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 ABSTRACT 

 This paper presents the surface piezomagnetoelasticity theory for size-

dependent buckling analysis of an embedded piezoelectric/magnetostrictive 

nanobeam (PMNB). It is assumed that the subjected forces from the 

surrounding medium contain both normal and shear components. Therefore, 

the surrounded elastic foundation is modeled by Pasternak foundation. The 

nonlocal piezomagnetoelasticity theory is applied so as to consider the small 

scale effects. Based on Timoshenko beam (TB) theory and using energy 

method and Hamilton’s principle the motion equations are obtained. By 

employing an analytical method, the critical magnetic, electrical and 

mechanical buckling loads of the nanobeam are yielded. Results are 

presented graphically to show the influences of small scale parameter, 

surrounding elastic medium, surface layers, and external electric and 

magnetic potentials on the buckling behaviors of PMNBs. Results delineate 

the significance of surface layers and external electric and magnetic 

potentials on the critical buckling loads of PMNBs. It is revealed that the 

critical magnetic, electrical and mechanical buckling loads decrease with 

increasing the small scale parameter. The results of this work is hoped to be 

of use in micro/nano electro mechanical systems (MEMS/NEMS) especially 

in designing and manufacturing electromagnetoelastic sensors and actuators. 

   © 2017 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 VER the last decade, novel accomplishments in nanomanufacturing and nanostructures fabrication have 

revolutionized various fields of engineering including mechanics, bio-engineering and electronics, and made it 

possible to utilize micro- and nano-structured materials in the frame of micro- and nano-devices. As a result, there 

has been an increasing demand to predict behavior of these materials in practical circumstances. Motivated by this 

aim, diverse models and theories has established to demonstrate their mechanical and electrical characteristics of 

micro- and nano-structured materials. Compare to large scale beams, atomic scale of the nanobeams has made a 

difference in the reaction of these structures to applied forces. Therefore, Eringen [1] presented a nonlocal elasticity 
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theory in which the stress at any point of the beam is a function of strains at all points of the beam. This notion is in 

sharp contrast with classical continuum theories that state the stress at a point is just contingent on the strain at that 

point. Aydogdu [2] implemented a generalized nonlocal beam theory to investigate bending, buckling and free 

vibration of nanobeams. A nonlocal shear deformation beam theory was used by Thai [3] to present analytical 

solutions of deflection, buckling load, and natural frequency for a simply supported beam. Nazemezhad and 

Hosseini-Hashemi [4] studied the small scale effects on the nonlinear free vibration of nanoscale functionally graded 

(FG) Euler–Bernoulli beams (EBB) with von karman type nonlinearity. Rahmani and Pedram [5] applied nonlocal 

elasticity and TB model to investigate the effects of length scale parameter and length-to-thickness ratio on the 

vibration characteristics of functionally graded material (FGM) nanobeams with simply supported boundary 

conditions. A gradient model for Timoshenko nanobeams based on a consistent thermodynamic approach was 

developed by Sciarra and Barretta [6] to investigate static bending of the nanobeam. They introduced two nonlocal 

parameters in their model so as to separate the nonlocal contributions due to the normal and transverse shear strains 

and concluded that the classical TB models overestimate the static responses with respect to the proposed model. 

Akgoz and Civalek [7] developed a size-dependent higher-order shear deformation beam model based on modified 

strain gradient theory to investigate the static bending and free vibration behavior of simply supported microbeams. 

This model captured both the microstructural and shear deformation effects without the need for any shear 

correction factors. Buckling analysis of microbeams was presented by Mohammad-Abadi and Daneshmehr [8] 

based on modified couple stress theory. They demonstrated that considering size effect increases the stiffness of 

microbeams. Interesting type of functionally materials, piezoelectric materials are used in MEMS/NEMS 

technology. Their capacity as sensors and actuators has yielded by providing a transformation between electrical and 

mechanical energy [9]. Nano-piezoelectric structures respond better to small forces, display improved piezoelectric 

properties and can be used for powering wireless sensors, microrobots, MEMS/MEMS, and bioimplantable devices 

[10-12] due to their small size. Therefore, there has been a great tendency among researchers to consider the effects 

of piezoelectric characteristics on nanostructured materials formulations. In this regard, Ghorbanpour Arani et al. 

[13] implemented nonlocal elasticity and piezoelasticity theories to investigate electro-thermo-torsional buckling 

response of a double-walled boron nitride nanotube. They used the first order shear deformation theory to take into 

account the relationship between the piezoelectric coefficient of armchair boron nitride nanotubes and stresses. A 

study on the buckling and dynamic stability of a piezoelectric viscoelastic nanobeam subjected to van der Waals 

forces was presented by Chen et al. [14]. In their probe Galerkin method and EBB hypothesis were used to 

investigate the buckling, post-buckling and nonlinear dynamic stability of the nanobeam. Asemi et al. [15] presented 

a nonlinear continuum model for the large amplitude vibration of nanoelectromechanical resonators using 

piezoelectric nanofilms under external electric voltage. They showed that the small scale effects are more 

pronounced when the piezoelectric nanoresonator is subjected to higher electrical loads. 

