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 ABSTRACT 

 This paper investigates the buckling of finite isotropic rectangular plates 

with circular cutout under uniaxial and biaxial loading. The complex 

potential method is used to calculate the pre-buckling stress distribution 

around the cutout in the plate with finite dimensions. To satisfy the in-

plane boundary conditions, the generalized complex-potential functions are 

introduced and a new method based on the boundary integral which has 

been obtained from the principle of virtual work is used to apply the 

boundary conditions at the plate edges. The potential energy of the plate is 

calculated by considering the first order shear deformation theory and the 

Ritz method is used to calculate the buckling load. The effects of cutout 

size, type of loading and different boundary conditions on the buckling 

load are investigated. Comparing of the calculated buckling loads with the 

finite element results shows the accuracy of the presented method for 

buckling analysis of the plates.  

                                             © 2018 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 LATES are initially flat structures which are extensively used in many fields of engineering such as 

architectural structures, airplanes, ships, etc. In some applications, cutouts with different shapes are introduced in 

the plates to provide access for inspection, services, maintenance, ventilation or decreasing the weight. The 

existence of cutout alters the stress distribution in the plate and consequently influences its buckling behavior. One 

approach to calculate the stress distribution around a hole in an infinite plate is the complex potential method. This 

method was introduced by Lekhnitskii [1] and Savin [2] to calculate the stress concentration factor around a circular 

hole in an infinite orthotropic plate. Savin used the Schwarz–Christoffel integral mapping for calculating the 

potential functions, while Lekhnitskii used the Fourier series, however their solutions were the same. A review of 

the mathematical basis of the complex potential method and the related studies was presented by Sevenois and 

Koussios [3]. An analytical solution was presented by Lin and Ko [4] for determining the stress concentration factor 

of finite composite laminates with an elliptical cutout. The solution was obtained by the complex variable technique 

in conjunction with the boundary collocation method. Gao [5] presented a general solution for calculating the stress 
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distribution in an infinite elastic plate with an elliptical hole and subjected to arbitrary biaxial loading. He used the 

complex potential method in the elliptic-hyperbolic coordinate system to obtain the solution. Ukadgaonker and Rao 

[6] used Savin’s formulation and a superposition method to present a solution for stress distribution around an 

arbitrarily shaped hole in symmetric laminates subjected to any combination of in-plane loads. Xu and Yue [7] 

studied the stress distribution in  finite composite laminates with multiple cutouts. They employed the complex 

potential method based on the series expansion and least squares boundary collocation method. Louhghalam et al. 

[8] used a combined conformal mapping and Finite Element (FE) approach to calculate the stress concentration 

factor in a plate with multiple rectangular cutouts under bending deformation. Nemeth et al. [9] used an approximate 

method for buckling analysis of rectangular composite plates with a circular cutout. By expressing the displacements 

as the product of two series of functions, they were able to convert the pre-buckling and buckling problems from 

two-dimensional case to a one-dimensional system of linear differential equations with variable coefficients, which 

were solved by the finite difference method. Britt [10] studied the buckling of biaxial and shear loaded anisotropic 

panels with an elliptical cutout. He used the complex potentials and a boundary collocation method to calculate the 

pre-buckling stress distribution. Buckling analysis of plates with eccentrically located rectangular cutouts was 

performed by Shakerley and Brown [11]. They used the conjugate load-displacement method to calculate the 

buckling loads. In many studies related to the buckling of plates with cutout, the solution is based on the FE or other 

numerical methods [12-21], since the existence of cutout complicates the pre-buckling stress distribution in the 

plate. El-sawy and Nazmy [12] used the FE method to study the buckling of rectangular plates with circular and 

rectangular cutouts located at different locations in the plate. Ghannadpour et al. [14] performed a study on the 

buckling of rectangular composite plates with cutout by using the FE method. Also Anil et al. [15] used the FE 

formulation based on the higher order shear deformation theory to study the buckling of composite laminates with 

rectangular cutout under biaxial loading. The effect of single and multiple holes on the buckling of plates was 

demonstrated by Moen and Schafer [16]. They presented closed-form expressions by a numerical analysis for 

approximating the critical stresses. Kumar and Sing [17-19] studied the stability and failure of composite plates with 

cutouts of various shapes, such as square, circle, diamond and ellipse by the FE method. Prajapat et al. [21] 

investigated the buckling of perfect and perforated plates subjected to four different in-plane boundary conditions. 

