T k r k T (2) 

The exponential function of temperature is 

assumed as follow form: 
6

1 1( ) exp( ( ))  ak T k T T  (3) 

The power function distribution in the 

radial direction considered as [25], [26]: 

0 0( )  mk r k r  (4) 

Accordingly, for nominal heat conductivity 

coefficient can be written as follow: 

  6

2

2 0 1

, exp( ( )) 



m

ak r T k r T T

k k k
 (5) 

Where 2 , ,k m   are the physical constants 

characterizing the material behavior. By 

substituting Eq. (2) in to Eq. (1) we have: 

2

2

( ( , ) ) ( ,T)

( , )
( , ) 0

 

 

d dT dT
rk r T k r

dr dr dr

dk r T dT d T
r rk r T

dr dr dr

 (6) 

In which 
( , )dk r T

dr
 is calculated using the 

product rule as follow: 

6

2

6

2

1 6

2

6 6

2

( ,T)
( ) exp( ( ))

(exp( ( ))

exp( ( ))

exp( ( ))







 



 

 

  



m

a

m

a

m

a

m

a

dk r d
r k T T

dr dr

d
T T k r

dr

mr k T T

dT
k r T T

dr

 (7) 

Substituting Eq. (7) in to Eq. (6) and then 

simplify, the following nonlinear 

differential equation of the second order is 

obtained: 
2 2

6

2

1
0

  
    

   

m dT dT d T

r dr dr dr
  (8) 

 

3- 1- Perturbation technique 

Perturbation technique is one of the most 

efficient approach to solving various 

boundary issues in elastic structures. This 

method as a means of approximate - 

analytically useful is employed to solve a 

large part of the nonlinear problems. 

According to the perturbation method, a 

complex nonlinear differential equation is 

divided to unlimited number of relatively 

simple equations (Perturbation equation). 

Accordingly, the solution of original 

equation is the summation of solving each 

Perturbation equations with the rising 

power of a small perturbation parameter as 

a coefficient is expressed. Therefore, the 

first few terms, represent the view of 

solving the problem. It is important at 

perturbation technique that the small 

perturbation parameter, select the 

appropriate. In using this method it is 

necessary that the small perturbation 
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parameter to be considered smaller than 

one. This method is used in continue. 

By dividing Eq. (8) on m parameter we 

have: 

26 2

2

1
1

1
0

 
   

     
  

 

dT dT d Tm

r dr m dr m dr



 

(9) 

The small ratio of 
6

m


 is to appear in the 

nonlinear differential equation (9) that we 

can now define this ratio equal to small 

parameter . Therefore the Eq. (9) can be 

rewritten as follow: 

2 2

2

1
1

1
0

 
   

     
  

 

dT dT d Tm

r dr dr m dr


 

(10) 

Perturbation theory leads to an expression 

for the desired solution in terms of a 

formal power series in some small 

parameter, known as a perturbation series, 

that quantifies the deviation from the 

exactly solvable problem. The leading term 

in this power series is the solution of the 

exactly solvable problem, while further 

terms describe the deviation in the 

solution, due to the deviation from the 

initial problem. Formally, we have for the 

approximation to the full solutionT , a 

series in the small parameter, like the 

 following [27-30]: 

0 1 2

0 1 2 ....   T T T T    11)) 

In Eq. (11), 0T  would be the known 

solution to the exactly solvable initial 

problem and 1T , 2T ,... represent the higher-

order terms which may be found iteratively 

by some systematic procedure. For small 

  these higher-order terms in the series 

become successively smaller. An 

approximate perturbation solution is 

obtained by truncating the series, usually 

by keeping only the first three terms, the 

second-order perturbation correction can 

be written as [30]: 
0 1 2

0 1 2  T T T T     12)) 

By substituting Eq. (12) into Eq. (10) and 

grouping all terms with the same power of 

  gives: 
2

2

2

0 0 0

2

1 1

2

1

2

0

2 2

2

2

2

1

3 22

1 1 1
(1 )

1 1 1
(1 )

1 1 1
(1 )

( ) 0









  
      

  
   
  


 

    
  

  
   
  


 

    
  

 

d T dT

m dr r m dr

d T dT

m dr r m dr

dT

dr

d T dT

m dr r m dr

dT

dr

dT

dr

 13)) 

With setting zero coefficient of various 

powers of  (the coefficient of 3  will be 

ignored) a set of differential equation can 

be obtained as follow:   
2

2

2

0 0 0

2

2

1 01 1

2

2

2 2 2 1

2

1 1 1
( ) : (1 ) 0

1 1 1
( ) : (1 ) 0

1 1 1
( ) : (1 ) 0

 
   
