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 ABSTRACT 

 
This paper investigates the quasi-static plane deformation of an isotropic 

thermoelastic half-space due to buried seismic sources and heat source. 

Governing equations of thermo-elasticity are solved to obtain solutions 

for seismic sources in a thermoelastic half-space. The general solutions 

are acquired with the aid of Laplace and Fourier transforms and with the 

use of boundary conditions. The case of dip-slip line dislocation is 

studied in detail along with line heat source. Analytical solutions for two 

limiting cases: adiabatic and isothermal, are obtained. The solutions for 

displacement, stresses and temperature in space-time domain are 

obtained by using a numerical inversion procedure. The accuracy of the 

proposed method is verified through a comparison of the results obtained 

with the existing solutions for elastic medium. In addition, numerical 

results for displacements, stresses and temperature function, induced by a 

vertical dip-slip dislocation and line heat source, are presented 

graphically to illustrate the effect of inclusion of thermal effect in 

simulation of the problem.     

                                          © 2018 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 HE study of the Earth deformation, associated with faults due to earthquakes, has been a subject of great 

interest for geophysicists and seismologists. To investigate the deformation associated with faults, the Earth is 

often modelled as an elastic half-space [1-19]. Two dimensional dip-slip dislocation models of earthquake faults 

have been used extensively by many researchers. Based on the pioneer work of Singh and Garg [20] on two 

dimensional seismic sources, several articles [21-32] on deformation caused by dip-slip line dislocation sources have 

been appeared in literatures. In most of these studies, the medium has been considered as a uniform elastic half-

space or two half-spaces in a welded contact or a layer over an elastic half-space containing seismic sources.  

As the temperature inside the Earth is not constant and it plays a significant role in geophysical studies, so it 

becomes more appropriate to consider thermoelastic model of the Earth rather than the elastic one. Some researchers 

have modelled the Earth as a thermoelastic medium and studied the deformation due to thermal and mechanical 
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sources. Pan [33] studied the transient thermoelastic deformation in a transversely isotropic and layered half-space 

by surface loads and internal sources. The thermoelastic coupling was neglected in the heat equation. The 

expressions for thermoelastic displacements and stresses in a multi-layered elastic media due to varying temperature 

and concentrated point loads were determined by Ghosh and Kanoria [34]. Hou et al. [35] derived Green’s functions 

for a line heat source in a semi-infinite thermoelastic plane. Jacquey et al. [36] studied thermoelastic effects on fault 

slip tendency during injection and production of geothermal fluids. Marin et al. [37] discussed reciprocity theorem 

in micro-stretch thermoelastic bodies. Vashisth et al. [38] studied the deformation of a thermoelastic medium due to 

seismic source in a welded contact elastic medium. Naeeni and coauthors [39-43] studied dynamic problems of 

transient response of a thermoelastic half-space subjected to mechanical and thermal buried sources. Kordkheili et 

al. [44] made an axisymmetric analysis of a thermoelastic isotropic half-space under buried mechanical loads and 

heat flux to determine the displacement and temperature functions. Nowacki [45] made an attempt to find solution 

for a three dimensional quasi-static problem in thermo-elasticity and obtained solution for point source and centre of 

compression. The quasi-static deformation of a semi-infinite thermoelastic medium caused by two or three 

dimensional seismic sources (strike-slip fault, dip-slip fault and centre of rotation etc.) has not been studied so far. 

The quasi-static deformation of a homogeneous isotropic thermoelastic half-space due to two dimensional buried 

seismic sources and line heat source is considered in the present study. The expressions for temperature function, 

stresses and displacements have been obtained in Laplace transform domain using Airy stress function approach and 

traction free boundary conditions. The case of dip-slip line dislocation source is studied in detail and the solutions 

are obtained analytically for two limiting cases: adiabatic and isothermal. The solutions in space time domain are 

computed numerically for a dip-slip fault and line heat source and are presented graphically. The work of Rani et al. 

[9] and Hou et al. [35] has been obtained as a particular case of this study. The theoretical expressions of solutions 

for different seismic sources given by Rani and Singh [22] again based upon the solutions given by [9] for elastic 

half-space, have been used in a number of observational seismological studies [46-52]. Such fundamental solutions 

have not been derived for a thermoelastic medium so far. 

