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 ABSTRACT 

 Semi-solid materials undergo strain localization and shear band 

formation as a result of granular nature of semi-solid deformation. In the 

present study, to analyze the shear localization, a unified viscoplastic 

constitutive model was developed for the homogeneous flow. Then, a 

linearized analysis of the stability performed by examining the necessary 

condition for the perturbation growth. For this purpose, a shear layer 

model was considered to analyze the perturbation growth and subsequent 

instability. The perturbation analysis revealed that the failure mode in 

semi-solid materials is diffused with long wave length regime, rather 

than to be localized and exhibiting short wave length regime. Moreover, 

decreasing the solid skeleton has a retarding effect on the perturbation 

growth and localization at low and modest strain rates. The performed 

analysis showed that the localization analysis results in a new 

interpretation for the micro-mechanisms of the semi-solid deformation. 

The constitutive model was fairly well correlated with the experimental 

results.                                ©2018 IAU, Arak Branch. All rights reserved. 

 Keywords : Viscoplastic model; Shear band; Perturbation growth; 

Dilatancy; Semi-Solid. 

1    INTRODUCTION 

 ORMING in semi-solid state is a promising method, drawn great attention due to its ability to combine the 

advantages of both conventional casting and forging in order to produce near net shaped components via 

applying very low forces [1-5]. The impingement of grains occurs above a critical solid fraction, named the dendritic 

coherency solid fraction ( )coh

sf , leading to a long range interconnectivity in the force chain network. coh

sf  that 

depends on the solid fraction as well as the shape of envelops at coherency.  For equiaxed dendritic microstructure, 
coh

sf  is about 0.15 while for granular ones is about 0.5 [6]. The investigations of Gourlay et al. [7] have 

demonstrated that the semi-solid materials at high solid fractions, coh

s sf f , with a granular microstructure, deform 

as a geomaterial, e.g. rock and soil, associated with Reynolds dilatancy. The dilatancy is the main feature of granular 

materials, defined as the volumetric variation during shearing, leading the grains to move relative to each other. 

Based on the investigation performed by synchrotron radiography, Fonseca et al. [8] have also revealed that the 

deformation of a semi-solid alloy with globular morphology at high solid fraction occurs by the granular 

mechanism. The comprehensive interpretation of the granular features of semi-solid deformation is given by Kareh 
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et al. [9]. Gourlay and Dahle [6] have revealed that at the solid fraction which is shortly beyond the dendrite 

coherency, the semi-solid deforms via crystal rearrangement and Reynolds dilatancy, which is an increase in volume 

due to the shear stresses, causes the deformation to localize into shear bands. In another study, Meylan et al. [10] 

have shown that dilatant shear bands initiate beyond the peak stress, and the band thickness increases from ~10 to 

~16 times of the mean grains thickness during the strain softening stage. On the other hand, the rate-dependency of 

the semi-solid materials is a critical factor to analyze the instability [11,12]. In the context of rate-independent 

materials, localization can be assumed as a bifurcation, loss of ellipticity, in the velocity equations of continuing 

equilibrium [13]. It is commonly studied by a band analysis [13,14]. An alternative approach for analyzing the flow 

localization of rate-dependent materials was developed by considering an infinitesimal perturbation in a given 

system and examining the necessary condition for the inhomogeneity growth [15-17].  

It is widely accepted that formability can be restricted by the flow localization [18,19]. In a recent study [20], a 

criterion was developed in order to indicate the flow localization in semi-solid deformation, based on the 

thermodynamics of large deformation. Objective of the present work is to determine the necessary condition of shear 

localization in the semi-solid deformation by applying a linear perturbation analysis on a developed viscoplastic 

constitutive model.    

2    CONSTITUTIVE MODEL  

The impingement of grains forms a solid skeleton, whose fraction is designated by  . At coh

s s
f f ,   becomes 

zero and when 1
s

f  ,   is unity. For the localization analysis, the condition of perturbation growth in a 

homogeneous deformation should be considered. In the homogeneous part of the flow curve, the value of   

remains constant before reaching the peak stress. The solid skeleton breaks beyond the peak stress. The instability 

indicates with the local decrease of   value, leading the solid skeleton to be divided into several blocks. In this 

case,   tends to zero in such localization bands.  

By analogy with the formulation used for liquid systems, we have: 

 

2 ,
vp

   (1) 

 

                                                                                                                           

where   is the effective stress, 
3

:
2

s s  , where s is the deviatoric part of the stress tensor,   is the viscosity 

and vp  is the equivalent viscoplastic strain rate, 
2

:
3

vp vpD D , where vpD  is the viscoplastic part of the rate of 

deformation, which is the symmetric part of the velocity gradient: 

 

1
( ).

