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ABSTRACT

The free vibration analysis of rotating functionally graded (FG) nano-beams
under an in-plane thermal loading is provided for the first time in this paper.
The formulation used is based on Euler-Bernoulli beam theory through
Hamilton’s principle and the small scale effect has been formulated using the
Eringen elasticity theory. Then, they are solved by a generalized differential
quadrature method (GDQM). It is supposed that, according to the power-law
form (P-FGM), the thermal distribution is non-linear and material properties
are dependent to temperature and are changing continuously through the
thickness. Free vibration frequencies are obtained for two types of boundary
conditions; cantilever and propped cantilever. The novelty of this work is
related to vibration analysis of rotating FG nano-beam under different
distributions of temperature with different boundary conditions using nonlocal
Euler-Bernoulli beam theory. Presented theoretical results are validated by
comparing the obtained results with literature. Numerical results are presented
in both cantilever and propped cantilever nano-beams and the influences of the
thermal, nonlocal small-scale, angular velocity, hub radius, FG index and
higher modes number on the natural frequencies of the FG nano-beams are
investigated in detail.
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1 INTRODUCTION

ANOTECHNOLOGY has productive capabilities; new tools and systems with superior properties in small

scale (1-0.01nm). In the past decade this multidisciplinary field has been assigned as especial filed of research
in engineering sciences and technology, especially in medical applications: new nano-structural drugs, nano-
robotics, drug delivery to the designated location in body and genetic defect elimination (Bath and Turberfield [2],
Chen et al., [5], Goel and Vogel [15], Lee et al., [17], Lubbe et al., [19], Tierney et al., [30], Van Delden et al.,[32]).
Advancing of material technology in recent decades, functionally graded materials have been widely entered in nano
industry. FGMs are composite materials with heterogeneous microstructure. Their mechanical properties
continuously change from one interface to another. A common combination type is the aggregation of ceramic and
metal. Due to the materials composition, their mechanical properties change continuously through thickness. This
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type of materials are widely used in industries such as: aerospace, mechanical, nuclear, electrical, shipbuilding,
medical and optical applications. Among the different nano-structures, nano-beams have important applications (Hu
et al., [16]). Since investigating nano-beams behaviors through experimental tests are difficult and expensive; the
continuum mechanics theory is a suitable method for studying the mechanical behavior of nano-beams such as free
and force vibration, bending, buckling and etc. The classical continuum theories are unable to predict the behavior
of small-scale mechanics. But researchers are able to solve this problem by providing improved theories like,
nonlocal elasticity theory of Eringen [9], Strain gradient (Mindlin [21]) and coupled stress (Toupin[31]). The
nonlocal elasticity theory of Eringen [9] is a common tool for analyzing structures with small scale. In this theory,
unlike the classical theory, the stress at a reference point(x) in a body depends not only on the strain of that point but
also of all points of the body. Based on this theory, many studies have been conducted to investigate the behavior of
nano-beams. Thai [29] used this theory for bending, buckling, and fee linear vibration analysis of nano-beams.
Rahmani and Pedram [25] showed the analysis and modeling of vibrating nano-beams based on Timoshenko beam
theory. (Ghorbanpour-Arani et al., [14]) presented the analysis of free and forced vibrations of double viscoelastic
piezoelectric nano-beam systems incorporating nonlocal viscoelasticity theory and Euler—Bernoulli beam model.
(Maraghi et al., [20]) based on nonlocal piezo-elasticity theory and Euler—Bernoulli beam model, investigated the
nonlinear vibration and instability of embedded DWBNNT conveying viscose fluid. Furthermore, many great
studies have been done on vibration analysis of rotating nano-beams. Narendar[23] studied the free flap wise
bending vibration of rotating nanotube. Developing a single nonlocal beam model and employing it to study the flap
wise bending vibration characteristics of a rotating nano-cantilever were done by Pradhan and Murmu [24]. Aranda-
Ruiz et al. [1] calculated the non-dimensional frequencies of the flap wise bending vibrations of a non-uniform
rotating nano-cantilever and considered the nonlocal boundary conditions variation by time. Also recently, Ghadiri
and Shafiei [10-11] investigated linear and nonlinear bending vibration of a rotating nano-beam for various
boundary conditions based on nonlocal Eringen’s theory. Also, in the other research they presented the influence of
surface effect on vibration behavior of rotary FG nano-beam (Ghadiri et al., [13]) .

