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 ABSTRACT 

 In this study, the free vibration of partially fluid-filled laminated composite circular 

cylindrical shell with arbitrary boundary conditions has been investigated by using 

Rayleigh-Ritz method. The analysis has been carried out with strain-displacement 

relations based on Love’s thin shell theory and the contained fluid is assumed 

irrotational, incompressible and inviscid. After determining the kinetic and potential 

energies of fluid filled laminated composite shell, the eigenvalue problem has been 

obtained by means of Rayleigh-Ritz method. To demonstrate the validity and accuracy 

of the results, comparison has been made with the results of similar works for the 

empty and partially fluid-filled shells. Finally, an extensive parameter study on a 

typical composite tank is accomplished and some conclusions are drawn. 

                                                                © 2016 IAU, Arak Branch.All rights reserved. 

 Keywords : Laminated composite; Rayleigh-Ritz; Partially fluid-filled; Cylindrical 

shell; Vibration analysis.  

1    INTRODUCTION 

 LUID-FILLED  circular cylindrical shells made of composite materials have been widely used in industries, 

e.g. aerospace, civil engineering, marine, petrochemical engineering, oil containers and tankers due to their high 

strength-to-weight ratio and better corrosion resistance as well as the advantages of composite materials. Since most 

of failures of these structures are caused by dynamic loading, the dynamics of coupled fluid shells is a problem that 

has been focused recently. Free vibration of the partially fluid filled laminated shell is one of the most difficult 

problems in acoustics and structural dynamics. 

Many studies have been conducted on the vibration of the composite cylindrical shells without fluid and 

different approaches have been applied in these studies, e.g. Analytical method by Wang and Lin [18], Rayleigh-

Ritz method (Zhao et al.,[20]; Kim and Lee[11]; Zhang[21]), finite element method (Balamurugan and Narayanan 

[4]; Liu and To [15]) and experimental studies by Jafari and Bagheri [8]. On the other hand, various methods have 

been used to investigate the vibration of the partially fluid-filled isotropic and composite tanks, e.g. the expansion 

method for isotropic tanks by Jeong and Kim [9]; Kondo [10], Rayleigh’s quotient method by Gupta and Hutchinson 

[6], Rayleigh-Ritz method (Amabili [1]; Amabili [2]; Amabili et al. [3]; Kim et al.,[12]), finite element method by 

Lee and Lu [14]; Goncalves and Ramos[7], harmonic balance method by Chiba and Abe [5] and experimental 

studies (Mazuch et al.,[16]) can be found in the literature and some papers have focused on composite tanks, for 

example finite element method by Ramasamy and Ganesan [17] and experimental studies by Yu et al. [19]. The 

Rayleigh-Ritz method has been proved to be very efficient in studying vibration of empty cylindrical shells or 
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partially fluid-filled isotropic tanks from economic point of view in time and amount of calculation, but in order to 

obtain correct results, the trial functions must satisfy all the geometrical boundary conditions. 

In this paper, free vibration analysis of the partially fluid-filled laminated composite circular cylindrical shells 

with various boundary conditions is investigated by using the Raleigh-Ritz method, which is based on the energy 

parameters. The kinetic and potential energies of different ingredients of the shell filled with fluid are obtained. The 

analysis is carried out with Love’s thin shell theory for strain-displacement relations and the contained fluid is 

assumed incompressible and inviscid. For modeling the vibration of the fluid, the velocity potential is supposed as 

sum of two sets of velocity potentials: that of the fluid associated with the flexible shell (cause to bulging type 

frequencies where structure of tank plays main role) and the other one is due to the free surface of the fluid in the 

rigid shell (cause to sloshing type frequencies where free surface of tank plays main role). Finally, numerical 

comparison is made with available results and the effects of some related parameters on natural frequencies have 

been discussed. 

2    GOVERNING EQUATIONS  

The Rayleigh-Ritz method is based on the energy parameters. Therefore, the kinetic and potential energies of 

cylindrical shell, fluid and fluid-shell interaction have been obtained. Eventually, the eigenvalue problem for the 

partially fluid-filled laminated composite circular cylindrical shell has been obtained. 