2

ji

ij

j i

D
x x

 
 

 
 

 

(2) 

 

The viscosity of a solid material is commonly expressed via the following form: 
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where L  is the consistency, and 0  is the reference strain rate. Development of Eq. (3) to take   into account 

results in: 
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where ( )K   is the consistency parameter, defined as a function of  . Eq. (4) represents the common solid 

deformation when   is unity, (1)K , and when  strain-rate sensitivity is also considered, where m  defined as in the 

hot deformation. As the viscous flows of liquids is concerned, (0)K  represents the liquid viscosity, 
liquid

 , and m  

becomes unity. Therefore, linear interpolation equations can be considered to describe the evolution of ( )K   and m  

as: 

 

( ) (1 ) ,
solid liquid

K K K      (5a) 

 

( ) 1 ( 1),
solid

m m     (5b) 

 

where 
solid

K  and 
liquid

K  are the consistency parameters for alloy at solid and liquid states, respectively. Due to the 

presence of the skeleton, the semi-solid material experiences an intense hardening till the stress reaches to a peak 

value. For modelling purpose, it can be considered as the developed work hardening. Therefore, the inelastic strain 

can be considered as an internal parameter. By considering Eq. (4), Eq. (1) can be written as: 
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(6) 

 

where n is the hardening exponent. Furthermore, it can be assumed that variations of stress with strain become linear 

and the slop of the line decreases by decreasing . This can be attributed to the fact that in such a elasto-viscoplastic 

deformation, decreasing   leads to decrease the role of the viscoplastic deformation of solid bonds, results in a 

linear behavior at the initial rising part of the stress-strain curve, 1n  . Considering model development, the 

variation of n in terms of   is assumed to obtain by the following relation: 

 

( ) 1 ( 1).
solid

n n     (7) 

 

Note that the value of solidn  is very low at such high temperatures. The relative movement of grains and 

agglomerates needs to overcome the internal friction. Considering the internal friction, Eq. (6) becomes: 
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(8) 

 

where   is the internal friction coefficient, 
Lp  and 

h  are the liquid pore pressure and the hydrostatic part of 

stress, both of them are developed in the skeleton, and 
h L

p   represents the effective hydrostatic pressure [21]. On 

the other hand, the normal strain rate is developed as a result of dilatancy, expressed as follows: 

 

,
vp vp

   (9) 

 

where   is the value of the dilatancy and vp  is the shear strain rate.  

3    PERTURBATION ANALYSIS  

For simplicity’s case, an infinite layer with a normal in the y direction, sheared in the plane strain condition, is 

considered (Fig. 1).  
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Fig.1 

An infinite layer sheared under plain strain condition, in 

presence of the compressive stress. 

 

The homogeneity of the layer is satisfied in the x and z direction, while a small perturbation exists in the y 

direction. The perturbation of both shear and normal stresses must be zero in the y  direction, i.e. 0
h

   , to 

satisfy the equilibrium condition. The dilatancy induces a pressure gradient, plays as a driving force for diffusion of 

the liquid phase. Considering the loading type, the following relation between
h

 , or 
L

p  in undrained condition and 

 was considered: 

 

,
h L

p N    (10) 

 

where N is a loading parameter denotes the type of loading. For example, in the pure shearing and simple 

compression test N is zero and 0.5, respectively. Moreover, a relation between   and   was considered as: 

 

,
s

   (11) 

 

where 
s  represents the shear stress when 1  . Therefore, Eq. (10) is rewritten as: 

 

.
h L s

p N    (12) 

 

The constitutive equation is denoted by Eq. (8), and the assumed perturbation in the linearized form is written as: 
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Considering Eqs. (5b) and (7), Eq. (18) reduces to: 
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where (1 ) ln (1 ) ln
vp vp

s s
R m n     . Inserting Eqs. (5a) and (17) into Eq. (14), and replacing 

vp
  with the 

differentiated form, 
vp

d

dt


, gives: 
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where [ ( ) ( ) ( )]
s solid susp

N K K K R K          . Neglecting the initial perturbation in 
vp

 , (0) , the solution for 

the above differential equation is given by: 

 

0

( )
( ) .

( )( )

n
m

n
m

d

mK

 
  

  




  

 

(16) 



      An Enhanced Viscoplastic Constitutive Model for Semi-Solid ….                         898 

 

© 2018 IAU, Arak Branch 

On the other hand, Darcy’s law dictates that the fluid content crossing at a unit area in the time unit, M, is a 

function of the fluid pressure gradient: 

 
,M p    (17) 

 

where   is the permeability. Considering conservation of mass law, we have 

 

0.divM    (18) 

 

Inserting Eq. (17) into Eq. (18) and using Eq. (12), gives: 
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Moreover, based on the dilatancy relation, Eq. (9), we have: 
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Eqs. (19) and (20) result in: 
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Eq. (21) indicates an ordinary diffusion equation. The perturbation growth needs a negative value for the term in 

the parenthesis. To examine this condition, both m and   should be evaluated. Considering
s L

K K , and using Eq. 