As it was noted above, a common type of FGMs are the continuous combined of ceramics and metals,. FGMs
can be used as a thermal barriers, thermal coatings and corrosion resistant coatings. Nowadays, as the ceramics
provide the high-temperature resistance due to their low thermal conductivity, these new materials are widely used
in high temperature environments. For structures working in environments with high temperatures, using FGM
coating can help to effectively reduce the possible failures induced by thermo or combined thermo-mechanical
loadings. The essential using of these materials in high temperature environments needs to consider the thermal
effects on static and dynamic behavior of Functionally Graded Material. (Ebrahimi and Barati [ 7]) investigated
thermal stresses in curved Functionally Graded nano-beams based on nonlocal strain gradient theory. (Mirjavadi et
al., [22]) examined the buckling and free vibration of axially FG nano-beams in different thermal environment. DQ
method is a new numerical technique for solving ordinary or partial equations of different boundary condition. As an
alternative method of more efficiency, with acceptable accuracy and using less grid points, Bellman et al. introduced
DQM in the early 1970s (Bellman and Casti [3], Bellman et al., [4]). DQM’s accuracy is affected by the accuracy of
weight coefficients which is influenced by the choice of grid points. In the preliminary formulations of DQM,
weight coefficients were calculated by an algebraic equation system which limited the use of large grid numbers.
Shu [26] presented simple explicit formula for the weight coefficients with practically unlimited number of grid
points leading to GDQM. Early applications of GDQ were limited to regular domain problems. Shu and Richards
[27] developed a domain decomposition technique for the study of multi-domain problems. According to this
method, the domain of the problem is divided into a number of sub-domains or elements before discretizing each
subdomain using GDQ. Domain decomposition technique with the use of GDQ method on each sub-domain is
frequently named as the differential quadrature element method (DQEM) (Shu [26]). Recently a method called weak
form quadrature element method was introduced by coupling GDQ with the weak form solution of differential
equations, so that derivatives of field variables are calculated with GDQ method (Xing and Liu [34], Zhong and Yue
[35]).

In the previous researches, the lack of a linear model has been sensed for comprehensive inspection of FG-
rotating nano-beams free vibration with respect to thermal effects. In most of the previous studies, no literature is
available for rotating nano-structures using FGM. So, there is a serious necessity to understand the vibration
behavior of rotating nano-beams in FG structure with considering the effect of temperature changes. In the present
paper, the vibration analysis of FG rotating nano-beam in is performed with considering the effects of non-linear
and size-dependent effects based on nonlocal elasticity of Eringen theory. It is assumed that material properties of
the beam, vary continuously through the beam thickness according to power-law relation. Nonlocal Euler-Bernoulli
beam model and Eringen’s nonlocal elasticity theory are utilized. Governing equation is derived by Hamiltonian
principle. Boundary conditions are cantilever and propped cantilever. These equations are solved using GDQ
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method. The accuracy and reliability of this model is verified by comparing the analytical solutions and the results
from the existing published work. A good agreement is observed between the results of this article and those
published work. After validating the presented formulation, the variation of the first three modes non-dimensional
frequencies for cantilever and propped cantilever FG nano-beams under the effects of different parameters such as
nonlocal parameter, gradient index, non-dimensional angular velocity, hub radius and temperature change are
investigated. This paper could be served as benchmarks for the design of nano-electronic, nano-drive devices, nano-
turbine, molecular rotors and motors, nano-sensors, medical applications such as drug delivery to cancer cells, nano-
robotics, tissue engineering and nano-structure drugs in which nano-beams act as basic elements. They can also be
applicable as important sources for validating other approaches and approximations.

2 MATHEMATICAL FORMULATION

A FG nano-beam with the length dimensions of L, width b and thickness % is shown in Fig 1. It is made by
composing of two different materials (pure ceramic top and pure metal down). The material properties of the beam
(such as Young’s Modulus E) are assumed to vary continuously through the beam thickness. According to low
power form (Ghadiri et al.,[13] ):

1in
P(z,T)=(P, —PL)(%+5) +P, 1
According the Eq.(1), Young’s Modulus and density terms can be expressed as follows:

E(.T)=(E, -E, )(%+%)" +E, Q)

1
Pz, TY=(p, —p; )(Z;+5)” +pr (€)

where Py and P; are the material properties at the upper (ceramic) and lower (metal) surfaces and » is a non-
negative number that expresses the material variation profile through the thickness of the beam. Due to dependency
of material properties to temperature, it is necessary to consider the following nonlinear equation of material thermo-
elastic properties to predict the behavior of functionally graded nano-beams according to the temperature. So this
equation can be written as (Ebrahimi and Salari [8]):

n :no(nilT’l+1+n]T +n2T2+n3T3) 4

where ny, n_;, n;, n, and n; are the temperature dependent coefficients for Si;N, at the top surface (pure ceramics) and
SUS304 at the bottom one (pure metal). These material properties are shown in Table 1.