This work is motivated by the fact that in the interior of the Earth, deep focus earthquakes occur and temperature 

plays a significant role there. The mechanism for deep focus earthquakes depends strongly on the thermal structure 

of the Earth [53]. The critical difference between the present and earlier studies is that there is a noticeable change in 

the temperature function in the presence of seismic source. In the light of these findings, it can be concluded that the 

thermal effect should be included in calculating the deformation in order to obtain more realistic studies of 

earthquakes. Thus, modelling the Earth as a thermoelastic medium is appropriate and is an advancement in the 

existing models.    

2    FORMULATION OF THE PROBLEM  

Consider a homogeneous isotropic thermoelastic half space ( 0)z  . Let us represent 
 
Lame’s constants by ,  ; 

the thermoelastic coupling coefficient by  ; the coefficient of linear thermal expansion by t ; Poisson’s ratio by  ;  

the thermal conductivity  by
0 ; the specific heat by eC ; the density by  and the temperature at natural state by 

0T . A line source parallel to the x-axis passing through the point (0,0, )h  in the thermoelastic half space is 

considered (Fig. 1).  

A two dimensional plane strain problem in yz-plane is considered so that the displacement components can be 

written as: 

 

( , , ), 0 forall , .i i xu u y z t u i y z      (1) 
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Fig.1 

A line source acting through the point (0,0, )h . 
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3    BASIC EQUATIONS AND THEIR SOLUTIONS 

The equations of equilibrium and heat equation, in case of plane strain problem, are 

 

  2

, , 0i ij j j ju u f            (2) 

 
2

0 0 , 0e j jC T u Q          ,  , ,i j y z    (3) 

 

where,  is the difference between current and  the reference temperature, 
jf  are components of body force, Q is 

the heat source term and 2  is the Laplacian operator. For a line force, ( ) ( ) ( )j jf F y z h H t   , 0Q   and for 

line heat source 0jf  , ( ) ( ) ( )Q q y z h H t   . Here 
yF and 

zF are horizontal and vertical forces per unit length 

respectively and q   is the heat generated per unit length. (.)  is the Dirac delta function and (.)H is the Heaviside 

unit step function. 

Following Banerjee [54], the fundamental solutions (displacements and temperature difference function) for a 

single line force (horizontal and vertical) and line heat source applied in a thermoelastic medium are obtained first. 

Secondly, the solutions for dipolar sources are obtained by following the procedure as given in [55].  

If 
( )j

iu  is the thi component of the displacement due to force in thj direction, then 
( ) ( )

,

jk j

i i ku u  ,  , , ,i j k y z
 

represents, for j k , displacement for a horizontal single couple  jk  in yz plane with force along thj direction 

and offset along thk direction. For dipole, j k . 

The results for double couple can be obtained by adding or subtracting the corresponding results of single 

couples or dipoles e.g. ( ) ( )yz zy is a double couple that corresponds to a vertical dip-slip line dislocation and 

( ) ( )zz yy  is a double couple which corresponds to a dip-slip on a 45 dipping dislocation [3]. 

 A plane deformation problem in an isotropic thermoelastic medium can be solved in terms of the Airy stress 

function U and temperature difference function  [56]. The Airy stress function U  is defined as: 

 
2 2 2

2 2
, ,yy zz yz

U U U

y zz y
  

  
   

  
 (4a) 

 

where ij are components of stress tensor and are related to displacements as: 

 

, , ,( ) ( )ij k k ij i j j iu u u         (4b) 

 

and ij is Kronecker delta. 

Neglecting body force and heat source terms in Eqs. (2)-(3) and applying Laplace transform with respect to time 

t on Eqs. (2)-(4) and simplifying further (see Appendix A), we obtain  

 
2 2( 2 ) 0U        (5) 

 
2

2 20 0 0 0

0 ( ) 0
(1 2 ) 2

e

T s T
s C U

 
   

  

 
      

 
   (6) 

 

where s  is the variable of  Laplace transform, U and  are functions of y, z and s. The notation bar over a variable 

denotes the Laplace transform of that variable. Hereafter, this notation is suppressed for brevity. 