2.1 Kinetic and potential energies of composite shell  

A cylindrical shell with mid-plane radius R, length L and thickness h is considered. The deformations are defined 

with reference to cylindrical coordinate system ( ,r  and x) given in Fig.1. The constitutive relation for a thin 

generally orthotropic cylindrical composite layer under plane stress condition is given by 

 

    ,Q e   (1) 

 

where   and  e represent the stress and strain vectors and  Q  is the reduced transformed stiffness matrix. The 

stress vector is defined as follow 

 

   , , ,
T

x x 
     (2) 

 

where 
x

 and 


 are the normal stresses in x and   directions and 
x

  is the shear stress in the x  plane. Similarly, 

the strain vector is defined by the following vector 

 

   ,, ,
T

x xe e e e   (3) 

 

where xe  and e  are the normal strains in x and   directions and xe   is the shear strains in the x  plane. The 

transformed reduced stiffness matrix  Q  is defined as: 

 

      
1

,
T

Q T Q T
 

  (4) 

 

where  T  is the transformation matrix between principal material coordinates and the shell coordinates defined by 

the following matrix 

  

 

2 2

2 2

2 2

cos sin 2sin cos

sin cos 2sin cos ,

sin cos sin cos cos sin

T

   

   

     

 
 

  
   

 

 

 

(5) 
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where  is the angle of fibers orientation with cylinder axis (the counter-clockwise direction is taken to be positive). 

The reduced stiffness matrix  Q  is defined as follow: 

 

 
11 12

12 22

66

0

0 ,

0 0

Q

Q Q

Q Q

Q

 
 


 
  

 

 

(6) 

 

where ( , 1,2
ij

Q i j  and 6) are defined for an orthotropic material as below: 

 

11 12 22 22

11 12 22 66 12

12 21 12 21 12 21

, , , ,
1 1 1

E E E
Q Q Q Q G



     
   

  
 

 

(7) 

 

where 
11

E and 
22

E are Young’s moduli, 
12

G  is the shear modulus and finally 
12

  and 
21

 are Poisson’s ratios. Using 

Love’s shell theory (Leissa [13]), the strain components are obtained  

 

1 1 2 2
2 ,, ,

x x
e e zk e e zk e z

 
        (8) 

 

In the above equations
1 2
,e e  and   are the reference surface strains and 

1 2
,k k  and   are the surface curvatures. 

These surface strains and curvatures are given as below: 

 

 
2 2 2

1 2 1 2 2 2 2

1 1 1 1
, , , , , , , , , , ,

u v v u w w v w v
e e k k w

x R x R R x xx R
 

   


             
           

              
 

 

(9) 

 

For a thin cylindrical shell the force and the moment resultants are defined as follows: 

 

   
2

2
, , , , ,

h

x x x x
h

N N N dz
   

  


   
 

(10) 

 

   
2

2
, , , , ,

h

x x x x
h

M M M zdz
   

  


    

(11) 

 

After substituting Eqs.(9) and (2) into Eqs. (10) and (11), the  following constitutive vector equation is obtained 

 

    ,N S   (12) 

 

where    ,N  and  S  are 

 

   , , , , , ,
T

x x x x
N N N N M M M

   
  (13) 

 

    
1 2 1 2
, , , , ,2 ,

T

e e k k    (14) 

 

 

11 12 16 11 12 16

12 22 26 12 22 26

16 26 66 16 26 66

11 12 16 11 12 16

12 22 26 12 22 26

16 26 66 16 26 66

,

A A A B B B

A A A B B B

A A A B B B
S

B B B D D D

B B B D D D

B B B D D D



 
 
 
 
 
 
 
 
  

 

 

 

 

(15) 
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,
ij ij

A B  and 
ij

D  represent the extensional, coupling and bending stiffness matrices, respectively, which are given 

as follow: 

 

   
2

2

2
, , 1, , ,

h

ij ij ij ij
h

A B D Q z z dz


   
 

(16) 

 

For an arbitrarily laminated shell, the above matrices can be rewritten 

 

     2 2 3 3

1 1 1

1 1 1

1 1
,     ,     ,

2 3

l l lN N N

k k k

ij ij k k ij ij k k ij ij k k

k k k

A Q h h B Q h h D Q h h
  

  

         
 

(17) 

 

where 
l

N  denotes the number of layers in the shell, 
k

h  and 
1k

h


define the distances from the shell reference surface 

to the outer and inner surfaces of the
th

k lamina as indicated in Fig. 1. The strain or potential energy of the laminated 

composite shell is expressed as follow: 

 

    
2

0 0

1

2
,

L T

s
U S Rd dx



      
 

(18) 

 

Further, the kinetic energy of the laminated composite shell is expressed by the following relation 

 
2 2 2

2

0 0

1

2
,

L

Ts

u v w
T Rd dx

t t t



 
  

  
  

      
      
      

   
 

(19) 

 

where 
T

  is the mass density per unit length and is defined as: 