Table 1
Temperature dependent coefficients of Young’s modulus, thermal expansion coefficient, mass density and Poisson’s ratio for
Si3N4and SUS304.

Material Properties ny n n; n, n;
E(Pa) 348.43¢19 0 3.070e-4 2.160e-7 -8.946¢-11
a(K™) 5.8723¢-6 0 9.095¢-4 0 0
Si3N4 3
p(Kg /m®) 2370 0 0 0 0
v 0.24 0 0 0 0
E(Pa) 201.04e+9 0 3.079¢-4 -6.534¢-7 0
a(k™) 12.330e-6 0 8.086¢-4 0 0
SUS304 i
p(Kg /m?) 8166 0 0 0 0
v 0.3262 0 -2.002¢-4 3.797e-7 0
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Fig. 1
Schematic of rotating nano-beams; left figure: propped
cantilever nano-beam, right figure: cantilever nano-
beam.

Based on the Euler-Bernoulli theory, displacement of any point of the beam is given by (Ghadiri et al., [13]):

Ux,z,t)=uy,(x,t)—z

Gwa(x ,1) (5)

W (x,z,t)=w(x,t) (5b)

where U, W are axial displacement, and transverse displacement and u,, w are their calculated counterparts at the
mid-plane. According the Euler-Bernoulli beam theory, the nonzero strain can be written as follow:

_Oug&x.0) Ow (x,t)
XX ax axz

£, 0 —zk® (©6)

X.

where ¢,,’, & are extensional strain and bending strain. For the motion equation, the Hamilton’s principle states that
(Tauchert [28]):

:1(5U+6V _ ST )t =0 @

where the strain energy oU, the potential of external loading 6/ and the kinetic energy o7 are:

h i
U =b| [3 0, ()0, dzdx =b[ %0, ()%, "~z 5k )dzdx =b[(N d," —M 5k )dx, (8a)
2 2
P =—bj[f5u0+q§vv oy oo (8b)
ox Ox

éT—bJ J‘% @) %—z o'w | 9Su, . o’ow | Ow 6w iy
2PN G P e \ o Caex ) o e

(8¢)
2 2, 2 2
b_[ I, %8&104_%8514) -1, %6§w+6w 0du,, i ow, 0°ow
Ot Otdx Otdx Ot

—_— x’
ot ot  oOx ox > dtox otox

where b, N, M and I are the beam width, force and moment resultant and mass moment of inertias, respectively.

N =[30,(z)z, (9a)

h
M =[%z0, )z, (9b)
2
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Lo (1
I, = J'E z p(z)dz, (9¢)
12

_h
2,2
z

By substituting Eq. (8) into Eq. (7), Euler-Lagrange equation is obtained as:

ON o’u o*w

oy =7 220 5 9

a Tl e (10a)
2 _ 2. 63 4

61\5 q_i(Né‘wj: oawzj"‘ll 2uo -1, 82w2

Ox ox Ox ot ot*ox ot*ox (10b)

f(x,t), g(x,t) are the axial and transverse distributed forces and N is applied for axial compressive force and it
can be written as (Ghadiri et al., [12] ):

—_—

N = [[Eq 2, @ ~T)+N" 4 (11
-
where:
z 1,
aiz,T)=(ay - )(;"‘5) +op (12)

where a(z) is thermal expansion coefficient a and o are relating to ceramic phase (top of surface) and metal phase
(at bottom surface), respectively. For considering the rotation of the beam, rotating terms N'(x) can be expressed as
Eq.(13) (Aranda-Ruiz et al., [1], Pradhan and Murmu [24]).

L h/2 z 2
N () =b] | %(}’+§)dzd§ (13)

x —h/2

where 7{(z) is considered to distribute non-linearly across its thickness. So, the beam initial temperature is assumed
to be T and the temperature of the top surface of FG nano-beam (ceramic-rich) is 7Ty and it is considered to vary
non-linearly along the thickness from 7y to the bottom surface (Metal-rich) temperature 7;. Therefore, in this case,
the temperature distribution through the thickness has been given according to the following approach (Ebrahimi
and Salari [8]).