In order to present a more accurate model, it is really crucial to consider the effects of the applied forces from the 

medium in which nanostructure is embedded. Winkler model has been utilized in many cases to simulate the 

surrounding impacts as a normal pressure. A research on the buckling of single walled carbon nanotube embedded 

in Winkler foundation was carried out by Pradhan and Reddy [16] using differential transformation method. They 

indicated that critical buckling load increases with an increase in Winkler modulus for various boundary conditions. 

Han and Lu [17] used a Winkler model to study the torsional buckling of a double-walled carbon nanotube. Apart 

from normal pressure, the subjected force from the surrounding may contain a shear component. In such case 

Winkler model is not precise to resemble the medium effect. A Pasternak model has been presented to satisfy 

accuracy of simulation. A number of researches are found in the literature in which Pasternak model has been 

applied to mimic different nanostructures behaviors. Rahmati and Mohammadimehr [18] presented a Pasternak 

model for a non-uniform and non-homogeneous nanorod under electro-thermo-mechanical loadings. They 

concluded that any increase in either Winkler or Pasternak coefficient is accompanied by a growth in natural 

frequency. Abdollahian et al. [19] considered the effect of Pasternak foundation on the wave propagation of three-

walled boron nitride nanotubes conveying viscous fluid based on nonlocal elasticity cylindrical shell theory. The 

thermal buckling of nanoplates lying on Winkler–Pasternak elastic substrate medium was investigated by Zenkour 

and Sobhy [20], using the sinusoidal shear deformation plate theory. In comparison with conventional scale 

materials, the surface to volume ratio of nanostructured materials is obviously considerable, hence, it would not be 

sensible to neglect the influence of surface energy in formulation of the nanostructures as it assumes in classical 

continuum theories [21-25]. Consequently, researchers have presented novel models for various nanostructures 

through which the surface effect is taken into account. Herein, Moshtaghin et al. [21] used modified Hill’s condition 

with size-dependent moduli to study the effects of surface residual stress as well as surface elasticity on the overall 

yield strength of nanoporous metal matrices containing aligned cylindrical nanovoids. Based on surface 

piezoelasticity model, the anti-plane or horizontally polarized shear waves propagation in an infinite piezoelectric 

http://www.sciencedirect.com/science/article/pii/S0020722513000682
http://www.sciencedirect.com/science/article/pii/S0020722513000682
http://www.sciencedirect.com/science/article/pii/S0020722513000682
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plate of nano-thickness were investigated by Zhang et al. [22] to show the surface effect on wave characteristics. 

The cooperative effects of surface piezoelectricity and nonlocal small-scale on the propagation characteristics of 

elastic waves in an infinite piezoelectric nanoplate were investigated by Zhang et al.[23]. They concluded that both 

the nonlocal scale parameter and surface piezoelectricity have significant influence on the size-dependent properties 

of dispersion behaviors. Hosseini-Hashemi et al. [24] presented a comprehensive analytical model to study the 

surface effects, including surface elasticity, surface tension and surface density, on the nonlinear free vibration of 

FG nanoscale EBBs using nonlocal elasticity. They considered the von Karman geometric nonlinearity with the 

assumption of cubic variation of normal stress through the thickness. Ansari and Sahmani [25] employed a 

continuum elasticity model on the basis of Gurtin–Murdoch elasticity theory to analyze influences of surface stress 

on the bending and buckling responses of nanobeams. Magnetostrictive materials are new smart materials which are 

capable of magneto-mechanical coupling [26]. This magnetization and strain coupling as well as the ability of 

miniaturization and arbitrary shaping have provided these materials with phenomenal characteristics to be utilized in 

various NEMS and MEMS-based devices as stress and torque sensors and energy harvesters [26-28]. The magneto-

electro-elastic (MEE) or piezoelectric/magnetostrictive materials are novel materials which benefit from advantages 

of both piezoelectric and magnetostrictive materials. These materials are well known for their exceptional ability to 

convert energy among electrical, magnetic and elastic forms, generated from possession of piezoelectric, 

piezomagnetic, magnetoelectric and magnetoelectroelastic couplings. This ability of MEE materials has caused them 

to be regarded as an appropriate class of materials for a wide range of application including sensors, actuators, 

electronic memory devices and electronic instrumentations [29-31]. These applications have been accompanied 

among researchers to investigate mechanical behavior of MEE materials; vibration, buckling and wave propagation 

[32-35]. Though, a limited number of studies have carried out on MEE nanostructures. Li et al. [36] implemented 

nonlocal Mindlin theory to analyze buckling and free vibration of MEE nanoplate resting on Pasternak foundation. 