 
2

2
,

h

T
h

dz 


   
(20) 

 

The following spatial displacement field can be used for free vibration of a cylindrical shell with different 

boundary conditions 

 

 
 

 
1

, cos ,
M

m

mn

m m

n

x
u x U n

x


 







  

 

(21) 

 

     
1

, sin ,
M

mn m

m

n
v x V x n  



  
 

(22) 

 

     
1

, cos ,
M

mn m

m

n
w x W x n  



  
 

(23) 

 

where ,
mn mn

U V  and 
mn

W  are constants denoting the amplitude of the displacement in the axial, circumferential and 

radial directions. Also, m and n denote the number of axial and circumferential wave numbers in mode shape, 

respectively. The axial mode function  
m

x  is 

 

  1 2 3 4
sin cos sinh cosh ,

m

x x x x
x c c c c

L L L L

   


       
          

       
 

 

(24) 

 

where
1 2 3
, ,c c c  and 

4
c are determined for each boundary conditions. The parameter   is a real number depending on 

the number of axial waves. For simply supported boundary condition: m  . 
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Fig.1 

Geometry of a partially fluid-filled laminated composite circular cylindrical shell. 

2.2 Kinetic and potential energies of the fluid  

A numerous papers on the vibrations of partially fluid-filled shells have been published. This formulated part is an 

elaboration of the theory and approach developed by Amabili [2]; Amabili et al.[3]. The incompressible and inviscid 

fluid can be described by a velocity potential  , , ,r x t  which must satisfy the Laplace equation: 

 
2 2 2

2

2 2 2 2

1 1
0,

r rr r x

   




   
     

  
 

 

(25) 

 

The velocity potential is written in terms of deformation potential  , ,r x   by the following form: 

 

   , , , , , ,
i t

r x t i r x e


      (26) 

 

which is assumed to be harmonic; i is the imaginary unit and   is the natural frequency of the vibration. By using 

the principle of superposition, the deformation potential of fluid can be divided into two parts (Kim et al., [12]) 

 
   1

,
S

     (27) 

 

where the function  1
  describes the deformation potential of the fluid associated with flexible shell considering the 

bottom plate to be rigid and neglecting free surface waves and  S
  is the deformation potential due to sloshing in the 

presence of a rigid structure. The boundary conditions imposed to the liquid for the two complementary boundary 

conditions are as follows: 

 
    1

, ,
r R

r w x 


    (28) 

 
  1

0
0,

x
x


    (29) 

 
  1

0,
x H




  (30) 

 
   0,
S

r R
r


    (31) 

 

x  

r  
  

R  h  

H  

L  

  

R  

h  

3h  

1h  

4h  

2h  x  
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  
0

0,
S

x
x


    (32) 

 

      2 ,
S

x H x H
x g 

 
    (33) 

                                                                                                 

g is the gravitational acceleration. By combining Eqs.(28)-(30), the linearized sloshing condition (33) can be 

rewritten as follow:  

 

        
2

1
  ,

S S

x H x H x H
x x

g


  

  
       

 

(34) 

 

Finally, the natural frequencies of tank vibrations are obtained 

 

2

* *
,s L

s L

U U

T T






 

 

(35) 

 

The total kinetic energy of fluid can be expressed  

 

* *1 1

2 2
,

F

L L L L
S S

T dS dS T
n x

 
   

 
  

 
   

 

(36) 

 

where 

 

    
    

1 1

1

1* 1 1

2 2
= ,

S

S

L L L
S S

T dS dS
n n

 
    

 
 

 
   

 

(37) 

 

In the above equations, n denotes the normal unit vector at any point on the boundary surface S, which is the sum 

of
1

S , the shell lateral surface and 
F

S , the free surface of fluid. The maximum potential energy 
L

U  of the free surface 

waves of the liquid is 

 

21 1

2 2
,

F F

L L L
S S

U g dS dS
x x x

  
   

  
 

  
   

 

(38) 

 

By using Eqs. (36) and (38), the natural frequencies of tank is written as below: 

 

2

* *
,s

s L

U

T T
 


 

 

(39) 

 

Also, by using Eqs. (28) and (31), the kinetic energy of fluid Eqs. (37) is written as below: 

 

        

1

1 * 1 * 1* 1

2
,

S S

L L L L
S

T wdS T T  


     
 

(40) 

 
)1(

LT  is the kinetic energy of fluid associated with flexible shell and )1( S
LT

 is the kinetic energy of fluid due to 

the sloshing. After applying separation of variables method on Eqs. (25), (29) and (30), the fluid deformation 

potential associated with the flexible shell and the rigid bottom plate, is obtained as follow: 