Elimination of   and U, one at a time, from  Eqs. (5)-(6) gives 

 
2 2( ) 0c s      , 2 4( ) 0c s U       (7) 
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where 
 

 
0 2

2e s

c
C

  

  





, 

2

0

s

e

T

C


 


  .                   

    

                                                                              

To solve Eq. (7), first Fourier Sine/ Cosine transform with respect to y is taken, the resulting differential 

equations are solved and then  and U are obtained by taking inverse Fourier Sine/ Cosine transforms respectively. 

Such a solution for a line source, parallel to the x-axis and passing through the point
 

(0,0, )h  in an unbounded 

thermoelastic medium, can be written as: 

 

 0 0 0 0

0

sin
( )

cos

m z h k z h ky
U L e M N k z h e dk

ky


     

     
 

    (8) 

 

2

0 0 0

10

sin

cos

m z h k z h kys
L e N k e dk

ky
  




     

   
  

    (9) 

 

where 

1
2

2 s
m k

c

 
  
 

, 
1 2 c    , 

0

2( )s 





 ,  

 2

s

s

s




 



.  

The expression 
sin

cos

ky
I

ky

 
  
 

 represents a linear combination of sin ky  and cosky . Only one term, either the 

upper term or the lower term, is to be selected. 

Using the expressions of displacements and temperature function of [54], the stresses were obtained and Laplace 

transform was taken thereafter. Making use of tables of integral transform [57], the expressions of stresses and 

temperature, in integral form, were obtained. These expressions and the expressions obtained from Eqs. (8) and (9) 

are compared to obtain the source coefficients 
0L , 

0M and
 0N  for different line sources and dipolar sources. 

0L , 

0M and
0N are obtained as: 

Horizontal line force: 

 
2

1 11

0 0 1 02 2 2

(1 )2
, 1 2 ,

2 (1 ) 4 (1 ) 4 (1 )

y y ycc kF F c Fcc k
L M c N

ss m s k sk


     

 
       

   
,

 
1

1

s

s

c
 







 (10) 

 

with the stipulation that in the representation of integrals , the upper term of  
sin

cos

ky
I

ky

 
  
 

 is to be selected. 

Vertical line force: 

 

1 1 1

0 0 02 2 2 2

(1 )
, ,

2 (1 ) 2 2 (1 ) 4 (1 )

z z z zcc F F F cc c F
L M N

s sk s sk      

  
       

   
 (11) 

 

with the stipulation of selecting lower term of I . The upper and lower sign of   corresponds to the region z h  

and z h respectively.  

Line heat source: 

 

0 0 02 2

0 0

, , 0
( 2 ) ( 2 )

c q c q
L M N

m s k s

   

       

 
   

 
 (12) 

 

with the stipulation of selecting the corresponding lower term of I . 

Double couple ( ) ( )yz zy : 

 

1 1 1

0 0 02 2

(1 )
, ,

2 (1 )(1 ) (1 )

yz yz yzcc kD cc kD c D
L M N

sks s     


    

 
 ,

 yzD b dl  (13) 
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where yzD  is the moment of the double couple, b is the slip and dl is the width of the dislocation. Here, upper term 

of I is selected. 

Double couple ( ) ( )zz yy : 

 

 
   

 

 

2 2

1 1 1

0 0 02 2

1
, ,

2 12 1 1

yz yz yz
c c m k D c ckD c D

L M N
skms s     

  
   

 
,
 yzD b dl   (14) 

 

with the stipulation of selecting lower term of I.                                                                                                                                                          

Thus, the expressions for temperature difference function and Airy stress function for the whole half-space 

become 

 

0

0

sin
( ( ) )

cos

mz kz
ky

U U Le M Nkz e dk
ky



   
     

 
  (15) 

 

2

0

10

sin
( )

cos

mz kz
kys

Le k Ne dk
ky

  




   
    

 
  (16) 

 

where L, M and N are arbitrary constants and may be functions of k and can be obtained by using boundary 

conditions. 
0U and 

0 are given in Eqs. (8) and (9). 