They showed that the buckling load and vibration frequency of MEE nanoplate decrease linearly with electric 

potential and increase with magnetic potential. Also, the importance of the electric and magnetic loadings in free 

vibration of MEE nanobeams illustrated by Ke and Wang [37] using the nonlocal and TB theories. 

However, to date, no reference has been made so far in the literature on the buckling analysis of PMNBs 

including surface effects. Since PMNBs can be used in many engineering and medical applications especially in 

NEMS, in order to improve the optimum design of such devices the problem of buckling analysis of PMNBs 

becomes significant. Motivated by these considerations, in this research, nonlocal piezomagnetoelasticity theory is 

applied to study the small scale effects on the buckling characteristics of PMNBs embedded on a Pasternak elastic 

medium. Based on surface piezomagnetoelasticity theory the effects of surface layers are taken into account. Using 

Hamilton’s principle, the motion equations are derived and then, an analytical method is presented to estimate the 

critical magnetic, electrical and mechanical buckling loads. 

2    SUBMISSIONS OF PAPERS 

The coordinate system of the central axis of nanobeam is x , y and z that are taken for the length, width and thickness 

of the nanobeam, respectively (See Fig. 1). Consider a PMNB as depicted in Fig. 1 which shows the geometrical 

parameters of length L and rectangular cross section of thickness h and width b. The PMNB is rested on an elastic 

medium which is simulated by Pasternak foundation and it is also subjected to external electric and magnetic 

potentials. As is well known, this foundation model is both capable of transverse shear and normal loads. 

 

      

 

 

  

 

 

 
Fig.1 

Schematic view of embedded PMNB with surface layers. 

 

According to TB theory which is used in the present formulation, the displacement of any arbitrary point of the 

PMNB along x , y and z directions ( ,x yu u and zu ) can be expressed as [38]: 
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     , , , , ,xu x z t u x t z x t   (1a) 

 

 , , 0,yu x z t   (1b) 

 

   , , , ,zu x z t w x t  (1c) 

 

where  ,u x t  and  ,w x t  are the displacement components of the mid-plane in the x and z directions, 

respectively. Also,  ,x t  is the rotation angle of the cross section. Considering Eq. (1) the nonzero nonlinear 

strain–displacement relationship of von Karman type is given by: 
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Moreover, the electric potential  , ,x z t  and magnetic potential  , ,x z t  are assumed as [37]: 
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(3b) 

 

where  , ,h x t    and  ,x t  are the spatial variation of the electric and magnetic potential in x-direction, 

respectively [36, 37]. Also, 0  and 0  denote the initial applied electric and magnetic potentials, respectively. 

The electric field ( iE ) and magnetic field ( iH ) components can be obtained from the following relations as 

[37]: 

 

, ,i iE    (4a) 

 

, .i iH    (4b) 

 

Using Eqs. (4), the following relations may be obtained as: 
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3    NONLOCAL PIEZOMAGNETOELASTICITY THEORY 

The small length scale involved in nanotechnology has questioned the applicability of the classical mechanics 

model. The small size of the nano-structure materials is very important in nanotechnology problems. As this scale is 
ignored in the classical mechanics model, the nonlocal piezomagnetoelasticity theory is employed for PMNBs. For a 

homogeneous and nonlocal piezoelectric/magnetostrictive solid without body force, the following equations can be 

written [13, 37, 39]: 

 

     . ,ij ijkl kl kij k kij k
V

x x c e E x f H x dx             
(6a) 

 

     . ,i kij kl ik k ik k
V

D x x e h E x g H x dx            
(6b) 

 

     . ,i kij kl ik k ik k
V

B x x f g E x H x dx             
(6c) 

 

, , ,, 0, 0,ij j i i i i iu D H     (6d) 

 

where , ,ij ij iD  and 
iH  are the stress, strain, electric displacement and magnetic induction components, 

respectively; Also, , , , ,ijkl kij ik kij ikc e h f g and ik  are elastic, piezoelectric, dielectric, piezomagnetic, magnetoelectric 

and magnetic constants, respectively [34-37];  ,x x  is the nonlocal attenuation function; x x   is the 

Euclidean distance; 0e a l   is the scale coefficient, where l is the external characteristics of length. It is Also 

worth mentioning that, 0e a  is the nonlocal parameter, 0e  is a material constant determined experimentally or 

approximated by matching the dispersion curves of the (plane/beam) waves with those of the atomic lattice 

dynamics and a is the internal characteristic length .The nonlocal parameter is obtained using molecular dynamics, 

experimental results, experimental studies and molecular structure mechanics [34, 37]. 