1 z)*
[ =T, + AT| —+— 14
. (2 h] (14)

where AT=Ty-T; and « is are the temperature index and 0 < « < oo. The linear rise of the temperature is obtained
as a particular case by setting « =1. It should be noted that, with increasing the temperature, the material behavior
also changes and this behavior is important in high temperatures especially in FGMs. So, it is necessary to consider
that the temperature dependent material properties. In this paper, it is assumed that a=0.5. For free vibration analysis
the, Eq. (10), are reduced to

ﬂ_[ azuo_ o'w

ox *oar lortex (15a)
oM _E(N%J_ ow 7 Su, . Ow

x? a0 ox ot lortax orlex? (15b)
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2.1 Nonlocal theory
o, :J-Va(|x'—x|,r)[Ci/.k,£k, ]dx' (16)

This equation shows that the stress at point x in a body depends on strain at that point and the adjacent point.
where o, ,¢,,,C,, are stress, strain, and elasticity Modulus tensors, respectively. a(|x"-x|) is a nonlocal kernel and

y2
7=eya/l is a material constant that is explained as a small scale factor, where ¢, is a material constant which is
determined experimentally or by other ways. @ and | are internal (e.g. lattice parameter) and external characteristic
lengths (e.g. crack length, wave length) of the nano-beam, respectively. Due to the spatial integrals in the
constitutive Eq. (16), it is difficult to obtain the solution of nonlocal stress problems but, according to Eringen [9]
we can convert this equation to the equivalent differential constitutive equation form

(1—(e0a)2V2)0=c e (17)
For an Euler-Bernoulli nonlocal functionally graded beam, the Eq.(17) can be written as:
, 0o
O-XX - (eoa) —/\Z/X = E (Z )aYX (18)
Ox

Integrating Eq. (18) over the beam’s cross-section area, the axial force-strain relation can be written as:

N —(e,a)’ (ZCAZI :bDZ E(z )dz]s“o -b |:J-2th(z )dz}ko (19)

_h
2

By multiplying Eq. (18) by z, integrating over the cross-section area, the moment—curvature relation can be
written as:

h

M —(eqa)’ oM _, DZ zE (z )dz }”o —b [IzhzzE(z )z }k‘) (20)

2 b
Ox >

Differentiating Eq. (15a) once with respect to x and substituting it into Eq. (18)

N =b J'%E(Z)dz Oty -b J'g zE (z)dz @+(e a)2 I Oy -1 Ow (21)
-4 ox -4 o “ortax 'ortax?

By substituting Eq. (15b) into Eq. (20), we obtain:

i " 2
M :bUZ zE(z)dz}%—b{jz zzE(z)dz}ng +
X X

(ea)| 1 Ow , Ouy 0w  ONow oW
0 o> 'orlox Corlex? ox ox Ox 2

_k _h
2 2

(22)

Differentiating Eq. (21) once and differentiating Eq. (22) twice with respect to x and substituting them into Eq.
(15a) and (15b), respectively.

h 2 h 3 4 5 2 3
= 0 = 0 0

b IZhE(z)dz Y _p .[thE(z)dz _aw3 +(ega) | Tg— -1, 52W3 Sy R 62W (23)
- ox - ox Ot “0x Ot “0x ot Ot “0Ox
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3

h h —

5 Ou B o' o 0w &u dw N ow 0w
b|[22E @)z |2 2 22E )z |5 +(ega) 5| Iy Ty 4]~ — Ty — st Ot W O | =
U; }aﬁ j; ) e e e T o

Ox
_ 1
I 62_W+1 _63140 — —64W +alal+]\782_w ( )
Yot loter ot oo
Boundary condition in both of clamped at (x=0), free and simply supported (at x=L) are defined as:
Clamped:
w(x =0)=0 (25)
ow (x = 0)
=0 (26)
Ox

Free:
M(x=L)=0 27
oM (x =L)=0 (28)

Ox
Simply Supported:
w(x=L)=0 (29)
M(x=L)=0 (30)

3 SOLUTION PROCEDURE

In this study GDQ method is used to calculate the spatial derivatives of field variables in equilibrium equations. In
implementation of GDQ, Grid points describe the locations of calculating derivatives and field variables. Derivative
of a function with respect to a variable at a given node is calculated as a weighted linear sum of the function values
at all nodes in the mesh line. Thus, we can define the "7- th" order derivative of a function "f{x)" as linear sum of
the function values which is (Shu [26]):

a}’ n -
er) = Zcig' )f (x:) (€29)
Ox =

X=xp

That n is the number of grid points along x direction and C; can be obtained by following equation:

M (x.
Cgl): (x:) ;1,7 =12,...n and i#j
(xl- —X; )M (xj) )
1 N 1
- 3 e
J=Li#j
where M(x) is defined as:
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M(x;)= H (x; -x,) (33)

C-(_r—l)
e\ = C,gr“)c;‘)—(”—) C =12 i # and ~ 2<r<n-1
xl —X
cil=-> b i,j=12,..n and  1<r<n-1

J=Li#j

To obtain a better distribution for mesh point, Chebyshev-Gauss-Lobatto technique is applied as (Civalek [6]):

I PR ) -
X _2[1 COS((N_I)E\JJ l_152539 ey (35)

In fact, by using this distribution, increased convergence speed of solutions can be achieved. Finally, according
to the DQ method, the governing Egs. (23), (24) should also be re-written in discretized form. In terms of
generalized differential quadrature, the governing differential equation is expressed by:

n h n n h n
>, [b U 2 E(z)dz }Zcm(l)us } >, {b { J' 2 2E (2 )dz }ZC”(Z)WS }
s=1 B s=1 s=1 _E s=1

h
2

(36)
=’ |:mOUS —mlzC,.s(l)WS —(eoa)2 ZCW(Z) (mOUS —mIZCH(I)WS }}
s=1 s=1 s=l1
n h n h n
>'c,® [b [j 2 22E (2 )dz }Zcm(%s b { I 2 2E (2 )dz ]ZC,S(I)US ]
s=1 ) s=1 3 s=1
e, [N >, M, J—(eoa)z >, {Zcm(l) (N >, J]
s=1 s=1 s=1 s=1 s=1
(37

n n n mOVVS +mlzcm(1)U‘v
= {mgV +mIZC,,S(l)US _mZZCrS(Z)WS _(90")2 ZCVS(Z) n -
5=l 5=l —m, zcrs(z)Ws
s=l1

s=1

Every term of motion equation can be transformed to sum of many nodal weighted residuals of variables and by
using differential quadrature method, it can be written as a discretized form. Therefore, by considering the transverse
displacement in the form of w =We'” , discrete differential motion equation of model would be transformed to
some algebraic terms

[4b ] [4bi ] {Wb } ) wz{ U } {Wb } )
[in ] [4i ]| 7 (B | [Bar ]| Wi
where subtitles b represent the grid nodes in the border and adjacent areas that the boundary conditions are applied
and subtitles i denote other grid nodes.
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4 NUMERICAL RESULTS
4.1 Validation

In this section, numerical results are presented for vibration behavior of both cantilever and propped cantilever nano-
beams with rotary effect, thermal effect, non-dimensional angular velocity and length scale parameter effects
investigation. To do this, we use the Euler-Bernoulli beam model based on Eringen’s theory. To get better
understanding of results, the governing equation has to be transformed to non-dimensional form. By the way, the
following variable changes is needed:

x =¢L; r=6L; ®2:{@) L2
El ceramic
(39)
g2 :[mj Lot [mj _ 12pcerami02 . #:@
EI ceramic EI ceramic E ceramich 1 L

where @, ¥, u are non-dimensional angular velocity, frequency and nonlocal parameter, respectively. In order to
obtain accurate and convergent results for DQ method, sufficient number of grid points (fifteen) is required. As it
can be seen in Table 2., for accuracy and the efficiency verification of numerical analysis, the current results are
compared with the results presented by (Aranda-Ruiz et al., [1], Narendar [23], Pradhan and Murmu[24]). To verify
accuracy of the results, the non-dimensional frequency of non-rotating cantilever and propped cantilever nano-beam
s are compared with results obtained by Lu et al. [18], Wang et al. [33] and Ebrahimi and Salari [8] in Table 3.,
Table 4 and Table 5., respectively. Also, comparison of non-dimensional frequency of rotating nano-beam for two
nonlocal parameters i.e. " zz=0,0.2 " and result of Aranda-Ruiz et al.[1] are shown in Fig. 2.

Table 2
The effect of the number of grid points on evaluating the non-dimensional natural frequency of the cantilever nano-beam with
considering the nonlocal scale parameter.