Barut and Madenci [22] used a complex potential-variational formulation to study the thermo-mechanical buckling 

of flat laminates with an elliptical cutout at an arbitrary location and orientation. Ovesy and Fazilati [23] used the 

third order shear deformation theory to calculate the buckling load and natural frequency of composite plates with 

circular and square cutouts using the finite strip method.  Huang and Leissa [24] used the Ritz method with special 

displacement functions to study the vibrations of rectangular plates with side cracks of different size, location and 

orientation. Also Huang et al. [25] used a new set of admissible functions in the Ritz method to properly describe the 

stress singularity near the tips of crack and used this method to study the vibrations of  simply supported and free 

square plates with internal cracks based on the classical plate theory (CPT) without in-plane loading. It is noted that 

in the study of free vibration in presence of the in-plane load, there is no need to calculate the pre-buckling stress 

field, which is a major step in the buckling analysis of the plates with cutout. 

In this paper, the complex potential method has been used to calculate the pre-buckling stress distribution in a 

finite plate with circular cutout. This solution satisfies the boundary conditions at the cutout edge exactly. The 

potential energy of the plate is extracted based on the first order shear deformation theory (FSDT) and the Ritz 

method is used to calculate the buckling load. By using the analytical solution, some new results are presented for 

the buckling load of a plate with circular cutout and different boundary conditions under uniaxial and biaxial 

loading. In summary: 

 Instead of collocation method, which has difficulties regarding to point spacing and the number of required 

points for a good accuracy, a boundary integral which is obtained from the principle of virtual work is 

employed to apply the in-plane boundary conditions at the plate edges. This method satisfies the boundary 

conditions at the cutout edge exactly and the boundary condition at plate edges with high accuracy. 

 The vibration mode shapes of a beam with the same boundary conditions of the plate are used as trial 

functions in the Ritz method to calculate the buckling load of a plate with cutout. To the knowledge of the 

authors, this method has not been applied to plates with cutout. 

2    PROBLEM FORMULATION 

2.1 Pre-buckling stress distribution 

The method of complex potentials is used to calculate the pre-buckling stress field of a plate with circular cutout. 

The compatibility equation for a two-dimensional problem is: 
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and the solution is expressed as: [26] 

 

( , ) 1/ 2( ( ) ( ) ( ) ( )) Re( ( ) ( ))z z z z z z z z z z z             (2) 

 

where z x iy 
 
is the complex variable and ( ), ( )z z   are arbitrary functions of z . 

Now by defining ( ) ( )z z  , the stress components are calculated as the following: 

 

1 1 1 1
2Re[ ( ) ( ) ( )], 2Re[ ( ) ( ) ( )], Im[ ( ) ( )]

2 2 2 2
x y xyz z z z z z z z z z z                          

 

(3) 

 

The boundary condition is expressed as: 
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(4) 

 

where ,x yT T
 
are traction force vectors applied at the boundaries of the plate (Fig. 1). By integrating Eq. (4) results: 

 

( ) ( ( ) ( ) ( )) [ ( ) ( ) ( )]
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(5) 

 

where ,x yF F
 
are resultant force components acting on a segment of the boundary from A to B (Fig. 1). 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 

Traction force vectors applied at plate boundaries. 

 

The problem solution now reduces to finding two complex potential functions ( )z  and ( )z  that satisfy the 

boundary condition as stated in Eq. (5). Then, the in-plane stress components are calculated from Eqs. (3). In this 

paper, the complex functions ( )z  and ( )z  for finite plates are expressed as: 

 
1 2 1 2

1 1 1 1

( ) , ( )
N N N N

n nn n

n nn n
n n n n

B D
z A z z C z

z z
 

   

        
 

(6) 

 

where 1N  and 2N  are the number of terms considered for each series.  

