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 ABSTRACT 

 The high blood rate that often occurs in arteries may play a role in artery failure and 

tortuosity which leads to blackouts, transitory ischemic attacks and other diseases. 

However, vibration and instability analysis of carotid arteries are lacking. The objective 

of this study is to investigate the vibration and instability of the carotid arteries 

conveying blood under axial tension with surrounding tissue support. Arteries are 

modeled as elastic cylindrical vessels based on first order shear deformation theory 

(FSDT) within an elastic substrate. The elastic medium is simulated with visco-

Pasternak foundation. The blood flow in carotid artery is modeled with non-Newtonian 

fluid based on Carreau, power law and Casson models. Applying energy method, 

Hamilton principle and differential quadrature method (DQM), the frequency, critical 

blood velocity and transverse displacement of the carotid arteries are obtained. It can be 

seen that increasing the tissue stiffness would delay critical blood velocity. The current 

model provides a powerful tool for further experimental investigation arteries 

tortuosity. In addition, the dimensionless transverse displacement predicted by 

Newtonian model is lower than that of non-Newtonian models. 

                                                 © 2016 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 IOMECHANICAL systems such as arteries conveying blood may be affected by vibration and instability 

which may lead to serious or even fatal situations such as disturbances in blood flow prevent blood flow to 

distal organs, atherosclerosis, failure and tortuosity. Blackouts, transitory ischemic attacks, stroke, vertigo, syncopes, 

persistent tinnitus, hinder proper vascular and tissue regeneration [1-6] are some of the symptoms which result from 

mentioned serious or fatal situations. Hence, it is important to present a biomechanical model for vibration and 

instability analysis of arteries conveying blood.   

Despite the clinical importance of vibration and buckling in the arteries, few researchers worked in this area. 

Jackson et al. [7] investigated arterial tortuosity induced by longitudinal tension. They concluded experimentally 

that the tortuosity may be due to the mechanical buckling of the arteries. For the first time, Han [8-12] presented a 

biomechanical model for the artery buckling. The stability of arteries under blood pressure was studied by Han [8] to 

determine the critical buckling loads. He found that arteries may buckle and become tortuous due to reduced axial 
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strain, hypertensive pressure and a weakened wall. In another work, the arterial buckling equation using a nonlinear 

elastic thick-walled cylindrical model with residual stress was developed by Han [9]. One of the important results of 

this study was improving the stability of the arteries by increasing the buckling pressure especially in the high 

stretch ratio range. Furthermore, Han [10] analyzed the buckling of blood vessels under lumen pressure with 

surrounding tissue support. He concluded that blood vessels do take higher order mode shapes when buckling inside 

an elastic substrate while they take the basal mode shape without the substrate. The artery critical buckling pressure 

under pulsatile pressure both experimentally and theoretically was determined by Liu and Han [11] based on beam-

column model. In another work by the same authors [12], arteriole critical buckling pressure and buckling pattern 

during arteriole remodeling were investigated. They shown that arteriole buckling mode number increased with 

increasing axial growth ratio, but decreased with increasing radius growth ratio and wall thickness. 

With respect to developmental works on biomechanical analysis of arteries, it should be noted that none of the 

research mentioned above, have considered blood flow in the arteries. In the simulation of blood flow in arteries, it 

is important to consider the nature of blood as a fluid. It is well known that blood behaves as a non-Newtonian fluid, 

particularly at low shear rates [13]. Cho and Kensey [14] investigated effects of the non-Newtonian viscosity of 

blood flows in a diseased arterial vessel considering steady blood flow. The steady flow of Newtonian fluid through 

a catheterized curved artery with stenosis was studied by Dash et al. [15]. The non-Newtonian fluid flow in a 

bifurcation model with a non-planar daughter branch was investigated by Chen and Lu [16] using finite element 

method to solve the three-dimensional Navier–Stokes equations coupled with a non-Newtonian constitutive model, 

in which the shear thinning behavior of the blood fluid was incorporated by the Carreau–Yasuda model. Johnston et 

al. [17] used five non-Newtonian blood models, as well as the usual Newtonian model of blood viscosity to study 

the wall shear stress in arteries. Mandal [18] solved numerically the problem of  non-Newtonian and nonlinear blood 

flow through a stenosed artery where the non-Newtonian rheology of the flowing blood is characterized by the 

generalized Power-law model. The effects of catheterization and non-Newtonian nature of blood in small arteries on 

velocity, flow resistance and wall shear stress were analyzed mathematically by Sankar and Hemalatha [19] 

considering blood as a Herschel–Bulkley fluid and assuming the steady flow. Boyd et al. [20] analyzed of the 

Casson and Carreau-Yasuda non-Newtonian blood models in steady and oscillatory flows using the lattice 

Boltzmann method. 