 

   1

1 1

2 1 2 1
cos cos ,

2 2
                                

M

mn mns n

m s

s r s x
W A I n

H H
   



 

 
 

   
   
   

   
 

(41) 
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where 
mns

A  are coefficients depending on the integers m, n and s. Eq. (28) is used to compute the coefficients
mns

A  

 

 
1

2 1 1 2 1

2 2

2 1
cos ,

2
                              

mns n m

s

s s R
A I x

H H

s x

H
  





 
 

    
     

     
  

 

(42) 

 

Multiplication of Eq. (42) by     cos 2 1 2s x H  and then integration between zero and H results in the 

following relation: 

 

 

4

2 1
2 1

2

,ms

mns

n

A
s R

s I
H



 





 
 
 

 
 

(43) 

 

where  

 

 
0

2 1
cos

2
,

H

ms m

s x
x dx

H
  




 
 
 

  
 

(44) 

 

Therefore, the term  * 1

L
T  in Eq. (40) can be obtained as: 

 

    
 

2* 1 1

0 0
1 1 1

2 1
4

1 2

2 12 2
2 1

2

,
ms js nM MH

L n

L L mn jn
r R

m j s

n

s R
I

RC H
T wRd dx W W

s R
s I

H


  


  

 




  

 
 
 

 
 

  
 

    

 

 

(45) 

 

The deformation potential of fluid due to the sloshing in the presence of rigid structure for the asymmetric modes 

 0n   is assumed as follow: 

 

   
1

cosh cos ,
K

S

nk n nk nk

k

r x
F J n

R R
   




   
   
   

  
 

(46) 

 

where 
n

J  is the Bessel function of first kind of order n. The above assumption has been obtained by using separation 

of variables method and satisfying the boundary conditions. By applying Eqs. (31) and (32) on Laplace Eq. (25), the 

following equation is derived for
nk
  

 

  0,
n nk

J    (47) 

 
By substituting Eqs. (41) and (46) into the sloshing condition (33), and then multiplying obtained equation by 

 
n nk

J r R rdr  and integrating between zero and R, noting the orthogonality of Bessel functions, the following 

sloshing equation is obtained: 

 
2

1 1

2 1 1 2 1
sinh sin cosh

2 2
,

M

nk

nk nk nk mn mns nsk nk nk nk

m s

H s s H
F W A F

R R H g R

 
      



 

 


         
        

        
   

 

(48) 

 

where 

 

 
2

2 2

2 0

1 1
1

2
,

R

nk n nk n nk

nk

r n
J rdr J

RR
  


  

   
   

     
  

 

(49) 
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 
2 20

2

2 1

1 2 1 2 12

2 22 1

2

,
R

nsk n n nk n nk n

nk

s R

s r r s RHI J rdr J I
H R HR s R

H



    

 



 
 




     
     
      

 
 

  

 

 

(50) 

 

where 
n

I  is the modified first kind Bessel function of order n. For the axisymmetric modes    
0 ,

S
n   can be 

written in the following form: 

 

 
00 0 0 0 0

1

cosh ,
K

S

k k k

k

r x
F F J

R R
  



 
   
   
   

  
 

(51) 

 

Substituting Eqs. (41) and (51) into the sloshing condition (33), and then multiplying the obtained equation by 

rdr  and integrating between zero and R, the following sloshing equation will be obtained 

 

 
2

0 0 0 00

1 1

2 1 1 2 1 1
sin

2 2 2
,

M

m m s s

m s

Rs s
W A F

H g


  



 

    
     

   
   

 

(52) 

 

where 

 

0 02 0
1

1 2 1

2

2 2 1
,

2 1 2

R

s

s r
I rdr

HR

H s R
I

s R H
   




  
   

   
  

 

(53) 

 

For the asymmetric modes  0n  , the term  * 1 S

L
T


 in Eq. (40) can be calculated  

 

      
2

* 1

0 0
1 1

1

2

1
= ,

2

H
S S

L L r R

K M

L n nk mn n nk mkn

k m

T w Rdxd C R F W J


     


 

     
 

(54) 

 

where 

 

 
0

cosh ,
H

mkn m nk

x
x dx

R
  

 
 
 

  
 

(55) 

 

For the axisymmetric modes  0n  , the term  * 1 S

L
T


 in Eq. (40) is obtained as follow: 

 

   * 1

0 00 0 0 0 0 0 0

1 1 1

1

2
,

M K M
S

L L m m k m k mk

m k m

T C R F W F W J   


  