2.2 In-plane boundary conditions 

The constants , ,n n nA B C  and nD
 
in Eq. (6) must be calculated from the in-plane boundary conditions. In this 

paper, the boundary conditions are applied in two steps. At first, Eq. (5) is used to apply the boundary condition at 
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the cutout edge. By solving the obtained system of equations, in which the number of equations is less than the 

number of unknowns, some of these constants are calculated. Then, based on the principle of virtual work, a 

boundary integral is obtained that is used to apply the boundary conditions at the plate edges and to calculate the 
remaining constants. This method is explained in the following. The displacement field of a plate subjected to in-

plane loading without the lateral deflection is expressed as: 

 

0 0( , ), ( , ), w 0u u x y v v x y    (7) 

 

According to the principle of virtual work, in an equilibrium state the relation 0I EW W    holds, where 

IW  and 
EW are the virtual work of internal and external forces, respectively, which are expressed as: [27] 
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(8) 

 

where 0 0,x yN N  and 0

xyN  are the stress resultants applied at the plate edges. By substituting the strain components in 

the virtual work relation and using the Green’s theorem, we have 
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(9) 

 

where , ,x y xyN N N  are stress resultants which are expressed as: 
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(10) 

 

where h  is  thickness of the plate. Eq. (9) contains two integrals, one in the domain of problem and the other over 

the boundary. For the virtual work principle to be held, the coefficients of 
0u  and 

0v in each integral must be 

equated to zero, which give the equilibrium equations and boundary conditions of the problem. The equilibrium 

equations were solved by using the complex potentials in the previous section. Now the second integral in Eq. (9) is 

used to apply the boundary conditions at the plate outer edges. To do this, the displacement components 
0u

 
and 

0v  

must be known. The equilibrium equations in terms of the displacements, referred to Navier’s equations are 

expressed as: [26] 

 
2 ( ) ( . ) 0G G     u u  (11) 

 

where ˆ ˆi j
x y

 
  

 
 is the gradient operator and 

0 0{ , }Tu vu  is the displacement vector. By introducing the 

complex displacement U u iv   in the Navier’s equation, it is written in the complex form as:  

 
2

( ) ( ) 2 0
U U U

G G
z z z z z


   

   
    

 
 

(12) 

 

By integrating the above equation, the complex displacement U is calculated as a function of complex potentials 

as follows: 

 

2 ( ) ( ) ( )GU z z z z      (13) 
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where
 

(3 ) / (1 )      for the plane stress conditions. After solving Eq. (13) for 
0u  and 

0v , the variations 

0u and 
0v

 
are calculated. Now to apply the boundary conditions at the plate edges, the values of resultant forces 

,x yN N and 
xyN  and also the variations 

0u and 
0v

 
are substituted in the boundary integral (the second integral 

in Eq. (9)). By equating the coefficients of , ,i i iA B C    and 
iD to zero in the obtained expression, the unknown 

constants are calculated. After calculation of the constants in Eq. (6), the pre-buckling  stress distribution is obtained 

by substituting ( )z  and ( )z  into Eqs. (3). In the next step, this stress distribution is used to calculate the 

buckling load. Since the expressions obtained for pre-buckling stress components are very complicated, direct 

solution of the stability equations is difficult. In this paper, the potential energy of the plate is calculated based on 

the first order shear deformation theory and the Ritz method is used to calculate the buckling load. 

2.3 Energy of plate based on FSDT 

Consider an isotropic and homogeneous plate with length a, width b and thickness h. A coordinate system which its 

origin is located at the plate center and x,y,z axes are along the plate length, width and thickness, respectively, is 

used to describe the displacements (Fig. 2). The displacement field of a deformed plate according to FSDT is 

expressed as: [27] 

 

         0 1 0 1, , , , , , , .u u x y zu x y v v x y zv x y w w x y      (14) 

 

where 
0 0, ,u v w  represent the displacement components of a point on the mid-plane (z=0) and 