Whereas to the authors’ knowledge, not any research has been found yet on the vibration and instability analysis 

of carotid arteries conveying non-Newtonian blood surrounding by tissues. However, for the first time, the carotid 

arteries are modeled as elastic circular cylinders based on FSDT and the surrounding tissues are modeled as visco 

elastic matrix. The objectives of this study are to establish a model of blood flow in carotid arteries vibration inside 

an elastic substrate and thus to determine the frequency and critical blood velocity of the arteries. Furthermore, the 

effects of surrounding tissue support and non-Newtonian fluid models on the critical blood velocity, frequency 

pattern and transverse displacement of carotid arteries are considered. 

2    A BIOMECHANICAL MODEL FOR CAROTID ARTERIES 

2.1 Stress-strain relation 

An image of arteries embedded in tissues of human body is shown in Fig. 1(a).  A biomechanical model of an artery 

with density of A  conveying pulsating blood is depicted in Fig. 1(b) in which geometrical parameters of length L, 

radius R and thickness h are indicated. The cylindrical polar coordinates ( , , )r x , where ,r   and x denote the 

radial, circumferential and axial coordinates, respectively, is used. The artery is surrounded by tissue which is 

simulated by visco-Pasternak foundation.  

 

 
(a)   

(b)  
Fig.1 

(a) Arteries in tissues of human body (b) A biomechanical model for arteries surrounded by tissues conveying blood. 
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Generally, stress-strain relation for isotropic material in polar coordinate can be written as: 
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(1) 

 

where ijC  are elastic constant. At real life, arteries properties depend on the time variation. This model represents, 

as the stress is released, the material gradually relaxes to its undeformed state. By considering this model, ijC  are as 

follows 
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(2) 

 

where g is viscoelastic coefficient. Based on MCST, the displacement components of an arbitrary point in the 

cylindrical shell in terms of x,   and  z coordinates, denoted by ,u v  and w  can be written as [21, 22]: 
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(3) 

 

where u,v and  w are displacement components of the mid-plane in the axial, circumferential and radial directions, 

respectively, x  and   are the rotations of a transverse normal about the axial and circumferential directions. The 

strain-displacement relations are given by: 
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(4e) 

2.2. Motion equations 

To derive the equations of motion of visco-arteries surrounding by visco-tissues, the Hamilton’s principle is utilized, 

which is defined as follows [22]:
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(5) 

 

where U is the potential energy, K is the kinetic energy, 
tissueW  and 

BloodW are the works done by tissue and non-

newtonian pulsating blood flow, respectively. 

2.2.1 Potential energy 

The potential energy of the artery can be written as follows 
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Substituting Eqs. (1)-(4) into Eq. (6) yields 
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where k is shear correction factor. 

2.2.2 Kinetic energy 

The kinetic energy of the artery can be expressed as: 
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2.2.3 Tissues work 

As reported by the researchers, the effect of surrounding tissue is very important for biomechanical analysis of 

arteries [10]. In previous works, the tissues effects are simulated by spring constants only [10,12]. In this study, in 

order to realistic simulation of the tissues and muscles with elastic matrix, the visco-Pasternak foundation is 

considered including the spring constants (
wk ), shear layer ( gk ) and damping coefficients (

dC ) which can be 

expressed as [23, 24] 
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2.2.4 Non- Newtonian blood flow work 

Consider the flow of blood in an artery in which the flow is assumed to be axially symmetric, laminar, steady and 

fully developed. The basic momentum governing equation of the flow simplifies to 
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where 
b and P are blood mass density and flow blood pressure, respectively. The blood force acted on the artery 

can be calculated from Eq. (11). Since the velocity and acceleration of  the artery and blood at the point of contact 

between them are equal [25], we have  
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The case of pulsating blood flow is assumed harmonically fluctuating, as follows 
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In Eq. (11), shear stress ( ) is dependent to viscosity   which can be expressed as follows: 
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For a non-Newtonian fluid,   is a function of shear rate (  ), while for a Newtonian fluid   is a constant and 

independent of the .  Herein, a Newtonian model and three models for non- Newtonian blood are considered as: 