The According to linear elasticity, the nonzero components of stresses, electric displacements and magnetic 

inductions for the bulk material can be written as follows [37]: 

 

 
2 2

0 11 31 31 ,b b
xx xx xx z ze a c e E f H        

(7a) 

 

 
2 2

0 44 15 15 ,b b
xz xz xz x xe a c e E f H        

(7b) 

 

 
2 2
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x x xz x xD e a D e h E g H      

(7c) 

 

 
2 2

0 31 33 33 ,b b
z z xx z zD e a D e h E g H      

(7d) 

 

 
2 2

0 15 11 11 ,b b
x x xz x xB e a B f g E H       

(7e) 

 

 
2 2

0 31 33 33 .b b
z z xx z zB e a B f g E H       

(7f) 

4    SURFACE LAYERS 

Based on nonlocal piezomagnetoelasticity theory the constitutive relations for the surface layer can be written as 

[22, 23]: 
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 
2 2 0

0 11 13 31 31 ,s s s s s s
xx xx xx xx zz z ze a c c e E f H            

(8a) 

 

 
2 2 0

0 44 15 15 ,s s s s s
xz xz xz xz x xe a c e E f H          

(8b) 

 

 
2 2 0

0 15 11 11 ,s s s s s
x x x xz x xD e a D D e h E g H       

(8c) 

 

 
2 2 0

0 31 33 33 33 ,s s s s s s
z z z xx zz z zD e a D D e e h E g H         

(8d) 

 

 
2 2 0

0 15 11 11 ,s s s s s
x x x xz x xB e a B B f g E H        

(8e) 

 

 
2 2 0

0 31 33 33 33 .s s s s s s
z z z xx zz z zB e a B B f f g E H          

(8f) 

 

where the upper index “s” indicates the coefficients of the surface layers. Also, it is worth mentioning that in the 

present study 0 0 0 0 0, , , ,x z x z xzD D B B  are assumed to be zero and only the effect of 0
xx  as the surface residual stress is 

considered. 

According to Gurtin-Murdoch model and unlike classical plate theories [35, 40, 41], 
zz  is not equal to zero. 

Indeed, the stress component 
zz  varies linearly along the graphene sheet thickness and satisfies the balance 

condition on the surfaces which can be expressed as the following relation [40]: 
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(9) 

 

Using Eq. (8), Eq. (9) can be rewritten as: 

 

   
2 2 2

44 15 152 2 2

2
cos cos .s s s

zz

z w
c e z f z

h xx x x

  
  

     
            

 

 

(10) 

 

By introducing zz  the stress, electric displacement and magnetic induction components, introduced in Eqs. (7) 

and (8) for both bulk material and surface layers, can be rewritten as presented in Appendix A. 

5    EQUATIONS OF MOTION 

The strain energy of the PMNB can be written as follows: 
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(11) 

 

The external work due to the Pasternak surrounding elastic medium is written as: 
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where wk  is the spring constant of Winkler type, gk  denotes the shear constant of Pasternak type and f is the x- 

component of the body force per unit length along the x- axis. 

Substituting Eqs. (11) and (12) into the Hamilton’s principle (  
0

0
T

s extW dt    ), integrating by part and 

setting the coefficients of , , ,u w     and   to zero, the governing equations of motion can be obtained as 

follows: 
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Also, the associated boundary conditions may be obtained as follows: 
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where sk  is the shear correction factor and: 
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(16) 

 

The other parameters used in Eqs. (15) and (16) are defined in Eq. (A.13) of Appendix A. It is also worth 

mentioning that Eqs. (15) are rewritten in Appendix B. 

The following dimensionless parameters are defined as: 
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In which: 
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where P is the external mechanical load subjected to the PMNB. 

Substituting Eqs. (B.2)-(B.7) into Eqs. (13b)-(13e) and using Eqs. (17) yields the dimensionless motion 

equations as: 
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Also, considering Eq. (14) the associated boundary conditions for simply supported end conditions can be 

expressed as follows: 
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(21) 

 

The derivation xM  equation can be found in Appendix C. 

6    SOLUTION METHOD 

In this section, an analytical method is used to solve the motion equations. For this purpose, the following buckling 

modes are assumed to solve the governing motion equations of a simply supported PMNB (Eqs. (19)) as: 
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where , ,W   and   are arbitrary dimensionless coefficients and m denotes the axial half wave number. 