1 1, vu  represent the 

rotation of a line initially perpendicular to the mid-plane relative to y and x axes, respectively. The total potential 

energy of the plate during lateral deflection is 
1 2V V    where 

1V  is the strain energy and 
2V  is the potential 

energy due to in-plane loads during lateral deflection. These energies are expressed as: [28] 
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(15) 

 

where S is the mid-plane area. The moment and transverse shear resultants are: 
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(16) 

 

where ks =5/6 is the shear correction factor [27]. The moment and transverse shear resultants are related to 

displacements as the following: 
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where 2A G   and ,G   are Lame’s constants which are expressed as: 
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By substituting Eqs. (16) and (10) into Eq. (15), the total potential energy can be written as a function of pre-

buckling  stress components and displacement field 
1 1, ,u v w . In the Ritz method, the potential energy of the plate is 

approximated by assuming appropriate functions for displacements. Here the displacements are expressed as: 

 

1 , 1 1 1 , 2 2 , 3 3

1 1 1 1 1 1

u ( , ) ( ) ( ), ( , ) ( ) ( ), ( , ) ( ) ( )
M N M N M N

m n m n m n m n m n m n

m n m n m n

x y U x y v x y V x y w x y W x y     
     

      
 

(19) 

 

where , , 1,2,3im in i    are admissible functions that satisfy the essential boundary conditions of the problem. 

Kumar presented a complete review on the application of the Ritz method for vibration and buckling analysis of 

plates and shells [29].  There are different sets of admissible functions that can be used in the Ritz method. Garcia et 

al. [30] compared the accuracy, convergence and numerical behavior of different sets of admissible functions in the 

Ritz method. In this paper, the lateral vibrational mode shapes of a beam with boundary conditions similar to the 

plate in two opposite edges has been used to express ( )m x  and ( )n y . These functions have the property of 

completeness and orthogonality which improves the convergence of the solution. The differential equation for free 

vibration of an Euler-Bernoulli beam with density  , Young’s modulus E, cross sectional area A0 and moment of 

inertia I is expressed as: 

 
4 2

04 2

( , ) ( , )
0

w x t w x t
EI A

x t


 
 

 
 

 

 (20) 

 

where ( , )w x t
 
is deflection of the beam.  

The solution of Eq. (20) is considered as ( , t) ( )cos( t)w x x   where ( )x  represents the vibrational mode 

shape of the beam. The solution is expressed as 1 2 3 4( ) cos( x) sin( ) cosh( ) sinh( x)x C C x C x C         

where 4 20A

EI


  . Now by applying the boundary conditions at two ends of the beam, the vibrational mode 

shapes and the value of   are calculated. The beam functions for different combinations of boundary conditions are 

as follows: 

a) simply supported at both ends 

 

( ) sin( x), , ( 1,2,...)ss

m m m

m
x m

a


      

 

  

 

where a is the length of the beam. 

 

b) clamped at both ends 

 

 
cos( a) cosh( a)

( ) sin( ) sinh( x) cosh( x) cos( x), ( 1,2,...)
sin( a) sinh( a)

cc m m

m m m m m
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x x m
 

    
 


    


 

 

  

 

where m  is the solution of  cos( a)cosh( a) 1 0m m    . 

c) simply supported at left end and free at right end 

 

1

sinh( a)
( ) , ( ) sin( x) sinh( x), ( 2,3,...)

sin( a)

sf sf m

m m m

m

x x x m
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where 
1 0   and ,m 2,3,...m   is the solution of tan( a) tanh( a) 0m m    

d) free at both ends 

 

 1 2

cos( a) cosh( a)
( ) 1, ( ) , ( ) sin( ) cosh( x) cos( x) sinh( x), ( 3,4,...)

sin( a) sinh( a)
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m m m m m

m m

x x x x x m
 

      
 


      


 

 

  

 

where 
1 2 0    and , 3,4,...m m   is the solution of cos( a)cosh( a) 1 0m m    . 

