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 ABSTRACT 

 The occurrence of SH wave propagation under the effect of a point 

source in an orthotropic substratum lying over a heterogeneous 

orthotropic half space is deliberated in the prospect of a devastating 

earthquake. The quadratic alteration is acknowledged for density and 

shear modulus which is hypothesized to be a function of depth. The 

method of Green's function and transformation technique contributes 

to obtain the dispersion equation and dispersion curves. An effort has 

been accomplished to demonstrate the classical equation of Love 

wave followed from dispersion equation.  “Mathematica” software is 

applied to depict the graphics. Graphics are designed to show the 

effect of heterogeneous parameters corresponding to density and 

shear modulus. Dispersion equation is obtained considering the case 

that the displacement and stress are continuous at the interface. The 

present work is an attempt to express the behavior of SH wave in an 

orthotropic medium under the effect of point source.  
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1    INTRODUCTION 

 ROPAGATION of SH wave in an orthotropic media is a proposition of substantial significance from the 

view point of acoustics, seismology and geophysics. In the field of seismology, one necessitates a complete 

understanding of wave propagation effects on the surface structure due to underground excavation as well as surface 

mining. The concepts of point source are widely applied in the source of light, electromagnetic radiation, sound, 

heat, fluid etc. The analysis of generating SH wave in an orthotropic layer is recognized because of an elementary 

characteristic of internal structure of the earth. A horizontal plane of symmetric orthotropy is some special type of 

anisotropic materials. Orthotropic symmetry is exhibited by olivine and orthorhombic, the principal rock forming 

minerals at the deep crust and upper mantle. Anisotropy is often orthotropic or transversely isotropic from the stand 

point of practical importance in engineering. The propagation of SH wave makes an extensive application in 

earthquake engineering and seismology on account of the occurrence of heterogeneities- in the crust as the earth is 

conjectured to be made up of dissimilar stratum. In observance of the non homogeneity phenomenon of an 

orthotropic medium, a numerous efforts have been initiated to comprehend the seismic wave propagation in 
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different types of layered media. A classification is designed for body forces which is configured by impulsive force 

in respect of space and time in a particular orientation which may be symbolized through implementing the 

technique of Dirac Delta function. A lot of information about the seismology is available in a monograph by Ewing 

et al.[9]. The influence of point source and heterogeneities on the magnetoelastic shear wave propagation in a 

monoclinic medium is deliberated by Chattopadhyay et al.[3]. The propagation of Love wave in a heterogeneous 

medium over a heterogeneous half space under the effect of point source is deliberated by Kundu et al.[12]. 

Vlaar[16] represented the propagation of SH wave in a continuously layered heterogeneous half space because of 

the effect of point source. The propagation of SH wave in a viscoelastic layer lying over a viscoelastic half space 

under the effect of point source is discussed by Chattopadhyay et al.[4]. Kakar et al.[11] relinquished an 

apprehensive cogitation on the dispersion of Love wave in an isotropic layer reubened between orthotropic and 

heterogeneous prestressed half space. Kundu et al.[13] discussed the dispersion of  SH wave in an isotropic medium 

sandwiched between an initially stressed orthotropic and heterogeneous semi infinite media. The technique of 

Green's function for SH wave in a cylindrically monoclinic material is applied by Watanabe and Payton[19].  

The problems concerning the propagation of SH wave in an orthotropic media are not only advantageous in 

investigating the internal structure of the earth but also very helpful in exploration of natural possessions like oil, 

gases and other hydrocarbon and minerals etc. Being the highly anisotropic nature of the earth, elastic moduli, 

density, thermal conductivities are not homogeneous throughout the medium. Such characteristics motivate us to 

study the propagation of SH wave in an orthotropic medium. Colquitt et al.[6] studied the canonical form problem 

by extracting the dispersion relations analytically. An imprecise computation of Green's function for assembling 

bodies is made by Covert[5]. In the mean time, Deresiewich [8] developed an important inscription on Love wave in 

a homogeneous crust lying over a heterogeneous medium. Sevostianov and Kachanov[15] enlightened a theory on 

approximate symmetries of the elastic properties and elliptic orthotropy. Vaishnav et al.[17] analyzed the torsional 

surface wave propagation in an anisotropic layer sandwiched between two heterogenous half spaces.  