 
 
 


   

 

(56) 

 

where 

 

 
0

,
H

m m
x dx    (57) 

3    SOLUTION METHOD OF EIGENVALUE PROBLEM  

Eventually, the eigenvalue problem for the partially fluid-filled laminated composite circular cylindrical shell has 

been obtained. The vector of the Rayleigh-Ritz parameters q expansions (generalized coordinates) and generalized 

force vector are defined as follows: 

 



                                                                                       Coupled Vibration of Partially Fluid-Filled Laminated….                     831 

© 2016 IAU, Arak Branch 

            1 2
,        ,

T T

n n nK
q u v w F F F F   (58) 

 

where 

 

           
1 2 1 2 1 2

,    ,    ,
n n Mn n n Mn n n Mn

u U U U v V V V w W W W    (59) 

 

For the axisymmetric modes, the coefficient 
00

F  must be included in the vector  .F  The maximum potential 

energy of the shell, Eq.(18) becomes 

 

    
1

2
,

T

s s
U q K q  

 

(60) 

 

where 

 

11 12 13

12 22 23

3 3

13 23 33

,

s s s

s s s sM M

s s s

K K K

K K K K

K K K




           
 
           
 
            

 

 

 

(61) 

 

where submatrices ij

s M M
K


   have given in Appendix A . The reference kinetic energy of the shell, Eq.(19) becomes 

 

    * 1

2
,

T

s s
T q M q  

 

(62) 

 

where 

 

11

22

3 3

33

0 0

0 0

0 0

,

s

s sM M

s

M

M M

M




   
 

   
 

    

 

 

 

(63) 

 

and submatrices ii

s M M
M


   are given in Appendix A. The reference kinetic energy of fluid associated with flexible 

shell (Eq. (45)) becomes 

 

       * 1 11

2
,

T

L L
T w M w     

 

(64) 

 

where 

 
1

1

2 1

4 2

2 12 1

2

,
n

ms js

L L nmj
s

n

s R
I

H
M RC

s Rs
I

H


 

















 
 
 

  
 
 
 

  

 

 

(65) 

 

The reference kinetic energy of fluid due to the sloshing Eq.(54) for the asymmetric modes  0n  becomes 

 

       * 1 11

2
,

TS S

L L
T w M F

 
     

 

(66) 

 

where 

 
   1

,
S

L L n n nk mknmk
M C RJ  


    (67) 
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and for axisymmetric modes    1
0 ,

S

L
n M


  

 
 is modified by adding the following row to Eq. (67): 

 
 1

00
,

S

L L mm
M C R 


    (68) 

 

From Eqs. (39), (60), (62), (64) and (66), the following matrix equation is obtained 

 

 

 
   
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S
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q q

K K K M
F F

K K K M M M





 



                
      

                    
     

                           

 

 

 

(69) 

 

Matrix form of sloshing conditions, Eqs.(48) for the asymmetric modes  0n  becomes 

 

   
 
 

 
 
 

20 0 0 0 0 0,
ssl sl sl

q q
K K M

F F


      
          

      
  

 

(70) 

 

where 

 

  cosh ,nk

sl ik nkik

H
M

g R


 

 
 
 

 
 

(71) 

 

  sinh ,nk nk

sl ik nkik

H
K

R R

 
 

 
 
 

 
 

(72) 

 

 
1

2 1 1 2 1
sin

2 2
,

ssl mns nskkm

s

s s
K A

H
  





 
 

   
   
   

  
 

(73) 

 

For axisymmetric modes      0 , ,
sl sl

n M K and  ssl
K  are modified by adding the following rows to Eqs. (71), 

(72) and (73): 
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2
,
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M

g
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 
0

0,
sl k

K   (75) 
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1

2 1 1 2 1
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2 2
,

ssl m s sm

s

s s
K A

H
  





 
 

   
   
   

  
 

(76) 

 

By combining Eqs. (69) and (70), the eigenvalue problem of fluid structure interaction of shell can be written in 

the following form: 
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(77) 
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4    RESULTS AND DISCUSSION    

Firstly, the validity and accuracy of the results obtained from the present formulation has been checked. Case study 

#1 has been presented to compare the bulging and sloshing frequencies of the simply supported isotropic cylindrical 

shell from the present method with corresponding results in Kondo [10]; Gupta and Hutchinson [6]; Amabili [2].  

In case study #2, the bulging frequencies of laminated composite cylindrical shell are compared with those 

obtained by finite element method from Chiba and Abe [5]. Subsequent case studies investigate the effects of 

different parameters of the fluid-filled laminated composite cylindrical shell on the natural frequencies. 