Eqs. (4a), (10)-(16) give 

 

2 2 2 2

0 0 0 0

0

sin
[ ( 2 ) ( 2 ) ]

cos

m z h k z h mz kz

yy

ky
m L e k M N N k z h e m Le k M N Nkz e dk

ky



       

          
 

  (17) 

 

0 0 0

0

cos
[ ( ( (1 )) ) ( (1 )) ]

sin

m z h k z h mz kz

yz

ky
mL e k M N k z h e mLe k M N kz e k dk

ky



       

           
 

  (18) 

 

 2

0 0 0

0

sin
[ ( ) ( ) ]

cos

m z h k z h mz kz

zz

ky
L e M N k z h e Le M Nkz e k dk

ky



       

        
 

  (19) 

 

The displacement components can now be written as: 

 

0 0 0

0

cos
2 ( (2 2 )) ( (2 2 ))

sin

m z h k z h mz kz

y s s

ky
u L e M N k z h e Le M N kz e k dk

ky
  


       

               
  (20) 

 

0 0 0

0

sin
2 ( ( (1 2 )) ) ( (1 2 ))

cos

m z h k z h mz kz

z s s

ky
u mL e M N k z h ke mLe M N kz ke dk

ky
  


       

              
 

  (21) 

 

The normal heat flux is obtained as: 

 

3 3

0 , 0 0 0

1 10

sin

cos

m z h k z h mz kz

z z

kys s
q mL e k N e mLe k Ne dk

ky
   

 


     

    
          

     
  (22) 

4    BOUNDARY CONDITIONS 

The surface 0z   is traction free, so the boundary conditions are 
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0, 0yz zz      at  0z   (23) 

 

Further, if there is no flow of heat at the free surface, then 

 

0zq     at  0z   (24a) 

 

or if the temperature remains constant across the boundary, then 

 

  0   at  0z   (24b) 

 

Let  0 0L L 
,  0 0M M 

and  0 0N N 
represent source coefficients according to  z h z h  . The boundary 

conditions (23) and (24a) yield the system  

 

0 0 0 0( )mh khmL kM kN mL e M N kh N ke            

0 0 0( )mh khL M L e M N kh e          

3 3

0 0

1 1

mh khms ms
L k N L e k N e

 

       

(25a) 

 

On solving these equations, we get 

 

   1 0 1 0 01 mh khL L e M N kh e          

    1 0 1 0 02 1mh khM L e M N kh e             

 
 0 0 0 0

2

1

mh kh khN L e M N kh e N e      
    
 

 

(25b) 

                                                                             

where 
  

1

2

1

k

m k





 
,

2

( )

k

m m k


 


, 

2( )

1

s 








.           

Similarly, the boundary conditions (23) and (24b) yield the system 

 

0 0 0 0( )mh khmL kM kN mL e M N kh N ke            

0 0 0( )mh khL M L e M N kh e          

2 2

0 0

1 1

mh khs s
L k N L e k N e

 

        

(26a) 

 

On solving these equations, we get 

 

   2 0 2 0 0 01 mh khL m L e k M N kh N e             

  2 0 2 0 0 2 01mh kh khM m L e k M N kh e k N e               

 
 

 
0 0 0 0

2 mh kh khk m
N mL e k M N kh e N e

k m k m

        
    
    

 

(26b) 

 

where 
  

2

2 m

m k k m





  
.                                                     

Substituting the values of L, M, N from Eqs. (25b) or (26b) in Eqs. (15)-(22), we get the integral expressions for 

the Airy stress function, temperature difference function, stress components, displacement components and the heat 
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flux in the thermoelastic half-space  in terms of the source coefficients 
0L , 

0M  and 
0N  . These integrals can be 

solved numerically. However, analytical solutions can also be found for following two particular cases: 

Case (i) 0t   which further implies that no net flow of heat takes place i.e. the adiabatic condition. 

Case (ii) t   which further implies the isothermal condition for seismic sources and steady state heat 

conduction for the line heat source. 

5    SOLUTIONS FOR A VERTICAL DIP-SLIP DISLOCATION 

The solutions, corresponding to a vertical dip-slip dislocation in the half-space having thermally isolated surface, 

can be obtained by Eqs. (13), (15) -(24a) and (25b). The results, in analytical form for the two limiting cases, are 

obtained as: 

Case (i) Adiabatic case 
 

2 2 4

1 2 2

( ) 4 ( )

2 (1 )

yz

s
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where 2 2 2

1 ( )R y z h    and 2 2 2

2 ( )R y z h   .    
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Case (ii) Isothermal case   

The expressions for Airy stress function, stress components and displacement components for the isothermal 

case can be obtained from those of Case (i) when we replace 
s  by  . Here, 0  . These reduced results 

coincide with the corresponding results for a source in an isotropic uniform elastic half-space [9] with some 

corrections. 