Since the earth's crust and mantle are not homogeneous therefore, it is also interesting to know the propagation 

pattern of shear waves due to point source in a heterogeneous media. The motivation behind choosing quadratic 

depth is that heterogeneity exists in the earth's crust. It is verified from literature[3,4] that such type of heterogeneity 

may exist. The heterogeneity is taken in respect of shear modulus and density. Bullen[2] studied that the density 

inside the earth varies at different layers within the earth. It is noticed that the wave propagates in different manner 

because of occurrence of point source. An interesting problem is concerned with an initially undisturbed body which 

is in its interior and at a specified time = 0t  that is subjected to external disturbances. The external disturbances 

give rise to wave motion propagating away from the disturbed region. In seismology, the problem of source 

mechanism consists in relating observed seismic waves to the parameters that describe the source. For each medium, 

there is a different Green's function that defines how this medium reacts mechanically to an impulsive excitation 

force and is, therefore, a proper characteristic of each medium.The main aim of this paper is to analyze the 

propagation of SH wave due to point source in an orthotropic medium lying over a heterogeneous orthotropic half 

space. The variation in shear modulus and density are contemplated in the following approach  
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where , ,     and are considered to be heterogeneous parameters associated with shear modulus and density with 

suitable dimension. Physically, the terms , ,     are considered in such a manner that it makes the dimensional 

quantity to dimensionless terms which is necessary to validate the problem. For example, the dimension of    is 

supposed to be 5/kg m  to make the term 
2

(2)

H




 as dimensionless. Similar perception is taken for   and   . 

Transformation technique and Green's function leads to obtaining the dispersion equation of SH wave in the 

assumed media.  
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2    FORMULATION OF THE PROBLEM   

An orthotropic stratum of thickness H lying over a heterogeneous orthotropic half space is introduced to show the 

point source effect on SH wave propagation. The x  axis is considered along the propagation of waves and z axis is 

assumed to be vertically downwards as illustrated in Fig. 1. The source of disturbance S  is acknowledged at the 

intersection of the interface lying between two dissimilar orthotropic medium. Let 
(1) (1)

1 3,Q Q  and (1)  denote shear 

moduli and density for the upper layer respectively. Similarly 
(2) (2)

1 3,Q Q  and (2)  denote the shear moduli and 

density for lower half space respectively. 

 

 

 

 

 

 

 

 

 
 

Fig.1 

Geometry of the problem. 

3    DYNAMICS FOR THE UPPER ORTHOTROPIC MEDIUM  

The upper medium is contemplated to be made of an orthotropic material. The constitutive equation of motion 

neglecting the body force [1] is  
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where
 1 1,u v  and 

1w  are the components of displacement. Here ( , 1,2,3)ij i j    and (1)  symbolizes the 

incremental stress and density of the upper medium respectively. Stress and strain components of this medium are 

related in such a manner that  
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where ( , 1,2,3)ijC i j   and ( 1,2,3)iQ i  are used to denote the incremental normal elastic coefficients and shear 

modulus respectively. The components of strain ijf  are expressed as:  
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where    1 2 3 1 1 1, , = , ,u u u u v w  and    1 2 3, , = , ,x x x x y z . Applying conventional condition of SH-wave, 
1 = 0u , 

1 = 0w  and  1 1= , ,v v x z t  in Eq.(2), it reduces to  
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Eq. (5) appears because the stress components 
(1)

12 1 12= 2Q f , 
(1)

23 3 23= 2Q f , and other stress components are 

zero. In consideration of point source, the equation of motion for upper orthotropic layer is expressed as: 
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where  1 ,r t  represents the force density distribution in the upper orthotropic medium under the influence of 

source of disturbance. The term containing r  and t  in  1 ,r t  denotes the distance r  from the origin at a time t. 

The substitutions for 
1v  and 

1  are considered as: 
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Following the above conditions as given by Eq.(7), Eq.(6) is transformed as: 
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where = kc  denotes the angular frequency, k and c  represent for wave number and wave velocity respectively. 

At the source point 0t  , the disturbance occurs because of impulsive force  1 r  which is expressed in the form 

of Dirac Delta function 
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Applying Eq.(9) in Eq.(8), it becomes  
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The Fourier transform of  ,rV x z  is taken as  ,rV z  which is defined as: 
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Now, the expression for inverse Fourier transform is 

 

   
1

, = ,       = 1,2
2

i x

r rV x z V z e d for r 









 

      

      (12) 

  

 with the help of Eq.(12), Eq.(10) is converted to the following differential equation  
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Eq.(13) can be rewritten as: 
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4    DYNAMICS FOR THE HETEROGENEOUS ORTHOTROPIC HALF SPACE  

The lower half space is assumed to be heterogeneous orthotropic half space. In lower half space, the equation of 

motion is defined as: [1] 

 

 
2

(2) (2) (2)2 2 2

3 1 22
= 4 ,

v v v
Q Q r t

x x z z t
 

      
    

       
 

      

      (15) 

 

where 
(2)

3Q , 
(2)

1Q  and (2)  denote the shear modulus and density for the lower orthotropic half space respectively. 