[17] 
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Finally, using Eqs. (12)-(17) and combination with Eq. (11), the pulsating non-Newtonian blood flow work may 

be written as: 

 

 

   

2 2 2 2 2
2

2 2 2

2 2

2

2

2
,

b
Blood Blood b b x x x

b
x b x

hw w w w w
W F wdA h v v v

t x t x R t x

h w w w w
v h v wdA

R t x x x t x

  
  

   

          
                         

        
                    

 
 

 

 

(22) 

 

According to Hamilton's principal (i.e. Eq. (5)), the motion equations are obtained as follows: 
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where , ( , 1,2,...,6)ij ijA D i j   may be expressed as: 
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Also, in Eq. (25), 0M M

xN N    and  M

xxN  represents the axial (longitudinal) tension N (i.e. M

xxN N   ) 

[10].  

2.4 Solution procedure  

The method used in this study is DQM. In this method, the partial derivatives of a function (F) are approximated by 

a specific variable, at discontinuous points in domain as a set of weighting series and its amount presented by the 

function itself at that point and other points throughout the domain. Let F be a function representing u,v,w, 
x  and 

 with respect to variables x and  in the following domain of ( 0 ,0 2x L      ) having 
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points along these variables. The n
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-order partial 

derivative of ( , )F x   with respect to   and the (n + m)
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-order partial derivative of ( , )F x   with respect to both x 

and   may be expressed discretely [26, 27] at the point ( , )i ix  as: 
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where ( )n

ikA  and ( )m

jlB  are the weighting coefficients associated with n
th

-order partial derivative of ( , )F x  with 

respect to x at the discrete point ix  and m
th

-order derivative with respect to   at 
i , respectively, whose recursive 

formulae can be found in [26, 27]. A more superior choice for the positions of the grid points is Chebyshev 

polynomials as expressed in [26, 27]. According to DQM, mechanical simply supported boundary conditions at both 

ends of the artery may be written as: 
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(32) 

 

Applying DQM to Eqs. (23)-(27) and combining with above equation, the governing equations can be expressed 

in matrix form as: 
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(33) 

 

where Y is the displacement vector, [ ]M  is the mass matrix, [ ]C  is the damping matrix and [ ]K is the stiffness 

matrix. Furthermore, the indexes of b and d represent boundary and domain points, respectively. Assuming 

{{ },{ }} { , } t

b d b dY Y y y e   yields the following standard eigenvalue problem  
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where   is the eigenvalue and matrix A can be defined as: 

 

1 1

      0                 
,

       - -

I
A

M  K - M C
 


  

 
 

(35) 

 

where  0  and  I  are the zero and unitary matrices, respectively. Using Eq. (35) in conjunction with a direct 

iterative method, the frequency of the artery may be obtained.   

3    NUMERICAL RESULTS  

Numerical results are presented in this section for carotid arteries conveying non-Newtonian blood surrounding by 

living cells based on known DQM. For illustration purpose, an artery with length, mmL 45 , outer radius, 

mmR 38.52  , inner radius, mmR 38.31  , thickness, mmh 1  and Young modulus of 200 KPa is considered 

[11].  

Generally, in all of the figures, the frequency of artery decrease as blood velocity increases which physically 

implies that the artery is stable. For zero frequency, the artery becomes unstable and the corresponding blood 

velocity is called the critical blood velocity. Therefore, with increasing blood velocity, arteries stability decreases 

and becomes susceptible to buckling. It should be noted that the range of blood velocity is selected in this part 

according to the literature in this field [28].  

Fig. 2 illustrates the frequency of the artery versus blood velocity for Newtonian and three cases of non-

Newtonian flow fluids for blood flow. One of the main advantages of this study is considering the non-Newtonian 

nature of the blood flow using Carreau, Casson and power law models. It can be evidently seen that the critical 

blood velocity predicted by Newtonian model is higher than that of non-Newtonian models. Because of the shear-

thinning behavior of the non-Newtonian fluid, the shear force acting on the arteries increases which leads to lower 

critical blood velocity and frequency of the arteries. In addition, the critical blood velocity and frequency obtained 

from Carreau fluid is lower than that of Casson fluid and higher than that of power law fluid. It should be noted that 

using from the aforementioned non-Newtonian fluid models is related to value of the strain which is obtained 

experimentally and computationally by the researchers [28, 29]. 
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Fig.2 