6    DIP-SLIP ON A 45°  DIPPING DISLOCATION 

Using Eqs. (14)-(24a) and (25b), the closed form solutions are obtained as: 

Case (i) Adiabatic case 
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Case (ii) Isothermal case   

As explained earlier, the results for this case can be obtained from the Eqs. (34) -(40) and the reduced results 

resemble with correct forms of the results of [9]. 
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7    DIP-SLIP DISLOCATION ON AN INCLINED PLANE 

The Airy stress function and temperature function due to dip-slip on an inclined plane can be expressed as: 

 

( ) ( ) ( ) ( )cos 2 sin 2yz zy zz yy

yz yz
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D D

 
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 (42) 

 

where  is the dip angle and ( ) ( )yz zyU  , ( ) ( )zz yyU  , ( ) ( )yz zy   and ( ) ( )zz yy  can be obtained by using Eqs. (13)-(16) 

and (25b) for general case and from Eqs. (27), (33), (34) and (40) in particular cases. The displacements and stresses 

can be obtained similarly. 

8    NUMERICAL RESULTS AND DISCUSSION    

For the numerical computation of the obtained results, a thermoelastic solid half-space is considered and the 

parameters are taken from [58-59] and are given in Table 1. 

 
Table 1 

Values of parameters of thermoelastic medium.  

Thermo-elastic  

Parameter 

(Units) 

 1 2kg m s  
  1 2kg m s     1

t K 
  3kg m 

 

 0T K

 

2 1 2( )eC m K s 

 

 1 1
0 Wm K  

 

Value 108.51514 (10)  
1011.4508 (10)  

53.11 (10)  3620 1000 1076 2.4 

 

The displacements, stresses and temperature function due to a vertical dip-slip dislocation source through the 

point (0,0, )h are computed numerically and are presented graphically.  

To make the quantities dimensionless, the followings are defined 

 
2 2

2

23 23 23

, , , , , .
ij ti

i ij

h hhuy z ct
Y Z T U

h h D D Dh

    
         (43) 

 

The temperature difference function for line heat source through the point (0,0, )h
 
is computed by making it 

dimensionless as 0

q

 
 


. All the results mentioned in Eqs. (5) to (26b) are in Laplace transform domain. For the 

limiting isothermal and adiabatic cases, the results will be independent of s and are given in Eqs. (27) to (40). In 

general, inverse Laplace transform of the obtained results is to be taken. For computation of the inverse Laplace 

transform, Schapery’s formula is used [60]. Though an extensive analysis of performance comparison of numerical 

inversion methods for Laplace and Hankel integral transforms in engineering problems has been done in [61], 

wherein better methods of Laplace inversion have been listed, but in the present case of study, the level of accuracy 

could also be obtained by Schapery’s method. Gauss quadrature formula has been used for evaluation the semi-

infinite integrals. 

The variation of dimensionless displacements ( iU ) with dimensionless horizontal distance (Y)  at different 

depths Z=0, 0.5, 1.5, 5 are exhibited in Figs. 2 to 5 respectively. On the surface of half space i.e. at Z=0, the 

horizontal displacement decreases first and then increase and approaches to zero thereafter. Similar profile is found 

for Z=0.5. Below the source line (i.e. at Z=1.5, 5), the horizontal displacement increases first, reaches to their 

maximum and then decreases and approaches to zero. On the surface, the vertical displacement first increases, 

reaches up to its maximum and then decreases. The trend of the vertical displacement is similar for all Z and the 
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peaks of displacement decrease with the increase in the distance of the receiving point from the source. The results 

of displacements for the two limiting cases (adiabatic, isothermal) are also compared. These four Figs. reveal that 

the difference between isothermal and adiabatic cases is considerable at Y=0 for horizontal displacement and at peak 

points for vertical displacement. 

 

 
(a) 

 
(b) 

Fig.2 

Variation of displacements with Y  for Z=0; (a) Horizontal displacement, (b) Vertical displacement. 