Case study #1: Fluid-filled isotropic shell with simply supported boundary conditions 

In order to verify the theoretical results and comparison with the corresponding results published in previous studies, 

the following dimensions and material properties of the simply supported steel shell are taken: 25( ), 30( )R m L m  , 
321.6( ), 0.03( ), 206( ), 8750( ), 0.3

s
H m h m E GPa Kg m v     and the density of water is 31000( )

L
Kg m  . 

In Tables1. and 2, the bulging and sloshing frequencies, obtained from present work and previous works (Kondo 

[10]; Gupta and Hutchinson [6]; Amabili [2]), have been presented. Table 1. compares the five natural frequencies 

of axisymmetric vibrations. As it is observed the greatest difference in bulging mode results belongs to fifth mode 

with respect to Kondo[10] and the greatest difference in sloshing mode results belongs to third mode with respect to 

results of Kondo [10]. It is observed that generally, there exists a good agreement between present results and those 

of Amabili [2]. 

In Table 2. the five lowest natural frequencies of asymmetric vibrations are compared with the results of Amabili 

[2]. The greatest difference which belongs to fifth mode of bulging mode is about 1.2%. 

 
 

Table 1 

Comparison of bulging and sloshing frequencies (rad/s) for the simply supported fluid-filled isotropic cylindrical shell for 

( 3 30, 25( ), 30( ), 21.6( ), 0.03( ), 1000( ), 206( ), 0.3, 7850( )
s L s

n R m L m H m h m Kg m E GPa v Kg m          ). 

Mode 

Bulging modes  Sloshing modes 

Present 

study 
Kondo 

Gupta and 

Hutchinson 
Amabili [2]  

Present 

study 
Kondo 

Gupta and 

Hutchinson 
Amabili [2]  

1 22.224 22.096 22.349 22.244  1.2278 1.2238 1.2244 1.2244 

2 44.877 43.762 44.170 44.010  1.6604 1.6582 1.6591 1.6591 

3 57.163 56.829 58.244 57.191  2.0071 1.9969 1.9979 1.9980 

4 68.600 66.888 69.513 67.291  2.2873 2.2853 2.2864 2.2865 

5 77.392 75.347 79.189 75.850  2.5432 2.5409 2.5422 2.5422 

 

 

Table 2 

Comparison of bulging and sloshing frequencies (rad/s) for the simply supported fluid-filled isotropic cylindrical shell for 

( 3 34, 25( ), 30( ), 21.6( ), 0.03( ), 1000( ), 206( ), 0.3, 7850( )
s L s s

n R m L m H m h m Kg m E GPa v Kg m          ). 

Mode 

Bulging modes  Sloshing modes 

Present study Amabili [2]   Present study Amabili [2]  

1 13.610 13.658  1.447 1.4425 

2 34.245 34.441  1.915 1.9081 

3 49.269 49.692  2.239 2.2305 

4 61.193 61.877  2.514 2.5027 

5 70.951 71.804  2.758 2.7444 
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Case study #2: Fluid-filled laminated composite shell with different boundary conditions 

The second example is a two layer laminated composite cylindrical shell with clamped-free, simply supported and 

clamped-clamped boundary conditions and partially filled with water. To comply with the reported solutions of 

Chiba and Abe [5], the following dimensions and material properties of the composite shell are taken: 7.22( )R m  

21.96( ), 0.0127( )L m h m  for each layer, 3

1 2 12 12
76( ), 5.5( ), 2.31( ), 1460( ), 0.34,

s
E GPa E GPa G GPa Kg m v       

31000( ).
L

Kg m   

Figs. 2-4 illustrate the variation of bulging natural frequencies of empty, half and full filled cylindrical shell with 

different boundary conditions and fiber angles. In Figs. 2 the first fifteen bulging natural frequencies of (a) empty, 
(b) half filled and (c) full filled cylindrical shell with clamped-free boundary condition for [0

○
/0

○
], [0

○
/90

○
], 

[90
○
/90

○
] and [+45

○
/-45

○
] laminations are presented. The present results for fiber angle [0

○
/0

○
] are compared with 

the finite element results provided by Chiba and Abe [5] in this figure. There is a good agreement between the 

results and finite element results. Figs. 3 illustrate the bulging natural frequencies of (a) empty, (b) half filled and (c) 

full filled simply supported cylindrical shell. In Figs. 4 the bulging natural frequencies of (a) empty, (b) half filled 

and (c) full filled cylindrical shell with clamped-clamped boundary conditions are shown.  

