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 ABSTRACT 

 In this paper, buckling behavior of symmetric functionally graded plates resting 

on elastic foundation is investigated and their critical buckling load in different 

conditions is calculated and compared. Plate governing equations are derived 

using the principle of minimum potential energy. Afterwards, displacement field 

is solved using Galerkin method and the proposed process is examined through 

numerical examples. Effect of FGM power law index, plate aspect ratio, elastic 

foundation stiffness and metal core thickness on critical buckling load is 

investigated. The accuracy of this approach is verified by comparing its results to 

those obtained in another work, which is performed using Fourier series 

expansion.                                     © 2017 IAU, Arak Branch. All rights reserved. 

 Keywords : Functionally graded material; Plate; Buckling analysis; Galerkin 

method; Elastic foundation.  

1    INTRODUCTION 

 INCE the introduction of Functionally Graded Materials (FGMs) in 1972, these materials are being used in 

aerospace, biomechanics, petrochemical, marine industry, also in civil engineering and mechanical engineering 

wherever it is needed to eliminate stress concentration or to reach higher strength and endurance [1, 2, 3, 4, 5]. 

FGMs are composite materials with non-homogenous micro-structures, that their mechanical characteristics changes 

continually through thickness [6, 7, 8] and obeys specific distribution functions such as power law index [9, 10, 11]. 

Metallic and ceramic material are widely used together in FGMs to improve the strength and temperature endurance. 

This combination also terminates contact surface, corrosion, cracking and de-bond problems which are usual in 

conventional composites [7, 10, 12, 13]. Because of these interesting characteristics, researchers have investigated 

the behavior of these materials from structural, vibrational and stress point of views. Pan [14] has derived an exact 

solution to stress analysis for rectangular FGM plates with simply supported edge conditions. Li et al. [3, 4], Cheng 

and Batra [13], Kashtalyan [15], Zenkour [16], Zheng and Zhong [17], Vel and Batra [18] and Nguyen et al. [19] 

analyzed these materials to investigate their stress-strain behavior. Hopkiins and Chamis [20] presented a unique set 

of micromechanics equations for high temperature. Birman [21] solved the buckling problem of FGM hybrid 

composite plates based on these equations. Feldman and Aboudi [8] investigated elastic bifurcation buckling of 

FGM plates with non-uniformly distributed fibers under uniaxial compressive loading by combining 

micromechanical and structural approach. Chen and Liew [22] investigated buckling behavior of a two-dimensional 
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elastic plane stress problem of FGM plates subjected to nonlinearly distributed in-plane edge loads using  Mindlin’s 

plate assumption. Saidi et al. [23] investigated axisymmetric bending and buckling of FGM circular plates by means 

of Unconstrained Third-Order Shear Deformation Theory (UTST). Mohammadi et al. [24] presented Levy solution 

for the buckling analysis of thin rectangular FGM plates subjected to different mechanical loads under different 

boundary conditions using the principle of minimum potential energy based on the CPT (Kirchhoff Theory). 

Another important issue is the behavior of FGM plate, when it is resting on elastic foundation. Dung DV, Thiem 

HT [25] investigated stability of eccentrically stiffened functionally graded imperfect plates resting on elastic 

foundation. Sobhy [26] investigated buckling and free vibration of exponentially graded sandwich plates resting on 

elastic foundation for different boundary conditions using shear deformation plate theory. Naderi and Saidi [27] 

extracted an exact solution for stability analysis of moderately thick functionally graded sector plates resting on 

elastic foundation using first order shear deformation plate theory. Yaghoobi and Fereidoon [28] investigated 

buckling behavior of functionally graded plates resting on elastic foundation using refined nth-order shear 

deformation theory. Thai and Kim [29] offered a closed-form solution for buckling analysis of thick functionally 

graded plates on elastic foundation. Surveying the literature, it is clear that the effect of elastic foundation, especially 

its effect on buckling of FGM plates, has not been in proper attention. 

In this paper, governing equations for FGM plate resting on elastic foundation is extracted using Classic Plate 

Theory (CPT). Using Galerkin method, these equations are solved for eight different boundary conditions and 

critical buckling load are calculated for them. Then, effect of FGM power law index, plate aspect ratio, elastic 

foundation stiffness and metal core thickness on critical buckling load is investigated through numerical examples. 

Finally, in order to confirm the validity of the results a comparison between present work and a previous work is 

presented and it is shown that the difference of results is under 1 percent in almost all cases. 

2    CLASSIC PLATE THEORY  

Generally modeling plates is done based on categorizing them into thick, mid thick and thin. Since thin plates are 

considered in this paper, Kirchhoff classic theory is used. Thus, displacement field is given as: 
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In which. ,x yu u  and zu are representing displacements in respective directions. Also, linear strain-displacement 

relations in elasticity are given as: 
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In which, u, v and w are displacements in mid-plane in respect to three directions. Developed form of stress-

strain relationship in 2D theory of elasticity is given by: 
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In which E, v are poison ratio and young modulus. Directly integrating both sides of Eq. (3) results in forces and 

multiplying it by Z and integrating results in moments: 
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In which , ,ij ijM N D and A are total moments, total forces, momentary and linear stiffnesses, respectively. 