The symbolic term  2 ,r t  represents the force density distribution in the lower heterogeneous half space because 

of point source. The term containing r  and t  in  2 ,r t  denotes the distance r from the origin at a time t. In similar 

manner, to solve Eq.(15) substitutions are assumed for lower half space which is as follow: 
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Considering the Eqs.(1),(11) and (16), the Eq.(15) is reduced to the following differential equation 
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5    CONVENTIONAL BOUNDARY CONDITIONS  

The upper surface is stress free at = 0z  which facilitates that 
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The displacement component is continuous at =z H  which stands that 
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The stress component is continuous at =z H  which requires that  
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The technique of Green's function is manifested to compute the differential Eqs.(14) and (17) under the proposed 

boundary conditions as represented by Eqs.(18)-(20). Now, let  (1)

0/G z z  be the Green's function which satisfies 

the equation for upper orthotropic layer. The Green's function  (1)

0/G z z  is considered in such a manner that  
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at = 0z  and =z H . Employing Eq.(21) in Eq.(14), it is expressed as: 
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where 
0z  is considered as a point in the orthotropic layer and z  is known as the field point. Multiplying Eq.(14) by 

 (1)

0/G z z  and Eq.(22) by  1V z , then subtracting and integrating with respect to z  from = 0z  to =z H , it is 

reduced to the following integral equation 
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Integrating Eq.(23) and applying Eq.(21), it can be expressed as: 
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From the symmetric property of Green's function, it is well known that  
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Applying Eq.(25) in (24) and replacing 
0z  by z, it becomes  
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Now, let us suppose that  (2)

0/G z z  be the Green's function which satisfies the solution of lower half space. 

Considering the case 
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Multiplying Eq.(27) by 
2V  and (17) by (2)

0(z/ z )G  then subtracting and integrating with respect to z  from H  to 

 , it becomes  
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Integrating Eq.(28), it transforms to 
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Interchanging z  and 
0z  in Eq.(29) and simplifying, it converts to 
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Employing the boundary conditions as represented by Eq.(19) and (20) and replacing z by H, it becomes as: 
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Eq.(31) is expressed in the following form 
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Eq.(32) signifies that 
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with the help of Eq.(33), Eq.(26) is converted as: 
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Applying the boundary conditions as represented by Eq.(19) and (20) in Eq.(26) and (30), it reduces to  
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Eq.(35) implies that 
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Q
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


 
 
  



 

       

 

      (36) 

 

with the help of Eq.(30) and (36), and applying the method of successive approximation which leads to the 

following solution 

 

 
   (1) (2)

(1)
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2

2
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 where 
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Q

B G H H G H H
Q



 

       

      (38) 

 

Switching the value of  24 z  in Eq.(34), it transforms to 
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 
   
 

  

       

 

 

      (39) 

 

Two independent solutions of Eq.(14) vanishing at =z   and =z   are  1 = zz e  and  2 = zz e  
. 

Therefore, the clarification of the Eq.(14) for a medium which is considered as: 

 

   1 2 0

0            <
z z

for z z
W

 

 

       

      (40) 

 

   1 0 2

0            >
z z

for z z
W

 

 

       

      (41) 

 

where        1 0 2 1 0 2= ' ' = 2 0W z z z z       . W being the Wronskian of solution of Eq.(14). Therefore the 

required solution is 

 
| |

0

2

z z
e





 



 

       

      (42) 

 

Since  (1)

0/G z z  is to satisfy the condition 
(1)

= 0
dG

dz
 at = 0z  and =z H , Therefore, we can assume that 

 

 
| |

0
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0 1 2/ =
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

 


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      (43) 
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where 
1C  and 

2C  are arbitrary constants which can be evaluated using condition 
(1)

= 0
dG

dz
 at = 0z  and =z H . 

