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ABSTRACT

In the present research, vibrational behavior of anisotropic protein
microtubules (MTs) immersed in cytosol via Cooper—Naghdi shell model is
investigated. MTs are hollow cylindrical structures in the eukaryotic
cytoskeleton which surrounded by filament network. The temperature effect on
vibration frequency is also taken into account by assuming temperature-
dependent material properties for MTs. To enhance the accuracy of results,
strain gradient theory is utilized and the motion equations are derived based on
Hamilton’s principle. Effects of various parameters such as environmental
conditions by considering the surface traction of cytosol, length scale,
thickness and aspect ratio on vibration characteristics of anisotropic MTs are
studied. Results indicate that vibrational behavior of anisotropic MTs is
strongly dependent on longitudinal Young’s modulus and length scale
parameters. The results of this investigation can be utilized in the ultrasonic
examine of MT organization in medical applications particularly in the
treatment of cancers. © 2018 IAU, Arak Branch. All rights reserved.
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1 INTRODUCTION

NTRACELLULAR fluid (ICF) are named cytosol or cytoplasmic matrix which is a part of cytoplasm in the
eukaryotic cell (protists, fungi, plants, animals) . Cell membranes separate cytosol into compartments that one of
them is MT. « and £ tubulins make up MT in long, hollow cylinder form. Organelles can travel from the center of

the cell outward using the tracks that MTs provide. MTs are major components of the cytoskeleton that are
responsible for various kinds of movements in all eukaryotic cells and involved in nucleic and cell division [1].

The study of mechanical behaviors of MTs as a branch of biomechanics can help scientists to better
understanding of the intracellular environment. In recent years, various researches have been carried out to
analyzing of buckling, dynamic stability, flexural rigidity and free vibration of protein MTs. In this regard, Shi et.al
[2] utilized Timoshenko beam model to do research about the effect of transverse shearing due to low shear modulus
of MT. They founded that the length-dependent flexural rigidity predicted by the Timoshenko beam model have a
good agreement with experimental data. Based on the nonlocal Timoshenko beam model, mechanical properties of
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protein MTs was studied by Gao and Lei [3]. Their results indicate that the small scale parameter plays an important
role in the buckling of MTs in living cells. Utilizing parabolic shear deformation theory (PSDT), Tounsi et .al [4]
studied vibration and length-dependent flexural rigidity of MT. Their results showed that due to extremely low shear
modulus of MTs, the effect of transverse shearing on vibration analysis of MTs must be considered.

Based on modified couple stress theory and TB model, Fu and Zhang [5] studied about mechanical behavior of
MT. They proved that increasing the value of material length scale parameter causes to decrease buckling amplitude.
Civalek and Demir [6] investigated static response of isotropic MTs based on the nonlocal Euler—Bernoulli beam
theory. They concluded that especially for some boundary conditions, the nonlocal continuum theory is superior to
local elasticity. In the other work [7], they used nonlocal discrete models to study about torsional and longitudinal
frequency and wave response of MTs. Their results showed that size effect must be considered for modelling of
MTs particularly for higher modes vibration and phase velocity analysis.

Wang et al. [8] suggested orthotropic elastic shell model for vibrational behavior of MTs. They concluded that
vibration frequencies of MTs in isotropic model are estimated higher than orthotropic one at almost vibration modes.
Wang and Zhang [9] considered orthotropic shell model to investigate circumferential vibrations of MTs with large
axial wavelength. They founded that it cannot be used parabolic dispersion law for circumferential modes. Based on
orthotropic Shell-Stokes flow model, Wang et al. [10] identified three kinds of dynamic behavior of MTs in living
cells. In addition, they proved that the assumption of ideal fluid surrounding MTs is incorrect. Vibration of MTs due
to internal fluid by considering the effect of cytosol and nonlinearity parameter was carried out by Ghorbanpour
Arani et al. [11]. They obtained the critical fluid velocity and fluid density in which the dynamic instability of MT
occurs.