Substituting Eqs. (22) into Eq. (19) leads to: 

 

    

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

0

0
0 ,

0

0

K K K K W

K K K K
K Y

K K K K

K K K K

    
    
          

     
 

        

 

 

 

 

(23) 

 

The nonzero solution for Eq. (23) can be obtained by setting the determinate of the coefficient matrix to zero. 

Therefore: 

 

 det 0.K   (24) 

 

The solution of Eq. (24) yields the critical mechanical (P), electrical ( 0 ) and magnetic ( 0 ) buckling loads. 

7    VALIDATION 

To the best of author’s knowledge no published literature is available on the buckling analysis of PMNBs. As a 

result, in order to compare the results of the present study with those published on the surface effect analysis of 

nanobeam buckling, a simplified model is obtained by neglecting the electric and magnetic terms in Eq. (24). This 

simplified model is quite similar to the model developed by Ansari and Sahmani [25], although, formulations of 

surface layers effects in two studies are not the same. Therefore, our results for the critical mechanical buckling 

loads is compared with those of Ansari and Sahmani [25] as indicated in Table 1. in which a good agreement can be 
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found. It is important to note that a negligible difference between the results from two studies has been caused due to 

differences in the formulations of surface layers effects. 

 
Table 1 

Comparing the critical mechanical buckling load (nN) obtained in the present study and those of Ansari and Sahmani [25]. 

L/h 

 m=1  m=2  m=3 

 
Ansari and 

Sahmani [25] 
Present Work  

Ansari and 

Sahmani [25] 
Present Work  

Ansari and 

Sahmani [25] 
Present Work 

10  1.4226 1.3472  5.3013 5.05490008  10.7081  10.3086535 

15  0.6410   0.60618  2.4818 2.35472925    5.3013     5.05490008 

20  0.3623   0.34246  1.4226 1.34722507    3.1058     2.95003872 

25  0.2324   0.21962  0.9185 0.86911521    2.0267    1.9213841  
30  0.1616   0.15268  0.6410 0.60618398    1.4226     1.34722507 

35  0.1188   0.11225  0.4723 0.44653369    1.0520     0.99561572 

40  0.0910     0.085977  0.3623 0.34246329    0.8089    0.76518735 

45  0.0719     0.067952  0.2866 0.27090661    0.6410    0.60618398 

50  0.0583     0.055053  0.2324 0.21961916    0.5203   0.4919353  

8    NUMERICAL RESULTS AND DESCUSSIONS 

In this section, the surface stress effects on buckling of a simply supported PMNB made from BiTiO3-CoFe2O4 are 

illustrated and discussed. The effects of surface layer coefficients, small scale parameter, aspect ratio, surrounded 

elastic medium are shown graphically.  

For this purpose, the exact correlation for the critical buckling loads is yielded from Eq. (24). According to Ke et 

al. [37], the mechanical, electrical and magnetic properties of the assumed PMNB are listed in Table 2. Moreover, 

the values of small scale parameter are taken in accordance with those assumed by Ke et al. [37]. 
 

Table 2 

Mechanical, electrical and magnetic properties of the PMNB made from BiTiO3-CoFe2O4 [37]. 

Elastic 

constants 

(GPa) 

 
Piezoelectric 

(C/m2) 

 
Dielectric 10-9 

(C/Vm) 

 
Piezomaagnetic 

(N/Am) 

 
Magnetoelectric 10-12 

(Ns/VC) 

 
Magnetic 10-6 

(Ns2/C2) 

11 226c    31 2.2e     11 5.64h    31 290.1f    11 5.367g    11 297    

12 125c    33 9.3e    33 6.35h    33 349.9f    33 2737.5g    31 83.5   

13 124c    15 5.8e      15 275f      33 297    

33 216c             

44 44.2c             

 

Based on the results presented by Gurtin and Mudoch [39], Zhang et al. [22] concluded the following 

relationship for surface modules ( s ) and their bulk counterpart ( b ) as: ,s bl  

where l is a material instinct length. In the present study, the mechanical, electrical and magnetic properties of 

surface layers are obtained using the mentioned relation, Also the Winkler and Pasternak constants are assumed to 

be 7 33 10wk N m   and 
102 10gk N m  . 