Nonlocal parameter Grid points (N)
(u) N=12 N=14 N=15 N=17 N=18
0 1.874972918 1.875104 1.875104 1.875104 1.875104
0.1 1.878279493 1.879163 1.879173 1.879173 1.879173
0.2 1.888786935 1.891905 1.891938 1.891938 1.891938
0.3 1.908580147 1.915331 1.915199 1.915199 1.915199
0.4 1.942707597 1.954241 1.963253 1.963253 1.963253
0.5 2.005378872 2.021512 2.011347 2.011347 2.011347
Table 3
Comparison of results for non-dimensional frequency, of cantilever nano-beam \/(/7
D=0
local
Nonlocal parameter () Present Wang et al. [33]
0 1.8751041 1.8751041
0.1 1.8791728 1.8791728
0.2 1.8919383 1.8919383
0.3 1.915199 1.915199
0.4 1.9632529 1.9632529
0.5 2.0113471 2.0113471
Table 4
Comparison of results for non-dimensional frequency, \/; of propped cantilever nano-beam.
D=0
Nonlocal parameter () Present Luetal. [18]
0 3.9266 3.9266
0.1 3.820918 3.8209
0.3 3.283001 3.2828
0.5 2.790175 2.7899
0.7 2.439413 2.4364
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Table 5
Comparison of results for non-dimensional frequency, ¥ of propped cantilever FG nano-beam, (=0, AT=0).
(I)ZO, yjl (DZO, SUZ
FG index, (n) Present GDQM Ebrahimi and Salari[8] Present GDQM Ebrahimi and Salari[8]
(Euler-Bernoulli) (Analytical) (Euler-Bernoulli) (Analytical)
0 15.33968 15.3397 49.74309 49.7431
0.2 13.56476 13.5647 43.80938 43.8094
1 11.03362 11.0336 35.63681 35.6368
9.44947 9.4494 30.52862 30.5286

Fundamental frequency
3 3 3

Nondimension frequency, ¥
N
o«
7

Fig. 2

=0 . . . .
......... E[Z:nmlﬁf:o)z) Comparison of the non-dimensional frequency of rotating

Aranda etal. (4=0) micro-beam with the results obtained by Aranda-Ruiz et
*  Arandaetal. (u=0.2)

. : : : : : :
0 0.5 1 15 2 25 3 3.5 4 4.5 5 al[l]’
Nondimensional angular velocity,®

4.2 Results and discussion

After extensive validation of the presented formulation, the effects of different parameters on the vibration of FG
rotating nano-beam such as: nonlocal parameter, gradient index, non-dimensional angular velocity, hub radius and
temperature change are investigated. The variations of the three first modes of non-dimensional frequencies of nano-
cantilever and nano propped cantilever beams, with thermal variation for different values of the nonlocal
parameter £ and different values of non-dimensional angular velocity parameter ® , which represents the gradient

index n, will be figured out. For the nonlocal model, £¢ can be 0, 0.1, 0.2,0.3,0.4 and 0.5.The rotating non-

dimensional angular velocity, @ , hub radius,d, and gradient index, n, are assumed to be in the range of (0-5),(
0,1,4,8 ) and (0,0.25,0.5,1),respectively. The bottom surface of the beam is pure steel, while the top surface of the
beam is ceramic. Beam geometry is: 4 (thickness) =3.4nm, b (width) =k and L(width)= 10/. The results are obtained
by using GDQM. In this section the results and considerations regarding the boundary conditions can be divided into
two parts of cantilever and propped cantilever.

4.2.1 Cantilever

Variations of the non-dimensional fundamental frequency of the cantilever FG nano-beam with respect to non-
dimensional angular velocity for different values of gradient indexes and nonlocal parameters are illustrated in Fig.
3. It is observed that, for both the local and nonlocal models, the non-dimensional fundamental frequency increases
with increasing the nonlocal parameter. Frequencies by local and nonlocal models are close to each other at low
angular velocities and due to increasing the inertia, both of them increase with the value of angular velocity.
Variation of the second and third non-dimensional frequencies with the non-dimensional angular velocity for
different values of nonlocal parameters and gradient indexes are show in Figs. 4 and 5. Opposite to the fundamental
frequency, for second and third modes, as £ increases, the frequencies observed by nonlocal models are smaller to