Effect of transverse shearing on mechanical behavior of orthotropic MTs was presented by Gu et al. [12]. They
showed that the accuracy of results for two dimensional (2D) orthotropic shell model is more appropriate than beam-
like models when the transverse shearing is considered. By means of anisotropic shell model and Stokes flow
theory, Gao and An [13] studied buckling behavior of anisotropic MTs in cytoplasm. Their results indicated that
buckling growth rate of MTs is strongly dependent on viscosity of cytosol and small scale parameter. Utilizing first-
order shear deformation shell theory, Daneshmand et al. [14] investigated wave propagation in orthotropic MTs.
They demonstrated that the shear modules of microtubule have a considerable effect on wave velocities. Dynamic
behavior of MT as orthotropic elastic shell embedded in an elastic medium was carried out by Taj and Zhang [15].
They simulated surrounding medium as Pasternak model and showed that increasing Winkler stiffness and shearing
layer of surrounding medium cause to increase flexural vibration of MTs. Based on nonlocal shear deformable
theory, Shen [16] presented buckling and post buckling of MTs under torsion. Considering properties of anisotropic
and temperature-dependent materials for MTs, they founded that temperature changes play a significant role on post
buckling of protein MTs subjected to torsion. In the other work, Taj and Zhang [17] performed wave propagation of
orthotropic MTs embedded in Pasternak foundation. They demonstrated the effect of surrounding medium on wave
velocity of MTs for axisymmetric and non-axisymmetric waves.

Despite mentioned researches, vibration analysis of anisotropic protein MTs based on Cooper-Naghdi shell
model and strain gradient shell theory is a novel topic that cannot be found in literatures. Cooper-Naghdi theory is
valid for thick shells by considering shear coefficient. Since the MTs are in the nano/micro scale, strain gradient
shell theory with three length scale parameters are utilized while the effect of surface, temperature change,
surrounded bio-medium, mechanical properties and dimensions are also studied. It seems that simply supported
boundary condition is closer to reality according to the initial and final conditions of MTs in the cell. It is hoped to
use the results of this study in bio-medical clinical applications.

2 COOPER-NAGHDI THICK SHELL MODEL

In contrast to microfilaments, MTs are thick hollow cylinder made of @ and S tubulins. These structures are found

throughout the cytoplasm of all eukaryotic cells. Fig.1 illustrates anisotropic MT immersed in cytosol. In this study,
MT is considered as a cylindrical tube with equivalent thickness 4. Also, MT is simulated by thick shell model to
achieve more accuracy.
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Microtubule

Fig.1

o Modelling of MTs: a) Mmicroscopic images of MTs
ke immersed in cytosol in a cell. b) The schematic of MT
{ composed of tubulins. ¢) Cylindrical thick shell to modelling
of MT.

According to Cooper-Naghdi thick shell model, the displacement components of cylindrical shell in the axial x,
circumferential & , and radial z directions can be written as [18]:

U(x,0,z,t)=u(x,0,t)+z B.(x,0,1),
V(X,Q,Z,t):V(x,H,t)+Zﬂg(x,6,t), (1)
W (x,0,z,t)=w(x,0,),

where g and f, represent axial and circumferential shear effects. z is the distance from an arbitrary point to the

middle surface. u, v and w denote the displacement components of the middle surface of the shell in the axial,
circumferential and radial directions, respectively. Therefore, strain-displacement relationships can be written as
[18]:
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Recently, many experimental tests have been performed to obtain the physical and mechanical properties of MTs
in living cells. It has been proved that longitudinal Young’s modulus is higher than shear modulus and
circumferential Young’s modulus of MTs. It’s due to stronger bond between « —f dimmers along the MTs than

lateral bond between adjacent filaments [14]. Consequently, anisotropic thick shell is the real model to simulate
protein MTs accurately. Therefore, MTs are assumed anisotropic with £, and E, as a Young’s moduli in the

longitudinal and circumferential directions, respectively. G_and G, are transverse shear moduli and G, is in-

plane shear modulus. v, and v, =v, (E,/E ) are poisson’s ratios along the axial and circumferential directions of

MTs.
Assuming plane strain condition, the constitutive equations for anisotropic MTs are expressed as [19]:

Gxx gxx
Oy €oo
7. =[0]{40 |- (3)
sz ng
T £

x6

where Q is the stiffness matrix which is defined as [14]:

© 2018 IAU, Arak Branch



M.R. Ghorbanpour Arani et.al. 756

E E
x Up L 0 0 0
1-v, v, 1-v v,
D0 2 Eq 0 0 0
1-v, v, 1-v v, @)
2]=| o o KG o |
2
0 0 0 KG, 0
2
0 0 0 0 G
L 2 |

where K is the shear coefficient. Based on Reissner’s variational theorem [20] the value of this coefficient is chosen
5/6.