The influences of surface layers elastic coefficients for different small scale parameters are depicted in Figs. 2(a), 

2(b) and 2(c) for the mechanical, electrical and magnetic critical buckling loads, respectively. A downward trend is 

observed Figs. 2(a) and 2(b), i.e. with an increase of small scale parameter both mechanical and electrical critical 

buckling loads decreases. Although the upward behavior of magnetic critical buckling load in Fig. 2(c) is in contrast 

with that of Figs. 2(a) and 2(b), a lower force is needed for the occurrence of buckling phenomenon in higher small 

scale parameter values. In the other words, due to this reality that the values of vertical axis of the Fig. 2(c) is 

negative, a negative magnetic load is needed to cause buckling. Therefore, in order to compare the behavior of 

magnetic critical buckling load with mechanical and electrical critical buckling loads, absolute values of magnetic 

critical buckling load should be taken into account. Motivated by these considerations, every growth in the small 

scale parameter contributes to a fall in the magnetic critical buckling load. Hence, one can say that the increasing of 

the small scale parameter decreases the energy of the system and the system becomes looser. In addition, it is seen 
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from Fig. 2 that the increasing of the surface layers elastic coefficients leads to a rise in the absolute values of the 

critical mechanical, electrical and magnetic loads. It is due to the fact that higher surface layers elastic coefficients 

yields stiffer structure. 
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Fig.2 

Surface layers elastic coefficients effects on the critical buckling loads versus small scale parameter under a) mechanical, b) 

electrical and c) magnetic loading. 

 

Fig. 3 displays surface layers dielectric coefficients effects on the buckling of the PMNB. From Figs. 3(a), 3(b) 

and 3(c) for the mechanical, electrical and magnetic buckling loads, respectively, an increase in the dielectric surface 

coefficients is accompanied by a decrease in the critical buckling loads. Though, the increase of surface layers 

piezomagnetic coefficients decrease the absolute values of the critical buckling loads as it is shown in Figs. 4(a), 

4(b) and 4(c) for the mechanical, electrical and magnetic loads, respectively. 
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Fig.3 

Surface layers dielectric coefficients effects on the critical buckling loads versus small scale parameter under a) mechanical, b) 

electrical and c) magnetic loading. 
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Fig.4 

Surface layers piezomagnetic coefficients effects on the critical buckling loads versus small scale parameter under a) 

mechanical, b) electrical and c) magnetic loading. 

 

Fig. 5 delineates the influences of surface layers piezoelectric coefficients on the buckling of the PMNB. The 

critical buckling loads versus aspect ratio ( L h ) of the PMNB are plotted for the cases of mechanical, electrical and 

magnetic loadings in the Figs. 5(a), 5(b) and 5(c), respectively. It can be concluded from Fig. 5 that the increase of 

aspect ratio diminishes the critical buckling loads absolute values apart from the type of loading. Also, it is seen in 

Fig. 5(a) that a growth in the surface layers piezoelectric coefficients leads to an increase in the critical mechanical 

buckling load. However, a reverse behavior is true for the buckling of nanobeams under electrical and magnetic 

loadings, that is, increasing of the piezoelectric surface coefficient decreases the critical buckling loads. 

Furthermore, it is deducible from Fig. 5 that in all of the three types of loadings the differences in the buckling load 

in response to variation of the surface layers piezoelectric coefficients are more conspicuous at lower aspect ratio 

values. Hence, it is a logical conclusion that PMNBs with a lower aspect ratio are more sensitive to surface layers 

piezoelectric coefficients. 
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Fig.5 

Surface layers piezoelectric coefficients effects on the critical buckling loads versus aspect ratio ( L h ) under a) mechanical, b) 

electrical and c) magnetic loading. 

 

It is likely in practical applications that the system is subjected to various types of loadings. Therefore, it is 

momentous to investigate the buckling of the PMNB in these circumstances to determine the share of any type in 

occurrence of the buckling. The results for the cases in which the PMNB is subjected to mechanical and whether 

electrical or magnetic forces are presented in Figs. 6-9. These figures indicate the critical mechanical load for the 

given values of external electric or magnetic potential. As it is observed in the figures, with the increase of the 

external potentials absolute critical buckling load values decreases and tend to zero. 

Figs. 6(a) and 6(b), respectively, illustrate the mechanical critical buckling load corresponded to the given values 

of the applied external electric and magnetic potentials for different buckling mode numbers. It is clear that both 

mechanical critical buckling load and absolute critical external potentials increases with an increasing of the 

buckling mode number values. 
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Fig.6 

Mechanical critical buckling load with respect to the external applied potentials a) electric b) magnetic potential. 
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The effects of aspect ratio on the buckling of PMNB subjected to different types of loadings are shown in Fig. 7. 

It is seen form Fig. 7 that with augment of the aspect ratio mechanical, electrical and magnetic critical buckling 

loads dwindles. 
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Fig.7 

Effect of aspect ratio on the mechanical critical buckling of PMNB subjected to a) electric b) magnetic potential. 

 

For various values of small scale parameters, critical mechanical buckling load versus external electrical and 

magnetic potentials are depicted in Figs. 8(a) and 8(b). It can be deduced from Fig. 8 that the highest mechanical 

critical buckling load, critical external electric potential and absolute value of the critical external magnetic potential 

are allocated to the classic model, small scale parameter equals to zero. With proliferation of the length scale 

parameter critical loads decline. 