(13) the latter term is reduced to 
2

[ 1 ]
s

K N R    . For a constant positive m, perturbation growth requires 

2
( )

[ ] 0
y

N R
 

 



   . The first and the second terms are positive and negative, respectively. vp  is very small 

at the hardening part of flow curves. Therefore, ln vp  has a negative value. Moreover, at 
vp

e  , where e  is a base 

number approximately equal to 2.718, ln 0
vp
  . Therefore, R has a negative value at low and modest strain rates. 

Moreover, the maximum value of N is 0.5, for the compression test. Considering the von-Misses criterion, the 

maximum value of   is also 0.577, for the cohesive friction. Therefore, the maximum value of N  is 0.29. It 

reveals that the expression of 
21N R    is strongly negative at low and modest strain rates. It shows that the 

condition of perturbation growth is satisfied as soon as the deformation is initiated. This result contradicts the fact 

that the instability occurs beyond the peak stress. Therefore, it can be concluded that the granular deformation, 

which is associated with localization, necessitates the breakdown of agglomerates bonds.  

By neglecting 
LK , the evolution of ( )  , time derivative of Eq. (16), is given by: 
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(22) 

 

The perturbation of   is expressed by the following Fourier equation:  

 
exp( ),i y t       (23) 
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where   is the wave number in the y direction, normal to the localized band and   denotes the rate of the 

perturbation growth. Negative sign refers to the fact that the perturbation of   is decreased. Replacing Eq. (23) into 

Eq. (22) gives: 

 

2

0

1 [1 ]( )
{ }exp( ).
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n
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d R N
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(24) 

 

Eq. (24) shows the retarding effect of m. The term 2R  represents the role of 
sm  and 

sn , which characterized 

the type of alloy and  . Considering the previous discussion on sign of R, it can be deducted that increasing   

results in increasing the tendency of localization at low and modest strain rates. The reverse trend may be expected 

at very high strain rates. Moreover, according to Eq. (5b) increasing   results in decreasing m  which promotes the 

localization. Moreover, inserting Eq. (23) into Eq. (21) gives: 
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(25) 

 

The term in the parenthesis is negative, therefore ( )   acts as a high pass filter, leading smaller   to be filtered 

out relative to higher wave numbers. Consequently, the failure mode is localized rather than diffused. 

4    VALIDATION OF THE MODEL  

The compression test data of an A356 aluminum alloy form the work of Nguyen et al. [22] and the results of the 

pure shear test data of a Pb-Sn alloy from the work of Martin et al. [23] were used for validating of the model.  

4.1 Validating by A356 aluminum alloy 

Compression tests of an A356 aluminum alloy was performed by Nguyen et al. [20] at 584°C , 0.6  , with the 

strain rates of 0.002, 0.008 and 0.032/s.  To validate the proposed constitutive equation, the initial stage of the 

deformation, homogeneous deformation, is considered. The necessary material parameters are listed in Table 1.  
 

Table 1 

Parameters associated with A356 alloy to verify the model. 

solid
m  

solid
n  

solid
K  liquid

K  

0.16 0.005 60MPa 2

2 10 .pa s


  

 

The low value of n is related to the fact that the strain hardening of alloy at such temperatures is almost 

negligible. The model predictions and the experimental results are shown in Fig. 2. It is clear that the flow curves 

predicted by the model are in a good agreement with the experimental data.  

 

 

 

 

 

Fig.2 

Stress-strain curves of the experimental results and predicted 

results for A356 alloy. 
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4.2 Validating by Pb-Sn alloy 

Martin et al. [21] performed a simple shearing test on a Pb-Sn alloy by rheometer at three solid fractions of 0.62, 0.7 

and 0.8, correspond to   values of 0.3, 0.42 and 0.57, respectively, with the strain rates of 0.5/s. The necessary Pb-

Sn alloy parameters for validating are listed in Table 2. 
 

Table 2 

Parameters associated with Pb-Sn alloy to verify the model. 

solid
m  

solid
n  

solid
K  liquid

K  

0.2 0.005 6MPa 2

2 10 .pa s


  

 

The model predictions and the experimental results are shown in Fig. 3.  

 

 

 

 

 

 

Fig.3 

Stress-strain curves of the experimental results and predicted 

results for Pb-Sn alloy. 

 

It can be observed that the predicted curves have a same trend with the experimental data, which illustrates the 

capability of the model to reproduce the experimental data at different values of  . Moreover, the curves pertain to 

the initial stage become linear with decreasing  .  

5    CONCLUSIONS 

In this study, the localization in the semi-solid deformation was investigated by the linear perturbation analysis on a 

developed viscoplastic constitutive model. The main features of the analysis are summarized as follows. 

- The perturbation grows with high values of wave numbers results in a diffused failure mode instead of a 

localized mode. 

- The perturbation analysis reveals that the localization occurs as soon as the granular deformation initiates. 

It necessitates the breakdown of the bonds between agglomerates.    

- Decreasing the solid skeleton has a retarding effect on the perturbation growth and localization. It is 

attributed to the decrease in the amount of dilatancy between agglomerates.  
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