3 STRAIN GRADIENT SHELL THEORY (SGST)
Based on strain gradient theory, the strain energy U is dependent on higher-order stresses as follows [21]:
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where 77,,k , X; and y, denote the deviatoric stretch gradient, dilatation and symmetric rotation gradient tensors

,srespectively, which are defined as [21]:
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where 0, , e, are Kronecker delta and alternate tensor, respectively. The higher-order stresses p, , T,.(,.? and m, are

given by [21]:

p, =21;Gy,, (7a)
o) =21°Gn), (7b)
(7¢)

m; =2122G}(,.j,

where G is the shear modulus. Also / o> I, and [/, are independent material length scale parameters. It is worth to

mention that in-plane and transverse shear modules of MTs have almost identical values (G, =G, =G )

according to Ref. [14].

4 KINETIC ENERGY

The kinetic energy of the anisotropic MT can be expressed as [22]:
A ouY (V'Y (aw Y
p L
K,, =~"— — | | = | +| —| |dx, 8
M2 Io“a:j [a:} (&J}x ®

where p, is the mass density of MT.

© 2018 IAU, Arak Branch



M.R. Ghorbanpour Arani et.al. 758

5 SIMULATION OF SURROUNDING BIO-MEDIUM

The lateral force applied on MTs due to visco-elastic surrounding bio-medium is expressed as [23]:
F=F +F,, 9

where F, and F, are the lateral surface traction and the produced force due to filament network, respectively,
which are defined as [23]:

ow 1-¢*)Ing —12¢> +2g* +10 R

F =mun—  where 77=( i{ )Ing 129 3 2q4 q=—=, (10a)
ot (g"—Dlng+2g°—q" -1 R,

Fo=w where y=27E_, (10b)

where E_ and y are the elastic modulus and viscosity of surrounding bio-medium [23].

The external work due to surrounding bio-medium can be written as:

Qmed[um =

ﬁF WdxRd 0 an
00

N | —

6 SURFACE ENERGY

The surface energy in nano-scale is considered using two distinct effects [24, 25, 26].
The first effect is on bending rigidity. £/ must be changed to E,/, in the motion equations as follows:

E,I,=El +h, h=rmEt,R’+R,), (12)

where E_,z, are Young’s modulus and thickness of surface layers, respectively.

The second effect is known as surface residual stress. According to Laplace—Young equation, the transverse
loading exerted on the MT due to surface residual tension is defined as:

ow (x,t)
2

qx,0)=H ,  H=47,(R, +R)), (13)

where 7, is the residual surface tension.
Surface effects on the mechanical behavior of MTs can be described using above relations.

7 MOTION EQUATIONS

According to Hamilton’s principle (& I [K -U -9, ,.0m )]dt = 0) the variational form of the motion equations can

a1
be obtained for ou,dév,ow 08, ,08, . In order to summarize relations, the dimensionless parameters for MTs can
be introduced as:
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Applying Hamilton’s principle on Egs. (5), (8) and (11), the dimensionless motion equations for Cooper-Naghdi
thick shell model are obtained as follows:
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8 SOLUTION METHOD

Considering following form for the displacement fields, motion equations are simplified to

equations as:

u(x,0,t)=U(x) cos(m@) e
v(x,0,t)=V (x) sin(m8) e
w(x,0,t) =W (x) cos(m@) e™
B.(x,0,t)=p_ (x) cos(m6) e”
By(x,0,t) = By(x ) sin(m6) e,

one-dimensional

(16)

where @ (rad/s) is the natural circular frequency of the cylindrical shell and m is integer number which introduced

as circumferential wave numbers.