These parameters are given by: 
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3    FGM COMPOSITE MATERIALS   

Based on composite material law, final product properties will be sum of primary materials properties multiplied by 

their volume fractions. In functionally graded materials where each material ratio is variable through thickness, as 

shown in Fig. 1, final properties are also varied through thickness. 

 

 

 

 

 

 

 

Fig.1 

Schematic of symmetric FGM cored plate. 
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There are various offered functions describing volume friction of FGM components, one of them is power law 

index. In this case, volume fraction of both materials is varied through thickness and dependent on the power law 

index (Fig. 2). 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Effect of power law index on symmetric FGM cored plate 

properties through thickness.  

 

For symmetric FGM cored plates, shown in Fig. 1, mechanical properties are given by [7, 9]: 
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In which 0, ,i iE E , , and 0  are elasticity modulus and density for internal and external material, fgh is 

thickness of functionally graded part, ih is thickness of the plate core and p is plate power law index. 

There are several methods such as newton law, virtual work, energy methods, minimizing total potential energy, 

etc., for obtaining displacement field of elastic materials. In this paper minimum potential energy method is used. 

This method is based on minimizing the sum of external and internal work: 
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where   is variational operator, ,I EW W  are internal and external force works, respectively. Using the boundary 

conditions shown in Fig. 3, stress function is given by: 
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In which F is the applied force in x direction and   is the aspect ratio of forces in two normal directions as 

shown in Fig. 3. 
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Fig.3 

Applied in plane forces on plate edges. 

 

 

As presented in literature [30], after substituting stress function and moments (in term of displacement) in 

equilibrium equation the plate displacement field is obtained: 
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4    GALERKIN METHOD    

There are several numerical solutions for solving the obtained differential equation. In Galerkin method it is 

assumed that the answer is the sum of a sequence of i functions with homogenous essential and natural boundary 

conditions in form of: 
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where NU is the approximate solution, ic are constants connecting functions which must be determined, N the 

number of functions, i are trial functions and 0 is a function which is satisfying the boundary conditions. In this 

paper, effect of eight different boundary conditions, shown in Fig. 4, is investigated: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 

Considered boundary conditions. 
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In Fig. 4, C, S and F are representing clamped, simply supported and free boundary conditions on entire edge. 

Approximation functions for each of these boundary conditions are given as: 

Four side simply support (ssss): 
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Four side clamped support (cccc): 
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Symmetric two side clamped and two side simply supported (scsc): 
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One side clamped and three side simply supported (sssc): 
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Three side clamped and one side simply supported (cccs): 
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Asymmetric two side clamped and two side simply supported (ccss): 
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Symmetric two sides simply supported and two sides free (sfsf): 

 

2
2 2

1 1

2
sin cos 2 1

M N

MN mnm n

m x n y y y
W w n

a b b b 

                 
   

     

    (19) 

 

Symmetric two sides clamped and two sides free (cfcf): 
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In which mnw  are plate displacement constants, m and n are number of half waves in x and y directions and a 

and b are length of plate in these directions. Based on Galerkin method, after rearrangement of displacement field 

(Eq. (11)) and substitution of approximation functions (WMN ), constants and other unknowns are calculated using 

the following procedure: 
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In which ij  are the approximation functions or trial functions (in two dimensional form), MNR are error 

functions (residuals).  Eq. (23) is in fact representing M N equation and have the same number of unknown which 

rearranging them, having Eq. (11) in mind, gives out the matrix equation as below: 
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Nontrivial solution exists only if determinant of coefficient matrix (B) is zero. Critical load, F in Eq. (11), is 

reached by taking determinant of B equal to zero. For each boundary conditions, this equation is solved and its 

results are presented in the next section. 

5    NUMERICAL EXAMPLE    

Effect of power law index, plate aspect ratio, elastic foundation stiffness and metal core thickness on critical 

buckling load is examined through series of numerical examples and their results are shown in following graphs. 

These calculations are done for a 5 mm thick plate made of aluminum and alumina ceramic. 

5.1 Effect of FGM power law index 

Using  previously obtained equations, effect of FGM power law index on critical buckling load in case of quadratic 

plate, symmetric biaxial in-plane pressure,  non-elastic condition, 1 mm thick metal core and 20a h   for four 

types of boundary conditions is investigated (Fig. 5). Results show that any increase in power law index will reduce 

buckling load, because in higher power law indexes the amount of ceramic will reduce and the plate will be softer 

mechanically. However this decreasing effect has more influence on solid supports and it also wears off in higher 

power law indexes for all boundary conditions. Fig. 5 also shows that SSSS and CFCF graphs are fairly close and so 

it can give the impression that rigidity of these two conditions is similar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 

Effect of FGM power law index on critical buckling load. 