that of local ones. In higher non-dimensional angular velocity, the effects of nonlocal parameter on the frequencies
reduce and the frequency decreases with increasing FG index. With increasing angular velocity, a axial tensile force
is applied to nano-beam and due to this force, stiffness of nano-beam increases. Therefore increase of stiffness
causes increase of natural frequency. Figs. 6-8 illustrate first three modes of non-dimensional frequencies versus the
gradient index for different values of nonlocal parameters and angular velocity. By changing the gradient index
parameter and fixing the nonlocal parameter, results are decreasing in the non-dimensional frequencies for each
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angular velocity. That is because of the nano-beam stiffness due to ceramics phase constituent increase. However,
increasing the nonlocal parameter causes the fundamental frequency increase, at a constant material distribution. It is
noticeable that, the non-dimensional frequency reduces with high rate where the gradient index is in the range of 0
to 1 in comparison with gradient index in a higher range. In addition to local model, first three non-dimensional
frequency modes decrease with high rate rather than nonlocal model. Fig. 9 shows the variations of the non-
dimensional fundamental frequency of the cantilever FG nano-beam with respect to temperature change for
different values of gradient indexes and nonlocal parameters for @ = 2. It is seen from this figure that, for both the
local and nonlocal models, the fundamental non-dimensional frequency increases with increasing the temperature
and with rising the nonlocal parameter the frequency increases. It is deduced that, with rising gradient index and the
subsequent reduction of stiffness, the frequency decreases. Fig. 10 illustrates the second dimensionless frequency
versus temperature changes for different values of gradient and nonlocal parameter. It can be seen, from Fig. 10, that
an increase in the temperature change causes a decrease in the natural frequency of the nano-beam . This is because
of the fact that an increase in temperature change leads to a decrease in the stiffness of nano-beam , and causes a
decrease in natural frequency. Also, as the value of gradient index increases, this leads to a decrease in the
dimensionless natural frequency of the nano-beam . Fig. 11 presents a similar trend. When one draws a comparison
between Figs. 10 and 11, it can be inferred that while the mode number changes from second to third, the natural
frequency increases. Figs. 12 tol4 display the variation of the first, second and third non-dimensional frequencies
with respect to the temperature changes with angular velocity and hub radius variations for #»=0.2. It is observable
that, the first three non-dimensional frequencies increase by increasing the non-dimensional angular velocity.
Opposite the first mode that frequency increases with increasing the temperature, at second and third modes the
frequency reduces with increasing the temperature. As the hub radius increases, variation of frequency through the
temperature change increases.
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Fig. 3
Variations of the fundamental non-dimensional frequency of the cantilever FG nano-beam with respect to non-dimensional
angular velocities for different values of nonlocal parameters and gradient indexes, 0=0.25, h=b/2=L/20=0.5 (nm).
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Variations of the third non-dimensional frequency of the cantilever FG nano-beam with respect to gradient indexes for different
values of nonlocal parameters and non-dimensional angular velocities, =1, A=b/2=L/20=0.5 (nm).
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Variations of the second non-dimensional frequency of the cantilever FG nano-beam with respect to temperature change for
different values of gradient indexes and nonlocal parameters, h/=b=L/20=0.5 (nm), ®=2.
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Variations of the third non-dimensional frequency of the cantilever FG nano-beam with respect to temperature change for
different values of gradient indexes and nonlocal parameters, h/=b=L/20=0.5 (nm), ®=2.
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Variations of the fundamental non-dimensional frequency of the cantilever FG nano-beam with respect to temperature change
for different values of hub radius and non-dimensional angular velocities, A/=b/4=L/40=0.25 (nm) and n=0.2.
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Variations of the second non-dimensional frequency of the cantilever FG nano-beam with respect to temperature change for
different values of hub radius and non-dimensional angular velocities, h=b/4=L/40=0.25 (nm) and n=0.2.
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Fig. 14
Variations of the third non-dimensional frequency of the cantilever FG nano-beam with respect to temperature change for
different values of hub radius and non-dimensional angular velocities, /=b/4=L/40=0.25 (nm) and n=0.2.