 

  
      
   

  
      
   

d T dT
O

m dr r m dr

dTd T dT
O

m dr r m dr dr

d T dT dT
O

m dr r m dr dr







  

14)) 

First, the 0( )O  problem is to be solved and 

then it results in higher-order 

approximation is used. The answer of 
0( )O  problem can be achieved as:   

2
0 1( )  

m

c
T r c

r
 15)) 

1c and 2c  are the integration constants 

which can be determined by the following 

thermal boundary conditions: 

0 0( ) ( )   a bT r a T T r b T

 
16)) 

Imposition of these boundary conditions 

onto the Eq. (15) gives the following 

relations for the integration constants 

1c and 2c : 
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  
2

1

,










m m

a b b a

m m

a b

m m

a a b b

m m

a b

T T r r
c

r r

T r T r
c

r r

 17)) 

By substituting Eq. (13) into the 1( )O  at 

Eq. (12), the differential equation for 
1( )O   problem will be obtained as follow: 

2 2

1 1 2

2 1

1 1 1
1 0



  
      

   
m

d T dT mc

m dr r m dr r

 

18)) 

This is an inhomogeneous Cauchy–Euler 

ordinary differential equation whose 

general and particular solutions can be 

found as: 
2

3 2
1 4 2
( )

2
  

m m

c mc
T r c

r r
 19)) 

The integration constants 3c and 4c  can be 

achieved by applying thermal boundary 

conditions (16) to the solution (19) as: 
2 2 2

2
3

2 2

2
4

2 2

2

( ) 2( )

2( )

( 2 )

2( )

( 2 )

2( )

 

 

 

 

 

 

  




 




  




m m

a b a b

m m

a b

m m

b b a

m m

a b

m m

b a a

m m

a b

mc r r T T
c

r r

mc r T r
c

r r

r mc r T

r r

 20)) 

As before, we substituting Eq. (19) into the 
2( )O  at Eq. (12) and the 2( )O   

differential equation will be represented as 

follow: 
2

2 2

2

3 2

3 2

1 1

1

( ) 0
 




 
  

m m

d T dTm

dr r dr

mc m c
m

r r

 21)) 

Eq. (21) is again an inhomogeneous 

Cauchy-Euler differential equation whose 

general solution is presented as the sum of 

the homogeneous solution and a particular 

solution as follow: 

3 4 45
2 6 2

2 2 3 2 2

2 3 3

1
( )

12

1 1

3 2



 

   

 

m

m

m m

c
T r c m c r

r

m c c r mc r

 22)) 

Application of boundary conditions (16) to 

the general solution (22) yields the 

integration constants 5c and 6c as follow: 

3 4 4 4

2
5

2 2 3 3

2 3

2 2 2

3

3 4 4 2 2 3

2 2 3
6

2 2 3 4

3 2

3

( )

12( )

4 ( )

12( )

6 ( ) 12( )

12( )

( 4 )

12( )

(6 12 )

12( )

 

 

 

 

 

 

  

 

 

 











   















m m

b a

m m

b a

m m

a b

m m

b a

m m

b a b a

m m

b a

m m m

a b b

m m

a b

m m

b b a

m m

a b

m c r r
c

r r

m c c r r

r r

mc r r T T

r r

m c r r m c c r
c

r r

mc r T m c r

r r

m 4 4 2 2 3

2 2 3

2 2

3

( 4 )

12( )

(6 12 )

12( )

  

 



 










m m m

b b b

m m

a b

m

b b

m m

a b

c r r m c c r

r r

mc r T

r r

 

23)) 

Therefore, the temperature distributions at 

different orders of approximation can be 

obtained as follow: 

0 12
0 1

0 1 32
1 1 4

2

2

2

2

0 2
2 1

2
1 3 2

4 2

2 3 4 45
6 2

2 2 3 2 2

2 3 3

3

( ) ( ) ( )

( ) ( ) (

)
2

( )

( ) ( )

( )
2

1
(

12

1 1
)

3 2

( )

 

 













 

  

   





 

   

  

 



m

m m

m

m

m m

m

m

m m

c
T r c O

r

cc
T r c c

r r

mc

r

O

c
T r c

r

c mc
c

r r

c
c m c r

r

m c c r mc r

O

 24)) 

 

4- Thermoelastic analysis 

4- 1- Stress – strain relations 

The stress – strain relations at cylindrical 

coordinates system at general form can be 

written as follow [31]: 



55 

H.Mohammadi et al./ Journal of Simulation & Analysis of Novel Technologies in Mechanical Engineering 10 (2017) 0049~0064 

 

1
( ( )) (r)

1
( ( )) (r)

1
( ( )) (r)

1 1 1
, ,

2 2 2

   

   

   

  

r r z r

r z

z z z

r r rz rz z z

T
E

T
E

T
E

G G G



  

 

   

     

     

     

     

 

25)) 

In which ,r  and z denotes radial, 

circumferential and axial directions, 

respectively. i and i ( , , )i r z are the 

stress and strain,  and E are the Poisson's 

ratio and modulus elasticity, respectively. 