 

   
10

-2
10

-1
0

0.005

0.01

0.015

0.02

0.025

0.03

External electric potential (V)

N
on

di
m

en
si

on
al

 M
ec

ha
ni

ca
l B

uc
kl

in
g 

L
oa

d 
(P

  cr
)

 

 

e
0
a = 0 nm

e
0
a = 1 nm

e
0
a = 2 nm

 
(a) 

-10
-1

-10
-2

-10
-3

0

0.005

0.01

0.015

0.02

0.025

0.03

External magnetic potential (A)

N
on

di
m

en
si

on
al

 M
ec

ha
ni

ca
l B

uc
kl

in
g 

L
oa

d 
(P

  cr
)

 

 

e
0
a = 0 nm

e
0
a = 1 nm

e
0
a = 2 nm

 
 (b) 

Fig.8 

Effect of small scale parameter on the mechanical critical buckling of PMNB subjected to a) electric b) magnetic potential. 

 

Fig. 9 demonstrates the effect of surface residual stress on the critical mechanical buckling load. It is observed 

that existence of the surface residual stress increases the mechanical load. Hence, it is possible to prevent from 

buckling of nanobeam with increasing surface residual stresses. 
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Fig.9 

Effect of surface residual stress on the critical mechanical 

buckling load. 
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The effect of surrounding medium is investigated through Table 3. for different mode numbers and aspect ratio 

values. Tables 3(a), 3(b) and 3(c) present critical mechanical electrical and magnetic buckling loads, respectively. It 

is seen that Pasternak model has the highest critical buckling loads for all types of loadings in every mode number 

and aspect ratio. In the contrary, the lowest buckling loads are reported for the case without considering medium. In 

addition, with increasing the mode number and decreasing the aspect ratio, the critical buckling loads increase apart 

from type of the loading. 

 
Table 3 

Surrounding elastic medium effect on the dimensionless critical buckling loads a) mechanical b) electrical c) magnetic. 

3a 

L/h 
Without Considering Medium  Winkler Medium  Pasternak Medium 

m=1 m=2 m=3  m=1 m=2 m=3  m=1 m=2 m=3 

5 0.083230 0.17066 0.18030  0.08372 0.17078 0.18036  0.08501 0.17207 0.18165 

 10 0.025796 0.08322 0.13748  0.02775 0.08371 0.13770  0.02905 0.08500 0.13899 

 15 0.011967 0.04326 0.08321  0.01638 0.04436 0.08370  0.01767 0.04565 0.08500 

 20 0.006835 0.02579 0.05289  0.01468 0.02775 0.05376  0.01598 0.02905 0.05505 

3b 

L/h 
Without Considering Medium  Winkler Medium  Pasternak Medium 

m=1 m=2 m=3  m=1 m=2 m=3  m=1 m=2 m=3 

5 0.427296 0.87617 0.92568  0.42982 0.87680 0.92596  0.436448 0.88343 0.93259 

 10 0.132433 0.42725 0.70582  0.14251 0.42977 0.70694  0.149145 0.43640 0.71357 

 15 0.061439 0.22209 0.42723  0.08412 0.22776 0.42975  0.090751 0.23440 0.43639 

 20 0.035091 0.13243 0.27155   0.075410 0.14251 0.27603  0.082043 0.14914 0.28267 

3c 

L/h 
Without Considering Medium  Winkler Medium  Pasternak Medium 

m =1 m =2 m =3  m =1 m =2 m =3  m =1 m =2 m =3 

5 -0.0361009 -0.074025 -0.078207  -0.0363138 -0.0740779 -0.078231  -0.0368742 -0.074638 -0.078791 

 10 -0.0111889 -0.036097 -0.059632  -0.0120405 -0.0363098 -0.059727  -0.0126008 -0.03687 -0.060287 
 15 -0.0051908 -0.018764 -0.036096  -0.0071069 -0.019243 -0.036309  -0.0076672 -0.019803 -0.036869 

 20 -0.0029647 -0.011189 -0.022943  -0.0063712 -0.0120403 -0.023321  -0.0069315 -0.012601 -0.023882 

 

Tables 4(a), 4(b) and 4(c) imply the importance of surface coefficients effects on the critical mechanical, 

electrical and magnetic buckling loads, respectively. It is obvious that considering surface effects is accompanied by 

a dramatic growth in the absolute value of critical buckling loads. This trend is true for all of small scale parameters 

and mode numbers. An interesting conclusion from this table is that the influence of surface effects is not limited to 

the mechanical buckling loads and the surface layers characteristics play an undeniable role in the magnetic and 

electric buckling load values. 
 