4.2.2 Propped cantilever

Figs.15 to 17 show the first three modes of non-dimensional frequencies versus the non-dimensional angular
velocity for different values of nonlocal parameters and gradient indexes. Opposite to the cantilever nano-beam, for
both the local and nonlocal models, the non-dimensional frequency decreases with increasing the nonlocal parameter
and frequencies by local and nonlocal models are close to each other at high angular velocities and both of them
increase with the value of angular velocity. Second and third frequency are similar to frequency of cantilever nano-
beam. Figs. 18 to 20 show the variation of non-dimensional first, second and third frequency with respect to gradient
index. Similar deductions can be obtained for different values of nonlocal parameter and non-dimensional angular
velocity. Variations of the first three non-dimensional frequencies of the propped cantilever FG nano-beam s with
respect to temperature changes for different values of gradient indexes and nonlocal parameters are depicted in Figs.
21-23, respectively. It is observed from the figures that, frequencies of propped cantilever FG nano-beam decrease
with increasing the temperature until it approaches to the critical temperature. This is because of the reduction
stiffness of the beam. When temperature rises, the geometrical stiffness decreases and frequency arrives to lowest
value at the critical temperature point. After the branching point, frequency starts to increase. It is noticed that the
propped cantilever nano-beam s with lower value of nonlocal parameter make larger values of the frequency results.
It is discernible that, with increasing the gradient index, the branching point is created at lower temperature, because
at the lower gradient indexes, the structure stiffness will be more. Finally, variations of the first, second and third
non-dimensional frequency of the propped cantilever FG nano-beam with temperature change for different values
of hub radius and non-dimensional angular velocities for #=0.2. are shown in Figs. 24-26. In these figures opposite
to the Figs.21 to 23, propped cantilever nano-beam s with higher value of nonlocal parameter make larger values of
the frequency results and with increasing hub radius, the branching point is created at higher temperature.
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Variations of the fundamental non-dimensional frequency of the propped cantilever FG nano-beam with respect to non-
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Fig. 16
Variations of the second non-dimensional frequency of the propped cantilever FG nano-beam with respect to non-dimensional
angular velocities for different values of nonlocal parameters and gradient indexes, 0=0.25, h=b/2=L/20=0.5 (nm).
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Variations of the third non-dimensional frequency of the propped cantilever FG nano-beam with respect to non-dimensional
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Variations of the second non-dimensional frequency of the propped cantilever FG nano-beam with respect to gradient indexes
for different values of nonlocal parameters and non-dimensional angular velocities, d=1, h=b/2=L/20=0.5 (nm).
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Variations of the third non-dimensional frequency of the propped cantilever FG nano-beam with respect to gradient indexes for
different values of nonlocal parameters and non-dimensional angular velocities, 0=1, A=b/2=L/20=0.5 (nm).
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Variations of the fundamental non-dimensional
change for different values of gradient indexes and nonlocal parameters, #=2b/5=L/50=0.2 (n) and ®=0.
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Variations of the second non-dimensional
change for different values of gradient indexes and nonlocal parameters #=25/5=L/50=0.2 (n) and ®=0.
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Variations of the second non-dimensional frequency of the propped cantilever FG nano-beam with respect to temperature

change for different values of hub radius and non-dimensional angular velocities, h=b/4=L/40=0.25 (nm) and n=0.2.
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Variations of thethirdnon-dimensional frequency of the propped cantilever FG nano-beam with respect to temperature change
for different values of hub radius and non-dimensional angular velocities, A=b/4=L/40=0.25 (nm) and n=0.2.
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5 CONCLUSIONS

In this process the effect of the nonlocal small-scale, material property gradient index, hub radius of the first three
vibrations of the temperature-dependent FG nano-beam s subjected to the non-linear temperature distribution with
considering terms of rotating for two types of cantilever and propped cantilever are investigated. By means of
GDQM. Eringen’s theory of nonlocal elasticity with Euler-Bernoulli beam theory are employed to model the nano-
beam. It is observed that, various parameters such as nonlocal parameter, gradient index, angular velocity, hub
radius, temperature-dependent material properties and environment temperature have significantly influence on the
vibrational frequencies of FG nano-beam s. It is obtained that, the non-dimensional frequencies increase with the
rotating angular velocity for both cantilever and propped cantilever models. For angular velocity, the observed non-
dimensional fundamental frequency increases with the nonlocal parameter for cantilever model. This trend is
opposite for the propped cantilever where the nonlocal frequencies are lower than local ones but second and third
modes of vibration of two models are similar. For nano-cantilever, the fundamental non-dimensional frequencies are
being close to each other at low rotating velocities but for nano-propped cantilever, it occurs at high rotating
velocities. It is observed that, for nano-cantilever, variation of fundamental frequency through temperature changes
depend on nonlocal parameters. First three modes of propped cantilever frequency decrease with the increase in
temperature and tend to the lowest value at the critical temperature. This decrease in frequency is because of
reducing beam stiffness due to thermally caused compressive stress. However, after the critical temperature point,
the frequencies increase with the growth of temperature. In addition, it is concluded that under non-linearly
temperature increase, increase the FG index value leads to the decrease in frequency and with increasing gradient
index, the branching point is created at lower temperature, because at the lower gradient indexes, the structure
stiffness will be more is due to the lower gradient indexes the structure is more stiffness. Also, the moment rotating
and inertia increase due to rising the hub radius, makes the frequency to increase.
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