 

 
(a) 

 
(b) 

Fig.3 

Variation of displacements with Y  for Z=0.5; (a) Horizontal displacement, (b) Vertical displacement. 

  

 
(a) 

 
(b) 

Fig.4 

Variation of displacements with Y  for Z=1.5; (a) Horizontal displacement, (b) Vertical displacement. 
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(a) 

 
(b) 

Fig.5 

Variation of displacements with Y  for Z=5; (a) Horizontal displacement, (b) Vertical displacement. 

 

The variations of stresses yy ,
zz , yz  with Y are shown in Figs. 6 to 9 for Z=0,  0.5, 1.5 and 5 respectively. 

zz and yz are zero along Y on the surface as the surface is traction free. On the surface, yy decrease rapidly and 

then increases and approaches to zero. For Z=0.5, 1.5 and 5, it first go up, reaches to its maximum, then goes down 

up to its minimum and then approaches to zero. At Z=0.5, 
zz inceases fastly upto its maxima then decreases 

rapidly and become stable as Y increases. Below the fault line, it first decreases rapidly, then increases smoothly and 

approaches to zero. The shear stress yz decreases rapidly to its minimum and then increases smoothly for Z=0.5, 

1.5 and 5. The difference of two limiting cases is found prominent on the peaks of the curves. It is also observed that 

maximum variation of stresses occur upto that Y which is equal to the considered Z. 

 

        
                                         (a)                                                     (b)                                                        (c) 
Fig.6 

Variation of stresses with Y  at  Z=0 ; (a) yy , (b) 
zz , (c)

 yz . 

 

                       
 (a)                    (b)       (c) 

Fig.7 

Variation of stresses with Y  at Z=0.5; (a) yy , (b) 
zz , (c)

 yz . 
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(a)                                              (b)                                                (c)  

Fig.8 

Variation of stresses with Y  at Z=1.5 ; (a) yy , (b) 
zz , (c)

 yz . 

 

        
(a)         (b)    (c) 

Fig.9 

Variation of stresses with Y  at Z=5; (a) yy , (b) 
zz , (c)

 yz . 

 

 

 

The depth profile of displacements at Y=1 for the adiabatic and isothermal cases are shown in Fig. 10. Above the 

source, yU  is negative which implies that the tangential displacement, which is maximum in magnitude at the free 

surface, is in a direction opposite to y-axis. Below the source, yU  is positive and increases with depth upto Z=1.6. 

When the depth goes further, yU  decreases. This is also physically acceptable as far below the source, 

displacements are negligible. The vertical displacement  is also maximum at the surface and deceases first upto the 

source depth. Further below the source,  it increases slightly and then decreases smoothly with depth. Near the 

source line, the difference of the two limiting cases is considerable. The depth profile of stresses at Y=1 is exhibited 

in  Fig. 11. The difference between two limiting cases is noticeable at peak points. At far distances, both the curves 

coincides and approaches to zero. It is important to note here that stress jump across the source depth  is maximum 

for all stresses. 

 

 
(a) 

 
(b) 

Fig.10 

Variaton of displacements with Z  for Y=1; (a) Horizontal displacement, (b) Vertical displacement. 
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 (a)     (b)      (c) 
Fig.11 

Variation of stresses with Z at Y=1 ; (a) yy , (b) 
zz , (c)

 yz . 

 

Fig. 12 represents the variation of temperature function along the depth Z  for different times T=0.0001, 1, 10 

and 10000 at Y=1 and 2. Near the free surface, the temperature function decreases for Y=1. As we move vertically 

downwards to the source, it increases rapidly, approaches to its maximum after crossing the source line and then 

decreases. When T is very small (adiabatic condition), the temperature has highest amplitude. T=10000 is the case 

for the isothermal condition. For Y=2, temperature function increases along Z, approaches to its maximum and 

becomes stable with depth. The lateral variation of temperature function at different times T=0.0001, 1, 10 and 

10000 for different Z=0, 1 and 5 is shown in Fig. 13. The temperature function first increases along Y, then 

decreases fast and become stable as Y increases. It is noticed that near the source (Z=1), temperature difference is 

very small in comparison to its neighborhood. All the curves for different values of T merge for large value of Y. 