From these figures it is easily inferred that the general shapes of the natural frequency curves of the partially 

fluid-filled shells are similar to those for the corresponding empty shells. However, for a given circumferential wave 

number, the bulging natural frequencies of the partially fluid-filled shells are lower than those of the corresponding 

empty shells. This is because of the fact that the fluid filled in the shell has increased the total mass of the tank. 

Besides, for n≤ 6, the bulging natural frequencies of shell with different fiber angles are almost identical except 
fiber angle [+45

○
/-45

○
] in simply supported and clamped-clamped shells. However for n>6, difference among 

bulging natural frequencies of shell for different fiber angles increases. In case of fiber angle [+45
○
/-45

○
], the 

bulging natural frequencies of shell are larger than that for the corresponding other fiber angles, but the bulging 

natural frequencies of shell is smaller than that of the corresponding fiber angle [90/90] regardless the height of fluid 

and boundary condition. 

 

  
(a) H/L=0 (b) H/L=0.5 

  

 

 

(c) H/L=1 
 

Fig.2 

The Bulging frequencies (Hz) for the clamped-free laminated composite cylindrical shell; ( 7.22( ), 21.96( ), 0.0127( )R m L m h m    

3 3

1 2 12 12
1000( ), 76( ), 5.5( ), 2.31( ), 0.34, 1460( )

L s
Kg m E GPa E GPa G GPa v Kg m       ). 
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(a) H/L=0 

 
(b) H/L=0.5 

  

 
(c) H/L=1 

 

 

Fig.3 

The Bulging frequencies (Hz) for the simply supported fluid-filled laminated composite cylindrical shell; 7.22( ), 21.96( ),R m L m   

( 3 3

1 2 12 12
2 0.0127( ), 1000( ), 76( ), 5.5( ), 2.31( ), 0.34, 1460( )

L s
h m Kg m E GPa E GPa G GPa v Kg m         ). 

 

 

 
(a) H/L=0 

 
(b) H/L=0.5 

  

 
(c) H/L=1 

 

 

Fig.4  
The Bulging frequencies (Hz) for the clamped-clamped fluid-filled laminated composite cylindrical shell; 7.22( ), 21.96( ),R m L m   

(
3 3

1 2 12 12
2 0.0127( ), 1000( ), 76( ), 5.5( ), 2.31( ), 0.34, 1460( )

L s
h m Kg m E GPa E GPa G GPa v Kg m         ). 



836                    M.R.Saviz   

© 2016 IAU, Arak Branch 

Case study #3: Effect of the fluid level on the bulging frequencies of the fluid filled laminated composite cylindrical 

shell 

Consider the free vibration of fluid filled laminated composite cylindrical shell with the same material and geometry 

as case study #2 and with different fluid levels. Figs.5 show the first fundamental bulging frequency ratios (Rc) of 

fluid filled composite cylindrical shell with different boundary conditions versus height ratio (H/L) of contained 
fluid for n=4 and [0

○
/0

○
], [0

○
/90

○
], [90

○
/90

○
] and [+45

○
/-45

○
] laminations, respectively. 

The fundamental bulging frequency ratio is defined as the ratio of the bulging frequency of partially fluid-filled 

shell to the natural frequency of the empty shell. From Figs.5, it can be inferred that for all laminations, by 

increasing the height of the fluid the fundamental bulging frequency ratio decreases. The effect of the fluid level on 

the natural frequency of a shell mostly depends on boundary conditions, whereas different fiber angles have 

insignificant role on trend of reduction of fundamental bulging frequency ratio. The changes in fundamental 

frequency ratio of simply supported and clamped-clamped fluid filled shells approximately have the same trends of 

reduction. 

For small H/L ratios, by increasing height of the fluid, the reduction of the fundamental frequency ratio for a 

clamped-free shell has a slower trend than that for the corresponding simply supported and clamped-clamped shells 

and is almost constant, whereas the trend of reduction in natural frequency for a simply supported shell is faster than 

that of the clamped-free shell while the curve corresponding to clamped-clamped shell has an overshoot and then a 

sudden decrease. For H/L≤  0.1, the values and variations of the fundamental frequency ratio for all boundary 

conditions are almost identical. However, for 0.1<H/L<0.3, the bulging natural frequencies of clamped-free shell 

have both a larger value and smoother variations than the other boundary conditions. Finally, for 0.3<H/L<1, the 

rate of reduction for the fundamental frequency ratio of the clamped-free shell is larger than simply supported and 

clamped-clamped shells. 