The functions ( )n y are constructed by replacing x, a and m by y, b and n, respectively, in the corresponding 

( )m x  function. For example, for a simply supported plate at the left and right edges and clamped at the up and 

down edges, the displacement field is expressed as: 

 

1 , 1 , ,

1 1 1 1 1 1
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M N M N M N
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At an equilibrium state, the total potential energy of the system is stationary , i.e 

 

, , ,

1 1 , , , , , ,

0 0, 0, 0
M N

m n m n m n

m n m n m n m n m n m n m n

U V W
U V W U V W

   
 

      
                

  
 

 (21) 

 

By substituting the expression for total potential energy into Eqs. (21), an eigenvalue problem is obtained and the 

buckling loads and mode shapes are calculated. 

3    FE ANALYSIS   

In order to evaluate the accuracy of the presented solution, the FE analysis has been performed by using ABAQUS 

package. The S4R element has been used for meshing. This element is a 4-node quadrilateral shell element with 

reduced integration and a large-strain formulation, which is suitable for analyzing thick or thin plates and shells 

[31].The size of elements has been selected based on a mesh sensitivity analysis. The in-plane loads are applied as 

"shell edge load" type at corresponding edges.  

4    RESULTS AND DISCUSSION 
 

4.1 Pre-buckling  

In this section, the pre-buckling stress distribution for an isotropic square plate with a circular cutout and subjected 

to in-plane loading is presented. The geometry of the plate is shown in Fig. 2, where 0   represents  uniaxial 

loading and 1   represents biaxial loading.  

 

 

 

 

 

 

 

 

 

 

Fig.2 

Geometry of plate with cutout under in-plane loading.
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In Fig. 3, the variation of tangential stress   around the circular hole has been shown for different values of 

/D a . For an infinite plate, the value of stress concentration factor max 0( / )x   is equal to 3 for uniaxial and 2 for 

biaxial loadings [26], where max 0, x   are the maximum stress around the cutout and the in-plane stress applied at 

the plate edges, respectively. Fig. 3 shows that for finite plates, the stress concentration factor is higher than infinite 

plate and its value increases as the /D a  ratio increases. The variation of tangential stress around the cutout is 

different for uniaxial and biaxial loading. In the case of biaxial loading, the tangential stress is almost constant 

around the cutout for small holes (smaller values of /D a  ratios), but as the hole size increases, tangential stress 

changes with   and the maximum stress occurs at 45 (on diagonal lines) and repeats at 90 intervals. For uniaxial 

loading, the maximum stress occurs at 90 and repeats at 180  intervals. 

 

 
(a) 

 
(b) 

Fig.3 

Variation of tangential stress around circular cutout. a) uniaxial loading. b) baxial loading. 

 

The variation of in-plane stress components at different cross sections for a plate with / 0.6D a   under uniaxial 

loading has been shown in Fig. 4, where R  is the cutout radius. In equilibrium state, the area under each curve in 
0/x x   graphs must be equal to one and the area under each curve in 0/y x   and 0/xy x   graphs must be equal to 

zero for this case, and the calculations show this fact. In order to investigate the accuracy of the presented solution in 

satisfying the boundary conditions at the plate edges, the variation of in-plane stress components along plate edges 

has been shown in Fig. 5 for a plate under uniaxial loading with / 0.6D a  . According to this Figure, the maximum 

error in satisfying the boundary conditions at the plate edges is less that 1.5%. This error has been defined as: error 

(%)= (actual value-calculated value)/actual value*100. It has smaller values for lower value /D a .  

 

   
(a) x  

 
(b)

 y  

   
(c)

 yx  
 

(d)
 xy  

Fig.4 

Variation of in-plane stress components for a plate under uniaxial loading with / 0.6D a  . 
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(a) variation of 

x  at left and right edges 
 

(b) variation of 
y  at up and down edges 

   
(c) variation of 

yx at left and right edges 
 

(d) variation of 
xy  at up and down edges 

 

Fig.5 

Variation of in-plane stress components for uniaxial loading at plate edges for / 0.6D a  . 

 

Fig. 6 shows the contour plot of the pre-buckling  stress components for / 0.6D a  , which are calculated based 

on the presented solution. 