Therefore, we get  

 

 
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 

 

 
 
  
  
 
 

 

       

 

      (44) 

 

Therefore, we have  
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      (46) 

 

In agreement of Green's function property, the value of  (2)

0/G z z  can be written as: 
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      (47) 

 

and  
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      (48) 

 

and  

 

 (2) 1
/ =G H H




 

       

      (49) 

 

Substituting all these values in Eq.(39), it turns to the following form 
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      (50) 

 

Neglecting the higher powers of ,    and    and then approximating Eq.(50), the value of  1V z  is expressed 

as: 
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      (51) 

 

Applying the technique of inverse Fourier transform in Eq.(51), the displacement component of the upper 

orthotropic layer is observed as: 
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The dispersion equation of SH wave is computed equating the denominator to be 0 which is represented as: 
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      (53) 

 

Eq.(53) provides the dispersion equation of SH wave in an orthotropic layer due to point source which is 

expressed as follows: 
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      (54) 

where 
(i)

3

(i)
, 1,2.i

Q
i


   Eq.(54) represents the dispersion equation of SH wave in an orthotropic media because 

of source of disturbance.  

6    SPECIAL CASES  

Case I: When 
(2) (2) (1) (1)

3 1 2 1 3 1,Q Q Q Q     , when the uppermost and undermost medium is homogeneous 

with rigidity 
1  and 

2  respectively, it becomes 
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      (55) 

 

This represents the dispersion equation of SH wave in an isotropic layer lying over an isotropic half space in the 

presence of point source.  

Case II: When 0, 0, 0      , when all the point source parameter becomes 0, then 
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22
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      (56) 

 

This represents the classical Love wave equation in an isotropic layer lying over an isotropic half space in 

absence of point source parameter.  

 



841                        Inquisitive Analysis of the Point Source Effect on Propagation … 

© 2018 IAU, Arak Branch 

7    NUMERICAL CALCULATION AND GRAPHICAL OBSERVATION  

The propagation of SH wave in an orthotropic stratum lying over a heterogeneoous ortotropic half space is described 

graphically to deliberate the influence of heterogenous parameter associated with shear modulus and density. For the 

graphical issue, the data has been proceeded from Gubbins[10] as (1) 10 2

1 = 5.65 10 /Q N m , (1) 10 2

3 = 2.46 10 /Q N m , 

(1) 3= 7800 /Kg m , (2) 10 2

1 = 5.82 10 /Q N m , (2) 10 2

3 = 3.99 10 /Q N m , (2) 3= 4500 /Kg m . All the figures are 

drawn in respect of dimensionless wave number kH  and phase velocity 
1

c


. 

In Fig. 2 , curves are sketched to analyze the effect of heterogeneous parameter associated with density. Curve 1  

is stalemated to manifest the case when heterogeneous parameter 
2

(2)

H




 tends to 0. All other curves are drawn by 

considering the heterogeneous parameter in increasing order. As the value of 
2

(2)

H




 increases, phase velocity 

increases. 

 

  

 

 

 

 

 
Fig.2 

Variation of 
2

(2)

''H


with respect to phase velocity  and 

dimensionless wave number kH. 

 

 

Figs.3 and 4  are configured to express the effect of heterogeneous parameter accomplished to transverse and 

longitudinal shear modulus respectively. In account of considering the respective heterogeneous parameter related to 

shear modulus to be 0, the curve 1  is sketched in both the Fig.3 and 4. In both figures, Phase velocity decreases as 

the respective heterogeneous parameter increases. 

 

 

 

 

 

 

 
Fig.3 

Variation of 
2

(2)

3

H

Q


with respect to phase velocity  and 

dimensionless wave number kH. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 

Variation of 
2

(2)

1

'H

Q


with respect to phase velocity and 

dimensionless wave number kH. 
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Fig.5 is sketched to show the particular cases separately in respect of general case. Case I and II  expresses the 

case in presence and absence of point source respectively. It is worthy to mention that curve 1  in Figs. 2,3  and 4  

corresponds to the case of regular orthotropic medium over a semi infinite medium without respective 

heterogeneities due to point source. 

In Fig.5, curve 1  (Case I) and  curve 2  (Case II) are drawn for isotropic case in presence and  absence of point 

source respectively. In case of isotropy, phase velocity lies in the range of real time data having some error. The 

theory lies in the fact that glass is an example of an isotropic material. Glass is a hard, brittle substance that is 

usually transparent or translucent. It is made by melting together sand (Silicon dioxide), soda (Sodium Carbonate), 

limestone (Calcium Carbonate) and other ingredients. From the study of Standard Rock Physics Laboratory, [14] it 

is analyzed that propagation velocity in an isotropic medium varies between 100 /m s  to 6000 /m s  which also 

validates the obtained theoretical results. The estimated error is calculated using C programming with a graphical 

approach.  