After this simplifying, one dimensional DQM is used to approximate the partial derivative of function. Let ' be a
function representing u, w,v , B, and [, with respect to variables & in the domain of (0 <& < L ) [27]:

N

=2 A F&,

k=1

oFF
oct

(17)
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where A[(,I;) is the weighting coefficients associated with K"-order partial derivative of F, and N is the number of

grid points in longitudinal direction. Chebyshev polynomials [27] are selected for positions of the grid points.
Substituting Eq. (16) to Egs. (15) and using Eq. (17) algebraic equations are achieved as follows:

MY +CY +KY =0, (18)

where Y is the displacement vector, M is the mass matrix, C is the damping matrix and K is the stiffness matrix.
Applying simply-simply boundary conditions into the final equations, the standard form of motion equations is

obtained. Dimensionless frequencies are the eigen-value of following matrix ([4]) that are named state-space matrix:

[0] [1]

[A]= _[M—IK] —[M*C] , (19)

where [/] and [0] are the unitary and zero matrixes. Results of Eq. (19) are complex values that contain real
(damping frequencies) and imaginary (natural frequencies).

9 NUMERICAL AND DISCUSSION

In this research, vibrational behavior of orthotropic protein MTs in living cells is investigated using Cooper-Naghdi
shell model. The effect of various parameters such as length scale, length to radius ratio, thickness of MT, surface
layer and temperature change in living cells are discussed in details. Mechanical properties of orthotropic MT are
expressed in Table 1.

Table 1
Mechanical properties of MTs.
h R, )i} E, E, y
2.7¢-9 nm 12.8e-9 nm 40 1e9 Pa le6 Pa 0.0001
ly=1=1, L, k E, P H
10e-5 nm 0.3 5/6 1e3 Pa 1470 kg/m’ 695e-6 Pa.s

The longitudinal elastic modulus of MTs is significantly greater than shear modulus and the circumferential
elastic modulus. For this reason, the effect of longitudinal Young’s modulus on vibration frequencies of anisotropic
MTs is demonstrated in Fig. 2. This figure reveals that the natural frequency of anisotropic MT enhances due to

increasing the stiffness of MTs with increasing the longitudinal Young’s modulus as it has also been concluded in
Ref. [8].
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Fig.2
Variation of vibration frequency with circumferential wave
numbers for different values of Young’s modulus.

-
T
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o 5 10 15 20 25
m

MTs are cylindrical structures with inner and outer diameters of about 17 and 25 nm, respectively. Therefore, it’s

better to simulate anisotropic MT as thick shell model. In this regard, vibration frequencies of anisotropic MT versus
circumferential wave numbers for different MT thickness-effective thickness for bending (/,) and equivalent
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thickness (4) [12] are illustrated in Fig. 3. It is obvious from this figure that decreasing the thickness of MT leads to
increase natural vibration frequencies. It is worth to mention that the thickness of MT is a key parameter especially
for higher vibration modes and lower circumferential wave numbers.

sk | —9— First mode: Thickness=2.7e-9

\ O First mode: Thickness=1.6e-9
\ —0— Second mode: Thickness=2.7e-9
4 | —¥— Second mode: Thickness=1.6e-9

Frequency [o (GH2)]
T

Fig.3
Effect of thickness of MT on vibration frequency versus
circumferential wave numbers.

Fig. 4 shows the effect of length to radius ratio on vibration frequencies of anisotropic MT. It is obvious that the
stiffness of protein MT with smaller aspect ratio is substantial, so that, decreasing the value of aspect ratio from 50

to 45, leads to increase natural frequencies considerably (about 1800 GHZ). This result has also been obtained in
Refs. [12] and [23]

3.5 T T T T
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m

Effect of temperature change in living cells on the vibrational behavior of protein MT is depicted in Fig. 5. The
mechanical properties of anisotropic MT are expressed in Table 2. This figure shows that increasing temperature in
the living cell tissues causes to decrease frequencies of anisotropic protein MT extraordinary.

Table 2
Temperature-dependent material properties for microtubules.
Ex EH GXH = ze = GS:
T =15°C 185¢6 Pa 1.47e6 Pa 1.9¢6 Pa
T =20°C 138e6 Pa 1.09¢6 Pa 1.5e6 Pa
T =30°C 127¢6 Pa 1e6 Pa 1.3e6 Pa
3000
2800 ¢ 4
o T=15°C
= 26001 —&—T=20°C 1
g 2400 o T=00C B
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Fig. 6 represents effect of surface layer on frequencies of protein MT. This figure indicates that considering
surface layer around the MT does not effect on vibrational behavior of MT significantly. But it should be considered
to enhance the accuracy of results; also some conditions may increase the effect of surface layer such as initial axial
compression loading as it has been investigated in Ref. [26]
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T 6000 g
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) ‘ - =
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? 5000 |- aas7 0o R
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E 4500 [~ A
<]
a000 - PoopopEnoconoEEooE .
Fig.6
3500, s 10 1 20 P Effect of surface layer of MT on vibration frequency.