 

In case of SFSF (Symmetric two sides simply supported and two sides free) critical buckling load is very low 

because there is no boundary stiffness resisting loads and keeping the plate at its original state. It should be stated 

that the critical buckling load is not zero but rather very low. 
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5.2 Effect of plate aspect ratio 

Effect of plate aspect ratio on critical buckling load in non-elastic condition, uniaxial pressure, power law index of 

unit and without metal core have been derived (Fig. 6). In case of SFSF, the critical buckling load is very low with 

the same reasoning as in section 5.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6 

Effect of aspect ratio on plate critical buckling load. 

 

Results indicate that increasing the aspect ratio has a paternal effect on critical buckling load. The reason for this 

is when plate aspect ratio ( a b ) increases, buckling mode jumps to the next shape (with more half waves) (Fig. 7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 

Different mode shape caused by changing plate aspect ratio. 

 

In present method of calculating plate critical load, it is calculated for different modes and then their minimum is 

chosen as the critical buckling load. Each curve is obtained by putting together all the minimum forces in each 

domain. In each specific boundary condition, minimum buckling load for all modes is constant. Also, as expected, 

this graphs show that more boundary condition rigidity and symmetricity will result in higher critical buckling load.  

5.3 Effect of elastic foundation stiffness 

Effect of elastic foundation stiffness on critical buckling load in quadratic plate with symmetric biaxial loading, 1 

mm thick metal core and unit power law index  is derived (Fig. 8). Obtained graphs show that for all of the boundary 

conditions any increase in elastic foundation stiffness will result in higher critical buckling load. However, the 

influence of elastic foundation on plates with two free sides is more than other cases and it simply can be attributed 

to the difference in rigidity of boundary conditions for different cases. 
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Fig.8 

Effect of elastic foundation stiffness on critical buckling load. 

5.4 Effect of metal core thickness 

Effect of metal core thickness on critical buckling load in a quadratic plate made of aluminum as core and ceramic 

as the outer layers have been investigated (Fig. 9). Results show that any increase in thickness of metal core will 

result in lower buckling load. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9 

Effect of metal core thickness on critical buckling load. 

 

It should be noted that in other cases, except when plate aspect ratio is changing, first buckling mode (which is of 

value here) contains only one half wave in two directions (Fig. 10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.10 

First mode shape of plate with different boundary conditions. 
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6    VALIDATION  

For validating the obtained results and estimating the approximation error, a comparison between the present 

research results and results of an investigation performed by Latifi et al. [31], which had used Fourier series 

expansion, is presented. As shown in Table 1. The results of present approach are fairly close to the previous data. 

Table 1. Also shows that the difference between two researches is under 1 percent in most cases and so recent 

approach is reliable. 
 

Table 1 

Comparison of buckling force of FGM plate. 

p b a  Present Latifi et.al[31] Error % 

0 

1     6.868929    6.811 0.850519 

   1.5      8.061451    7.981 1.008034 

2 10.7327   10.63 0.966146 

   2.5 14.44192 14.311 0.914841 

3 19.08036 18.921 0.842228 

1 

1    3.423766   3.392 0.936491 

   1.5 4.01817 3.97 1.213339 

2   5.349634    5.312 0.708472 

   2.5  7.198468   7.132 0.931962 

3 9.51046   9.431 0.842545 

2 

1 2.671631 2.65 0.816258 

   1.5 3.135456  3.112 0.753716 

2 4.174423 4.13 1.075622 

   2.5 5.617104   5.564 0.954419 

3 7.421197   7.352 0.941197 

5 

1 2.259323    2.241 0.817626 

   1.5 2.651567    2.621 1.166218 

2 3.530192    3.512 0.518001 

   2.5 4.750227   4.723 0.576468 

3 6.275897   6.223 0.850027 

7    CONCLUSIONS 

Governing equations of symmetric FGM cored plate have been derived using classic plate theory (CPT). Using 

Galerkin method these equations were solved for eight different boundary conditions and critical buckling load were 

calculated. Numerical examples were presented to investigate the effect of different parameters on critical buckling 

load. Based on graphs obtained from these numerical examples, results of this research can be pointed out as follow: 

      Increasing power law index in ceramic-metal-ceramic FGMs will decrease critical buckling load, 

      Although increasing plate aspect ratio will change buckling mode, minimum buckling load for all modes is 

constant, 

      Increasing elastic foundation stiffness will increase critical buckling load, 

      Lower boundary condition rigidity will result in lower critical buckling load, 

      In absence of elastic foundation, in boundary conditions with lower rigidity, critical buckling load is lower, 

and 

     Increasing thickness of metal core will decrease critical buckling load. 
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