 

 
(a)

 
0/x x   

 
(b)

 
0/y x   

  

 
(c)

 
0/xy x   

 
(d)

 
0/x x   

  

 
(e)

 
0/y x   

 
(f)

 
0/xy x   

Fig.6 

Contour plot of pre-buckling  stress components, a-c) uniaxial loading, d-e) biaxial loading.
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4.2 Buckling 

In order to calculate the plate buckling load, the pre-buckling stress components are substituted in Eq. (15) and the 

Gauss quadrature method is used for integration. Then, based on the Ritz minimization method, an eigenvalue 

problem has been constructed to find the buckling load. The values of M=N=9 have been selected in Eq. (19), for 

convergence. Comparison of the buckling load obtained by the present analytical solution with the existing 

numerical results has been summarized in Table 1. for simply supported and clamped plates. The buckling load is 

normalized as 2 2

11/cr crN N b D  where 3 2

11 /12(1 )D Eh    is the flexural rigidity of the plate. The maximum 

difference is about 6% for SSSS boundary condition for both uniaxial and biaxial loading, while for CCCC plate the 

maximum difference is 13% for uniaxial loading and 7% for biaxial loading. 
 

 

Table 1 

 Comparison of normalized buckling load 
crN with existing results. 

D/a 

 Uniaxial   Biaxial 

SSSS  CCCC  SSSS  CCCC 

Present Sabir 

and 

Chow 

[13] 

El-

Sawy 

and 

Nazmy 

[12] 

Komur 

and 

Sonmez 

[20] 

 Present Sabir and 

Chow 

[13] 

 Present Sabir 

and 

Chow 

[13] 

 Present Sabir 

and 

Chow 

[13] 

0 3.986 ------ 4.000 4.002  9.914 ------  1.993 ------  5.234 ------ 

0.1 3.924 3.691 3.859 3.861  9.723 9.530  1.962 1.849  5.207 4.843 

0.2 3.571 3.445 3.531 3.527  8.958 ------  1.794 1.766  5.019 4.714 

0.3 3.230 3.185 3.240 3.230  8.735 8.534  1.640 1.640  5.307 5.086 

0.4 3.023 3.049 3.040 3.037  8.381 8.728  1.568 1.545  6.128 5.986 

0.5 2.890 2.840 2.914 2.906  7.801 9.005  1.554 1.473  7.215 7.514 

0.6 2.818 ------ 2.829 2.817  7.099 ------  1.586 ------  8.529 ------ 

 

 

The effect of different combinations of boundary conditions and /D a  ratio on the buckling load of a square 

plate with circular cutout has been presented in Tables 2 and 3 for uniaxial and biaxial loadings, respectively. The 

results have been compared with the FE solutions, which show the good agreement. In these Tables, each type of 

boundary condition has been named by a four-letter word, where the first two letters represent the boundary 

conditions in x direction and the other letters represent the boundary condition in y direction. Also S, C and F stand 

for simply supported, clamped and free boundary conditions, respectively. According to Tables 2 and 3, increasing 

the size of the cutout decreases the buckling load for all types of boundary conditions for uniaxial loading. But for 

biaxial loading, the CCCC case has a different behavior in which the buckling load increases for higher /D a  ratios. 

The value of buckling load depends on the plate supports and the plates with CCCC and SSFF boundary conditions 

have the highest and lowest buckling loads, respectively. Note that the reduction in buckling load for / 0.6D a   

relative to a plate without hole for uniaxial loading is equal to 28.39% for CCCC  and 54.01% for SSFF case. For 

the plates subjected to biaxial loading, this reduction is 20.41 % for SSSS and 62.95% for CCCC plate. For the other 

types of boundary conditions, this reduction is between these two values. The buckling load of the plates under 

biaxial loading is lower than the plates with uniaxial loading. The plates with SSFF boundary condition have similar 

behavior under uniaxial and biaxial loading. 