Table 4 

Surface layer characteristic effects on the dimensional critical buckling loads a) mechanical (nN) b) electrical (V) c) magnetic (A). 

4a 

e0a(nm) 
Without consideration of surface layer characteristics  With consideration of surface layer characteristics 

m =1 m =2 m =3  m =1 m =2 m =3 

0 1.8019 5.0046 9.5048  4.5961 14.432 26.245 

   0.5 1.7706 4.5798 7.8202  4.4976 13.160 21.518 

1 1.6853 3.6662 5.1436  4.2285 10.425 14.009 

   1.5 1.5660 2.7802 3.3256  3.8525     7.7726     8.9081 

2 1.4345 2.1094 2.2700  3.4379     5.7645     5.9466 

4b 

e0a(nm) 
Without consideration of surface layer characteristics  With consideration of surface layer characteristics 

m =1 m =2 m =3  m =1 m =2 m =3 

0 0.11950 0.33192 0.63039  0.15241   0.47857 0.87031 

   0.5 0.11743 0.30374 0.51865  0.14915 0.4364 0.71357 

1 0.11177 0.24315 0.34114  0.14022 0.3457 0.46455 

   1.5 0.10386 0.18439 0.22056  0.12775   0.25775 0.29540 

2 0.09514 0.13990 0.15055  0.11400   0.19116 0.19720 
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4c 

e0a(nm) 
Without consideration of surface layer characteristics  With consideration of surface layer characteristics 

m =1 m =2 m =3  m =1 m =2 m =3 

0 -0.0100966 -0.028043 -0.053259  -0.0128769 -0.040433 -0.073529 

   0.5 -0.0099214 -0.025662 -0.043819  -0.0126008 -0.03687   -0.060287 

1 -0.0094432 -0.020543 -0.028822  -0.011847   -0.029207 -0.039248 

   1.5 -0.008775   -0.015578 -0.018635  -0.0107936 -0.021776 -0.024958 

2 -0.0080381 -0.011820 -0.012720  -0.0096318 -0.016150 -0.016661 

9    CONCLUSIONS 

Investigating surface effects on the micro- and nano-structures used in MEMS/NEMs such as PMNBs can make an 

effective contribution to improve the design and fabrication of such devices. In this study, the surface 

piezomagnetoelasticity theory was applied to study the electro-magneto-mechanical buckling characteristics of 

PMNBs embedded in Pasternak elastic foundation. The PMNB was subjected to external electric and magnetic 

potentials which can be used as the controller parameters. The nonlocal piezomagnetoelasticity theory was taken 

into account to consider the small scale effects. Based on TB model, the governing motion equations were derived 

using energy method and Hamilton’s principle which are the analytically solved to obtain critical mechanical, 

electrical and magnetic buckling loads. The following conclusions can be made through the presented results: 

The stability of the system is strongly dependent on the surface layer characteristics. Therefore, in order to study 

the effects of surface layers in piezoelectric/magnetostrictive structures, surface piezomagnetoelasticity theory 

should be taken into account. Increasing the surface layer coefficients increases the critical buckling loads. 

Regarding small scale effects, it was demonstrated that the critical buckling loads are decreased with increasing 

the small scale parameter. 

With increasing of the external electric and magnetic potential absolute values, a lower mechanical load in 

needed for the occurrence of the buckling phenomenon. Therefore, the system becomes looser. 

Increasing the elastic foundation parameters cause to increase the stability of the system. 

APPENDIX A 

Considering zz  in the Eqs. (7) and (8) the following relations for the stress, electric displacement and magnetic 

induction components for both bulk material and surface layer can be obtained as: 
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APPENDIX B 

Eqs. (15) can be rewritten by using Eqs .(13b) and (13c) as follows: 
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APPENDIX C 

In order to find the xM  equation, one can rewrite Eq. (15b) as follows: 

   
2 3

11 11 11 31 31 31 31 31 31

2 2 2 2
13 13 13 13 13

44 25 252 2
33 33 33 33 33

13

33

2 2
2 6

2 4

6 3

2

s s s s s s
x

s s s
s s s

bh h
M bD c c bE bhe E bF bhf F

x

c c c c cbh h w b
bh c E E

c c c x h c c hx x

cb
F

h c


   

 

  
            

      
                  

  
22

213
25 25 02 2

33

4
s

s s xc M
F e a

c h x x

  
  

    

 

 

 

 

 

(C.1) 

 

Also, from Eq. (13c) the following relation may be obtained as: 
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Using Eq. (13b) into Eq. (C.2) yields: 
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Substituting Eq. (C.3) into Eq. (C.1) and using dimensionless parameter (Eqs. (17)) results the xM  as expressed 

in Eq. (21). 
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