Temperature function has highest magnitude for adiabatic conditions and is zero for isothermal condition. Figs. 12 

and 13 validate the importance of consideration of thermoelastic model of the medium. It is noticed from the Figs 12 

and 13 that magnitude of temperature function is very small and therefore, the contribution of the temperature 

change towards displacement and stresses leads to small changes in their values with change of temperature. Naeeni 

et al. [39] made similar observation and showed that amplitudes and arrival time of seismic waves slightly change 

when the thermal properties are taken into account. 

 

 
(a) 

 
(b) 

Fig.12 

Variation of temperature function   along  Z  for T=0.001, 1, 10 and 10000; (a) at Y=1 (b) Y=2. 

 

       
 (a) (b)      (c)  

Fig.13 

Variation of temperature function   along Y  for T=0.001, 1, 10 and 10000; (a) at Z=0 (b) Z=1, (c) Z=5. 
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Time history of temperature function at different depths Z=0, 1, 2, 5 at Y=1 and 2 is presented in Fig. 14. 

Initially, temperature function has large variation at different depths. As the time elapses, all the curves merge. The 

negative temperature function is distributed near the surface of the half-space. Contour map of temperature 

difference function at T=1 and T=10000 for a line heat source at (0,0, )h is shown in Fig. 15 for constant 

temperature at the surface. The gradient of temperature difference function is very large between the line heat source 

and the surface of half-space. This means that a large amount of heat energy is bounded within this region and the 

solids with a zero temperature increment surface are in a good heat resistance state. Fig 15 (b) has a good agreement 

with the results of static problem [35] which validate the results of the present work. 

 

 
(a) 

 
(b) 

Fig.14 

Variation of temperature function   along T  for Z=0, 1, 2, 5; (a) at Y=1 (b) at Y=2. 

 

 

 
(a) 

 
(b) 

Fig.15 

Contour map of temperature function   (a) T=1 (b) T=10000. 

9    CONCLUSIONS 

A study of the quasi-static deformation of a homogeneous isotropic thermoelastic half-space due to two dimensional 

buried seismic sources has been carried out in this paper. The closed form expressions for temperature function, 

stresses and displacements have been obtained in the transformed domain using Airy stress function approach. The 

case of dip-slip dislocation source is studied in detail and the solutions are evaluated analytically for two limiting 

cases viz. adiabatic and isothermal. The results of the earlier studies [9] and [35] of deformation of elastic medium 

due to seismic sources and static problem of a line heat source respectively have been obtained as a particular case 

of the present study so that the results are verified. Displacements are dominant in the region near to the source and 

the tangential displacement changes its orientation as the level of source depth is crossed. The lateral variation of 

planar stresses is significant at depths near to the source. A considerable change in temperature function in the 

presence of seismic source but in the absence of heat source confirms the importance of thermoelastic model. 

Numerical results indicate that, on the surface of half-space, there is a large variation in temperature due to dip-slip 

dislocation inside the half-space. There is temperature fall (temperature difference is negative) just above the source 

but below the source, temperature increases to attains its maxima. This variation is observed for small times (at the 
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time of dislocation).  A noticeable difference between adiabatic and isothermal cases for displacements and stresses 

is also observed. In the light of these critical findings, it can be concluded that a thermoelastic model is more 

appropriate for realistic predictions.  

APPENDIX A 

Eq. (4b) can be rewritten as: 

 

02 (1 ) ,yy yy zz         02 (1 )zz zz yy         , 2 yz yz   (A.1) 

 

where 
2( )




 



is Poisson’s ratio, 

0 (1 2 )    ,  , ,

1

2
ij i j j iu u   are components of strain tensor and satisfy 

the compatibility equation 

 

, , ,2yy zz zz yy yz yz     (A.2) 

 

Eq. (2) can be written as: 

 

, , 0,yy y yz z   , , 0,zy y zz z    (A.3) 

 

Using Eqs. (A.1), (A.3) and (4a) in (A.2) and (3), we get 

 

2 2( 2 ) 0U     , 
2

2 20 0 0 0

0 ( ) 0
(1 2 ) 2

e

T T
C U

 
   

  

 
      

 
 (A.4) 

 

where  0 / 2(1 )    . 

Applying Laplace transform on (A.4), we get Eqs. (5) and (6).  
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