Figs. 7 and 8 show the sensitivity of the buckling load to pre-buckling stress field. In these Figures, the buckling 

load has been calculated by assuming a constant pre-buckling  stress field, i.e  0 , 0, 0x x y xy       for uniaxial 

loading and 0 0, , 0x x y x xy      
 
for biaxial loading, and this value is compared with the buckling load from 

the obtained results from the pre-buckling  stress field. According to Figs. 7 and 8, the sensitivity of the buckling 

load to pre-buckling  stress field depends on the boundary conditions and /D a  ratio. For uniaxial loading, the 

buckling load of a plate with SSFF boundary condition has the lowest sensitivity with the maximum difference equal 

to 10.67%, while the buckling load of a plate with CCFF boundary condition is very sensitive to pre-buckling stress 

distribution and the maximum difference in this case is 63.89%. For biaxial loading, the plates with SSFF and CCSF 

boundary conditions have the lowest and highest sensitivity to pre-buckling stresses and the maximum difference for 



           Investigation of Pre-Buckling Stress Effect on Buckling Load ….                     826 

 

© 2018 IAU, Arak Branch 

these two cases is 12.81% and 40.24%, respectively. When /D a  ratio increases, the non-uniformity in the pre-

buckling  stress field increases and as a result, the sensitivity of the buckling load to pre-buckling  stress field 

increases. The effect of plate thickness on the buckling load for uniaxial loading has been presented in Table 4. In 

this Table, the buckling load for CPT has been compared with the FSDT and FE results. For CPT, the rotations 

1 1,u v  are equal to 
0 /w x   and 

0 /w y  , respectively and the traverse shear stresses are zero, while in FSDT, 

these stress components are constant along the plate thickness. The normalized buckling load 
crN  from CPT is 

independent of the thickness ratio (a/h), which means that the buckling load is proportional to 
3h (because 

2 2

11/cr crN N b D  and 
11D  is proportional to 

3h ). The accuracy of CPT in estimating the buckling load decreases 

as the plate thickens. The difference between calculated buckling load from CPT and FSDT depends strongly on the 

plate boundary conditions where, for CCCC plate, the maximum difference is 73.55% and for SSFF, the maximum 

difference is 4%. 
 

 

Table 2 

 Normalized Buckling load (
crN ) of a square plate with circular cutout under uniaxial loading. 

D/a 

Boundary Conditions 

SSSS CCCC SSFF CCFF SSSF CCSF 

Present FE  Present FE  Present FE  Present FE  Present FE  Present FE 

0 3.986 3.989  9.914 9.964  0.960 0.950  3.911 3.896  1.417 1.395  4.373 4.340 

0.1 3.924 3.833  9.723 9.375  0.942 0.921  3.845 3.785  1.403 1.364  4.320 4.225 

0.2 3.571 3.508  8.958 8.682  0.865 0.846  3.607 3.547  1.334 1.280  4.108 3.969 

0.3 3.230 3.220  8.735 8.458  0.759 0.747  3.347 3.289  1.213 1.165  3.790 3.670 

0.4 3.023 3.019  8.381 8.286  0.649 0.640  3.085 3.009  1.065 1.034  3.459 3.299 

0.5 2.890 2.885  7.801 7.866  0.543 0.533  2.732 2.653  0.912 0.889  3.031 2.811 

0.6 2.818 2.782  7.099 7.176  0.442 0.428  2.287 2.199  0.754 0.729  2.464 2.248 

 

 

 

Table 3 

Normalized Buckling load (
crN ) of a square plate with circular cutout under biaxial loading. 

D/a 

Boundary Conditions 

SSSS CCCC SSFF CCFF SSSF CCSF 

Present FE  Present FE  Present FE  Present FE  Present FE  Present FE 

0 1.993 1.994  5.234 5.258  0.941 0.929  2.755 2.687  1.077 1.047  2.864 2.803 

0.1 1.962 1.918  5.207 5.023  0.923 0.903  2.777 2.671  1.067 1.030  2.874 2.765 

0.2 1.794 1.764  5.019 4.863  0.853 0.833  2.718 2.616  1.030 0.983  2.797 2.669 

0.3 1.640 1.638  5.307 5.213  0.753 0.740  2.603 2.506  0.965 0.913  2.653 2.535 

0.4 1.568 1.569  6.128 6.177  0.648 0.637  2.420 2.330  0.874 0.828  2.441 2.344 

0.5 1.554 1.556  7.215 7.801  0.544 0.533  2.169 2.084  0.766 0.729  2.172 2.089 

0.6 1.586 1.587  8.529 8.084  0.440 0.431  1.867 1.787  0.644 0.617  1.859 1.787 
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Table 4 

Normalized buckling load ( )crN of a plate under uniaxial loading from different methods. 