G is the young modulus and 

( , , )i i r z  is the coefficient of thermal 

expansion that considered to be same at all 

coordinates. According to the assumptions, 

all shear strains and circumferential 

derivatives are zero and for plane strain 

conditions the axial stress is considered as 

follow:  

  (r)  z r zE T        26)) 

With substituting Eq. (26) into Eq. (25) 

and simplify, the stress – strain relations 

for functionally graded thick – walled 

cylinder at one – dimensional heat 

conduction are found as follow: 

1 2 3

2 1 3

( )

( )
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The coefficients in Eq. (26) are in the 

power and exponential functions form and 

are defined as below: 
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28)) 

 

 

4- 2- Strain – displacement relations 

The stress – displacement relations at 

cylindrical coordinates system at general 

form can be obtained as follow [32]: 

1
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1
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29)) 

Where ( , , )iu i r z is the displacement 

vector. These relations with considering 

assumptions rewritten as below: 

,


 


r r
r

u u

r r
     30)) 

4- 3- Stress – displacement relations 

Substituting Eq. (30) into Eq. (27), the 

stress – displacement relations yields as 

follow: 
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2 1 3
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31)) 

4- 4- Equilibrium relations 

The equilibrium equations of the hollow 

cylinder at general form are as follow [31] 

, [32]: 
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   32)) 
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Where ( , , )iF i r z are the body forces 

and  is the material density. The 

equilibrium equation of the FGM hollow 

cylinder, with considering previous 

assumptions and steady conditions in the 

absence of body forces, is expressed as: 

0


 


rr

r r

 
   33)) 

 

4- 5- Thermoelatic constitutive equation 

By substituting the resulting temperature 

distribution form Eq. (24) into Eq. (31) and 

then into Eq. (33) the thermoelastic 

constitutive equation for FG thick – walled 

hollow cylinder with temperature – 

dependent material property is derived as 

follow:  
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34)) 

This equation is the familiar Cauchy-Euler 

differential equation for radial 

displacement that characteristic equation 

for it is as follow: 
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2
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The roots of the characteristic equation are: 
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36)) 

So, the general solution of the 

inhomogeneous equation (34) can be 

expressed as sum of particular solution and 

the general solution of the homogeneous 

one as below: 
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 In which: 
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38)) 

1C and 2C  are the integration constants 

which will be found as follow.  

4- 5-  Integration constants 

By substituting radial displacement Eq. 

(37) into Eq. (31) the radial stress can be 

rewritten as:  
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39)) 

The thermoelastic problem is subjected to 

the following mechanical boundary 

conditions. The cylinder is loaded with 

internal hydrostatic pressure:  

( ) ( ) 0    aP r a P P r b    40)) 

Application of these boundary conditions 

to the radial stress (39) yields the following 

relations for the integration constants: 
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41)) 

With finding unknown constants the all 

stresses and radial displacement can be 

calculated. Also the Von Mises stress can 

be obtained as follow: 
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5-  Numerical results and discussion 

In the following numerical calculations, 

the mechanical and geometric properties 

for FGM cylinder are considered as [33-

35]: 
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43)) 

 

It should be noted that temperature values 

at inner and outer surfaces and other 

parameter is described after than any 

figure. For better analysis of results the 

dimensionless parameter are presented as 

follows: 
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A distributed temperature field due to 

steady-state heat conduction for thick- 

walled FGM cylinder versus dimensionless 

radius with different orders of 

approximation illustrated in figure 2. It is 

shown from this figure that by increasing 

the orders of approximation from zeroth-

order (i.e., linear problem) until the 

second- order solution the convergence of 

perturbation series is occurs. Also, it is 

observed easily that the thermal boundary 

conditions have been satisfied.  

Figures 3 and 4 indicate the influence of 

physical constants characterizing the 

material behavior ( ,m  ) on the 

temperature distribution (second – order). 

It is clear from figures 3 and 4 that by 

increasing the value of m and   the 

temperature distribution increases along 

the thickness of FGM cylinder.  

Figure 5 represents the dimensionless 

radial stress distribution versus 

dimensionless radius with different orders 

of approximation. It is concluded that 

dimensionless radial stresses decreases 

with increasing orders of approximation. 