 

 
(a) [0○/0○] 

 
(b) [0○/90○] 

  

 
(c) [90○/90○] 

 
(d)[+45○/-45○] 

 

Fig.5  
The fundamental bulging frequency ratio for the fluid-filled laminated composite cylindrical shell versus height of fluid;  

( 3 3

1 2 12 12
7.22( ), 21.96( ), 0.0254( ), 1000( ), 76( ), 5.5( ), 2.31( ), 0.34, 1460( )

s L
R m L m h m Kg m E GPa E GPa G GPa v Kg m          ): (a) [0/0], 

(c)[0/90], (b)[90/90], (d)[+45/-45]. 

Case study #4: Effect of the shell geometry on bulging frequencies of fluid filled shell 

To investigate the effect of the length to radius ratio on the free vibration of fluid filled laminated composite 

cylindrical shell, again the shell of case study #2 with simply supported and clamped-free boundary conditions are 
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considered. The fiber angle is taken [0/90] lamination. Figs. 6 show the first bulging frequencies for n=4 versus 

height of fluid for different length to radius ratios of shell. From these figures, it can be seen that at constant fluid 

level in shell, by increasing the shell length the fundamental natural frequency decreases. For shorter shells, the 

effect of length on fundamental natural frequency is more sensible, especially for simply supported boundary 

condition.  

As expected, for a longer shell, there is more remarkable effect of the filled fluid on its bulging natural 

frequency. This is because of the fact that a longer shell becomes more flexible, and it is thus susceptible to the filled 

fluid. 

 

 
(a) simply supported 

 
(b) clamped-free 

 

Fig.6  
The bulging frequency for the fluid-filled laminated composite cylindrical shell versus height of fluid with different ratio of 

length to radius of shell;( 3 3

1 2 12 12
4, 7.22( ), 0.0254( ), 1000( ), 76( ), 5.5( ), 2.31( ), 0.34, 1460( )

s L
n R m h m Kg m E GPa E GPa G GPa v Kg m          .  

Case study #5: Effect of height of fluid on sloshing frequencies of fluid filled laminated composite cylindrical shell 

In this part, the effect of fluid height on sloshing natural frequencies of fluid filled laminated composite cylindrical 

shell vibration is studied. Consider the composite shell of case study #2 with simply supported boundary condition 

and the fiber angle is taken [0/90], because according to study #1 the sloshing frequencies of the shells with the 

same radius and length are approximately equal regardless of boundary conditions and fiber angle. This 

phenomenon can be explained so that the deformation of shell does not occur in the sloshing vibration mode and the 

shell is stiff enough for sloshing mode but an extremely flexible shell will show a larger displacement.  

Figs. 7 show the first three sloshing frequencies (m=1,2, 3) for (a) n= 4 and (b) n= 5 versus height of fluid. From 

these figures, it can be easily seen that sloshing natural frequencies grow quickly by increasing contained fluid up to 

0.1<H/L<0.2, and then frequencies remain at a constant value till the shell is filled completely. This is because of the 

fact that sloshing frequency is only related to free surface of fluid; when depth of fluid becomes inasmuch as surface 

of fluid could move easily, the height of fluid has no significant effect on sloshing frequency.  

 

 
(a) n=4 

 
(b) n=5 

 

Fig.7  
The sloshing frequency for the simply supported fluid-filled laminated composite cylindrical shell versus height of fluid;  

3 3

1 2 12 12
7.22( ), 21.96( ), 0.0254( ), 1000( ), 76( ), 5.5( ), 2.31( ), 0.34, 1460( )

s L
R m L m h m Kg m E GPa E GPa G GPa v Kg m          . 
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5    CONCLUSIONS 

A semi-analytical method for the coupled vibration of fluid filled laminated composite cylindrical shell with various 

boundary conditions has been presented by using Rayleigh-Ritz method. The results are validated by comparing 

with the previous works on the vibration of fluid filled isotropic shell and the results obtained from finite element 

method. Numerical case studies are given for investigating some related parameters on the bulging and sloshing 

frequency of fluid-filled shell and the following conclusions may be drawn: 

- The variation of the bulging frequency of a partially fluid-filled laminated composite circular cylindrical shell is 

similar to that for the corresponding empty shell, as circumferential wave number increases. 

- The effect of the filled fluid on the bulging frequency of a laminated composite circular cylindrical shell increases 

with the length to radius ratio. 

- The effect of the filled fluid on the sloshing frequency of a laminated composite circular cylindrical shell decreases 

with height of fluid. 
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