m

Fig. 7 indicates the comparison between the results of classic, couple stress and strain gradient theories. As can
be seen, due to considering three length scale parameter in strain gradient theory, the difference in the frequencies of
MT that predicted by this theory compared with couple stress and classical theory is significant. This difference
expresses the superiority and accuracy of strain gradient theory than other theories like the results obtained from
Ref. [28].
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@
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§ so00l b & Strain gradient theory |
o oy
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[
1000 © b Flg'7
oo Comparison between the results of classic, couple stress and
o Qo000 —0=—0=—0=0—0—0—0—0—0 . . .
° 5 10 15 20 25 strain gradient theories.

As mentioned already, strain gradient theory involves three length scale parameters. Fig. 8 illustrates the effect
of three length scale parameters on natural frequency (Hz), separately. As can be seen from this figure, the most
value of frequency is belong to /] , while /(y needs larger value to change the natural frequency. Figs. 8(a) and 8(b)

show when /| increases the natural frequency from 3.92e8(Hz)to 2.51e9(Hz), [gchanges it only from
3.92e8(Hz )to 4.19e8(Hz ) which is very negligible. In the other hand, the increasing rate of /[, /5 is greater than
[y .Increasing every three parameters, the frequency increases like the findings of Ref. [28]. The results approved
that /(,/,/, have significant effect on vibrational behavior of MTs and strain gradient theory can apply the effect of

size in microstructures, as well.
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Fig.8

Vibration frequency versus length scale parameters (a) /o is
0.5 micrometer. (b) /; is 0.5 micrometer. (c) [y is 15
micrometer.

(©

In order to validate the results, equations of motion were solved by the shell theory presented in Ref. [16]. The
results of Cooper-Naghdi shell theory and Heireche et al. [16] have been compared in Fig. 9. As can be seen in Fig.
9, there is a good agreement between the result of these theories especially in m =1,9,10 . This figure approved

the accuracy of Cooper—Naghdi thick shell theory.

0.025
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o
Q
N

0.015

Heireche et al. [16] L

0.01 M \
= .
0008 o Present work Flg'9 .
2 e g Comparison between the results of present work and Ref.
1 2 3 4 5 6 7 8 9 10 [16]

10 CONCLUSIONS

This study has been developed strain gradient theory using Cooper—Naghdi thick shell model for the first time.
Vibrational behavior of anisotropic protein MTs surrounded in cytosol was investigated with the new approach.
Cytosol was considered as a visco-elastic bio-medium and the influence of surface traction are also taken into
account. The effect of three length scale parameters on vibration frequency of anisotropic MT was determined. The
governing motion equations were obtained using Hamilton’s principle and solved by one dimensional DQ method
for simply- simply boundary condition. Regarding thermo-mechanical properties of MT, effect of various
parameters such as temperature change, length scale, surface layer, thickness and aspect ratio on the frequencies of
anisotropic MT were discussed in details and following results were concluded:

KD
£ X4

X3

o

X3

o

The results approved that temperature in living tissues and physical properties of MT such as longitudinal
elastic modulus, thickness and aspect ratio play an important role on vibration frequencies of MT, so that
increasing temperature in the living cell tissues causes to decrease frequencies of anisotropic protein MT
extraordinary.

It is obvious that the stiffness of protein MT with smaller aspect ratio is substantial, so that, decreasing the
value of aspect ratio from 50 to 45, leads to increase natural frequencies considerably (about 1800 GHZ).
Decreasing the thickness of MT leads to increase natural vibration frequencies.

It was found that vibrational behavior of MT is strongly dependent on the length scale parameter so that
increasing length scale significantly increased the frequency especially for higher vibration modes.
Considering surface layer around the MT does not effect on vibrational behavior of MT significantly. But it
should be considered to enhance the accuracy of results; also some conditions may increase the effect of
surface layer such as initial axial compression loading.
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