For this figure also convergence of 

perturbation series is obtained. 

Furthermore, it is compressive at the inner 

part of the cylinder which has to satisfy the 

internal pressure boundary condition. 

Dimensionless circumferential and axial 

stresses along the thickness of cylinder 

with increasing the orders of 

approximation are demonstrated by 

Figures 6 and 7, respectively. It can be 

concluded from these figures that by 
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increasing dimensionless radius the 

dimensionless circumferential and axial 

stresses increases. It can be seen that 

maximum and minimum stresses happens 

at inner and outer surfaces, respectively.  

Figures 8 and 9 depicts the effects of 

increasing the orders of approximation on 

the dimensionless effective stresses and 

distribution of dimensionless radial 

displacement along the thickness of 

cylinder, respectively. It is shown that by 

increasing orders of approximation the 

dimensionless effective stress and 

dimensionless radial displacement 

increases. Also it is observed that 

maximum effective stress and radial 

displacement are at inner surface and it 

means that maximum damage occurs at in 

this surface.  

The influence the influence of physical 

constants characterizing the material 

behavior ( ,m   ) on the dimensionless 

effective stress are represented in figures 

10 and 11. It is concluded from figure 10 

that for constant value of  , by increasing 

the value of m  the values of dimensionless 

effective stress at the inner layer to the 

middle layer of the cylinder has been 

reduced and the dimensionless effective 

stress values of the outer layer is added. 

Figure 11 show that by increasing the 

value of  , at constant value of m , the 

dimensionless effective stress decreases. 
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Figure2. Temperature distribution stress along the 

thickness of FGM cylinder with different orders of 

approximation 0( ) , 1000( ) , 4, 0.09a bT C T C m      
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Figure3. Temperature distribution stress along the 

thickness of FGM cylinder with different value of 

m 0( ) , 1000( ) , 0.09a bT C T C    
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Figure4. Temperature distribution stress along the thickness 

of FGM cylinder with different value of 

 0( ) , 1000( ) , 1a bT C T C m    
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Figure5. Dimensionless radial stress along the 

thickness of FGM cylinder with different orders of 

approximation  50( ) , 150( ) , 2, 0.2a bT C T C m     
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Figure6. Dimensionless circumferential 

stress along the thickness of FGM cylinder 

with different orders of 

approximation  50( ) , 150( ) , 2, 0.2a bT C T C m     
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Figure7. Dimensionless axial stress along the thickness of FGM 

cylinder with different orders of approximation  

50( ) , 150( ) , 2, 0.2a bT C T C m   
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Figure8. Dimensionless effective stress along the thickness 

of FGM cylinder with different orders of approximation  

50( ) , 150( ) , 2, 0.2a bT C T C m     
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Figure9. Dimensionless radial stress along the thickness 

of FGM cylinder with different orders of approximation  

50( ) , 150( ) , 2, 0.2a bT C T C m     
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Figure10. Dimensionless effective stress along the 

thickness of FGM cylinder with different value of m   

50( ) , 150( ) , 0.01a bT C T C  
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Figure10. Dimensionless effective stress along the 

thickness of FGM cylinder with different value of    

50( ) , 150( ) , 1a bT C T C m  
 

5- Conclusion 

In this paper thermoelastic analysis of 

functionally graded thick –walled cylinder 
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with temperature dependent material 

property is investigated. This article 

represented a suitable approach for 

analysis material that their thermophysical 

and mechanical properties expect the 

Poisson's ratio are considered as product of 

an exponential function of temperature and 

power function of radius. For this purpose, 

perturbation technique is used to solving 

nonlinear differential equation for 

temperature distribution. This temperature 

distribution is employed at giving behavior 

of thermal stresses. The results of this 

article can be listed as follows: 

1- By increasing the orders of 

approximation from zeroth-order 

(i.e., linear problem) until the 

second- order solution the 

convergence of perturbation series 

at all figures is occurs. 

2- By increasing the value of m and 

  the temperature distribution 

increases along the thickness of 

FGM cylinder. 

3- The dimensionless radial stresses 

decreases and dimensionless 

circumferential, axial and effective 

stresses and radial displacement 

increases with increasing orders of 

temperature approximation. 

4- Maximum effective stress and 

radial displacement are located at 

inner surface. It means that 

maximum damage occurs at in this 

surface. The obtained results from 

this result can be used to design of 

cylindrical structures. 

5- By increasing the value of m  the 

dimensionless effective stress at the 

inner layer to the middle layer of 

the cylinder has been reduced and 

the dimensionless effective stress at 

the outer layer increases. Also by 

increasing the value of  the 

dimensionless effective stress 

decreases. 
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