Boundary 

Condition 

D/a CPT a/h=40  a/h=20  a/h=10 

FSDT FE  FSDT FE  FSDT FE 

CCCC 

0 10.037 9.914 9.964  9.561 9.582  8.358 8.310 

0.1 9.843 9.723 9.375  9.381 9.027  8.210 7.863 

0.2 9.070 8.958 8.682  8.638 8.349  7.537 7.231 

0.3 8.889 8.735 8.458  8.318 8.044  6.978 6.721 

0.4 8.600 8.381 8.286  7.812 7.694  6.153 6.018 

0.5 8.097 7.801 7.866  7.083 7.080  5.239 5.145 

0.6 7.454 7.099 7.176  6.258 6.231  4.295 4.145 

SSFF 

0 0.943 0.960 0.929  0.935 0.944  0.912 0.923 

0.1 0.925 0.942 0.903  0.917 0.914  0.895 0.893 

0.2 0.855 0.865 0.833  0.847 0.840  0.825 0.819 

0.3 0.755 0.759 0.740  0.747 0.741  0.728 0.724 

0.4 0.650 0.649 0.637  0.643 0.635  0.627 0.621 

0.5 0.546 0.543 0.533  0.539 0.529  0.526 0.519 

0.6 0.442 0.442 0.431  0.436 0.425  0.425 0.418 

 

 

 
(a) SSSS 

 
(b) CCCC  

 
(c) SSFF 

 
(d) CCFF  

  

 
(e) SSSF 

 
(f) CCSF 

Fig.7 

Sensitivity of  buckling load to pre-buckling  stress field for uniaxial loading. 
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 (a) SSSS 
 

(b) CCCC  

 

 (c) SSFF 
 

(d) CCFF  

  

 (e) SSSF 

 
(f) CCSF 

Fig.8 

Sensitivity of  buckling load to pre-buckling  stress field for biaxial loading. 

5    CONCLUSIONS 

Buckling of the plates with circular cutout under in-plane uniaxial and biaxial loading was investigated in this study. 

The presence of cutout alters the stress distribution in the plate compared with a plate without cutout. In order to 

calculate the buckling load, this stress distribution must be known. The complex potential method was used in 

conjunction with the boundary integral based on the principle of virtual work to obtain the pre-buckling stress 

distribution. The buckling load was calculated by using the vibrational mode shapes of a Euler-Bernoulli beam to 

represent the displacement components in the Ritz method. The effect of different combinations of boundary 

conditions, loading type and /D a  ratio on the buckling load was analyzed. The results can be summarized as 

follows: 

 When the /D a  ratio increases, the plate buckles in lower loads for all boundary conditions.  

 The buckling loads of plates with CCCC and SSFF boundary conditions have the highest and lowest 

values, respectively, in both uniaxial and biaxial loading.  

 The buckling load of the plates under biaxial loading is lower than the plates with uniaxial loading. 

 The sensitivity of the buckling load to pre-buckling  stress distribution depends on the boundary conditions 

and /D a  ratio. 
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 For uniaxial loaded plates, the buckling load of SSFF plates has the lowest sensitivity to the pre-buckling 

stress while the buckling load of CCFF plates is very sensitive to pre-buckling stress. 

 For biaxial loaded plates, the plates with SSFF and CCSF boundary conditions have the lowest and highest 

sensitivity to the pre-buckling stresses. 

 By increasing /D a  ratio, the sensitivity of the buckling load to pre-buckling  stress distribution increases. 

 The difference between CPT and FSDT in calculating the buckling load depends on the plate boundary 
conditions and the accuracy of CPT decreases as the plate thickness increases. 
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