 

  

 

 

 

 

 
 

 

Fig.5 

Variation of special cases with respect to phase velocity and 

dimensionless wave number kH. 

 

Finally, it is concluded that: 

i.  In respect of phase velocity and wave number , phase velocity increases for some range of wave number, 

then after it behaves reversely. 

ii. The phase velocity of all the graphs lies between 1 4.3  /km sec  which match with the seismological lab. 

8    ERROR ANALYSIS  

A graphical approach is concerned to demonstrate the accuracy of propagation velocity of SH wave in an orthotropic 

media. Before comparing the theoretical results with real time data, it is to be mentioned that olivin is an example of 

orthotropic material [7]. Also olivin is the name of a group of rock forming minerals that are typically found in 

mafic and ultramafic igneous rocks such as basalt, gabbro, dunite, diabase and peridotite. These rocks are typically 

made of 
2 4Mg Sio  and 

2 4Fe Sio . Olivin has a very high crystallization temperature compared to other minerals. The 

propagation velocity of seismic wave through orthotropic media goes to 2.8  /m s  to 3.4  /m s  [14]. An 

approximate error is calculated by the formula 
Exact  Value Approximate  Value

100
ExactValue


 [18]. Approximate value of 

phase velocity is taken for the curve which is to be compared and exact value is taken from the results of 

seismological lab. Error analysis helps us to compare the theoretical work with real time data. Thus it makes an 

important application in real life problem. The estimated error is calculated graphically using C  programming. The 

errors are summarized in Table 1.  and Table 2.  

Among all the Figs. 2, 3 and 4, the propagation velocity lies between 0.847  /km s  to 3.718  /km s  which lies 

in the range of real time data. Table 1.  expresses an analogy between graphically obtained result and seismological 

lab results for Figs. 2,3  and 4.  

In Figs. 5, 3 curves are drawn to show the particular cases (Case I and Case II) and general case. A curve 

(General case) which is drawn for fixed value, as taken in numerical computation section, is supposed to be exact. 

Applying the above technique, we have computed the Table 2.  to estimate the error in graph for particular cases. 
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Table 1 

Comparison with theoretical and seismological lab result. 
Graphs  Minimum phase 

velocity through 
seismological 

Lab  

Maximum phase 

velocity through 
seismological Lab  

Minimum phase 

velocity through 
theoretical result  

Maximum phase 

velocity through 
theoretical result  

Minimum Error in 

percentage  
Maximum Error in 

percentage 

Graph 2  2.8 3.4 0.969 3.718 65 9.352 
Graph 3  2.8 3.4 0.971 4.241 65.321 22.131 
Graph 4  2.8 3.4 0.847 3.619 69.725 6.441 

 

Table 2 

Comarison with theoretical and seismological lab result. 

 Phase 

Velocity  

Error in 

percentage  

Phase 

Velocity  

Error in 

percentage  

Phase 

Velocity  

Error in 

percentage  

Phase 

Velocity  

Error in 

percentage  

Wave 

number  
0.2  0.6  1.0  1.4  

General 

Case  
-  3.553  3.211  2.769  

Case I  - Not Found 1.422 59.97 1.289 59.85 1.201 56.62 
Case II  2.294 Not Found 1.554 56.26 1.323 58.79 1.201 56.62 
Average 

Error  
- -  59.615 - 58.055  56.62 

9    CONCLUSIONS 

The conclusive investigation approaches to the dispersion of propagation of SH wave in an orthotropic layer lying 

over a heterogeneous orthotropic half space under the influence of point source. It is observed that the technique of 

Green's function and Fourier transformation leads to the computation of dispersion equation. The present study 

arrives at the following conclusions: 

1. The phase velocity of SH wave behaves as a monotonic curve.  Sometimes, the phase velocity increases 

with the increment of wave number and then decreases eventually with the increment of wave number. 

2. The effect of non homogeneity parameter is very prominent to the propagation of SH wave. 

3. The classical equation of Love wave is deduced in a homogeneous isotropic layer lying over an isotropic 

half space.  

Analysis of this study has its special characteristic to the problem of wave motion and vibrations where the wave 

signals have to travel through dissimilar layers of various material properties and containing irregularities due to 

continental margin, mountain roots and salts. The present study may be effectively utilized to artificial explosion 

and material structure during non destructive testing.  
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