Frequency of arteries versus blood velocity for Newtonian 

and non-Newtonian blood flow models. 
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Presented in Figs. 3 and 4 are the effect of the surrounding tissue matrix on the frequency and instability of the 

arteries as a function of blood velocity. Fig. 3 is given to highlight the spring constant of the elastic matrix without 

gk  and .
d

C
 
Noted that the spring constant stiffness of the tissue is selected the same as [10] in the range of 

0 40 . 
w

k KPa  As can be seen, with increasing the tissue stiffness, critical blood velocity increases. On the other 

hand, instability of the artery will occur at higher blood velocities as the tissue becomes stronger and contiguous. 

Hence, reinforce of the tissue with different ways such as sport prevent from artery failure and tortuosity which 

leads to symptoms such as blackouts, transitory ischemic attacks, hypertension, diabetes, aging, atherosclerosis and 

other vascular diseases [10]. These results are the same as those presented by other researchers [10, 12] and clinical 

reports [30] which contiguous tissue and muscles lead to wound recovery and improve the arteries and vein graft 

stability.  

From the above discussion, it can be concluded that the effect of surrounding tissue is very important for 

studying the biomechanical basis for arteries vibration and instability. However, in order to realistic simulation of 

the tissues with elastic matrix, the visco-Pasternak foundation is considered here. The effects of elastic matrix type 

on the vibration and instability of the arteries are demonstrated in Fig. 4 for five below cases: 

Case 1: Vibration and instability of the arteries without surrounding tissue effects (i.e. without elastic matrix). 

Case 2: Simulating of the surrounding tissue with spring constants only (i.e. Winkler medium). Noted that this 

medium is applied in Fig. 3.  

Case 3: Simulating of the surrounding tissue with spring constants and damping coefficients (i.e. visco-Winkler 

medium).  

Case 4: Simulating of the surrounding tissue with spring constants and shear layer (i.e. Pasternak medium).  

Case 5: Simulating of the surrounding tissue with spring constants, shear layer and damping coefficients (i.e. 

visco-Pasternak medium).  

It is observed from Fig. 4 that the critical blood velocity and frequency obtained from visco-Winkler and visco-

Pasternak foundations are lower than those obtained from Winkler and Pasternak mediums, respectively. 

Furthermore, the critical blood velocity and frequency predicted by Pasternak medium is higher with respect to 

Winkler medium. It is perhaps due to the fact that the Winkler-type is capable to describe just normal load of the 

elastic medium while the Pasternak-type describes both transverse shear and normal loads of the elastic medium. 

However, the realistic and best medium for simulation of the surrounding tissue is visco-Pasternak foundation which 

considers the damping of the tissues around the arteries. 
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Fig.3 

Frequency of arteries versus blood velocity for different 

spring constant of the tissues. 
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Fig.4 

Frequency of arteries versus blood velocity for different 

tissues biomechanical models. 
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Figs. 5-7 illustrate the dimensionless transverse displacement of carotid artery versus length respectively, for 

different non-Newtonian models, spring constant of the elastic matrix and different surrounding elastic medium 

models. It is evident that the simply supported boundary conditions at both ends of carotid artery are satisfied. From 

Fig.5, it can be concluded that the dimensionless transverse displacement predicted by Newtonian model is lower 

than that of non-Newtonian models. Furthermore, the dimensionless transverse displacement of power law fluid is 

higher than that of Carreau and Casson models. Fig. 6 shows that with increasing the tissue stiffness, the transverse 

displacement of carotid artery decreases. It is due to that fact that with increasing elastic medium constant, the 

stiffness of artery increases. As can be seen from Fig. 7, considering elastic medium decreases the dimensionless 

transverse displacement of carotid artery. In addition, the dimensionless transverse displacement obtained from 

visco-Winkler and visco-Pasternak foundations are higher than those obtained from Winkler and Pasternak 

mediums, respectively.  
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Fig.5 

Transverse displacement of arteries versus length for 

Newtonian and non-Newtonian blood flow models. 
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Fig.6 

Transverse displacement of arteries versus length for 

different spring constant of the tissues. 
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Fig.7 

Transverse displacement of arteries versus length for 

different tissues biomechanical models. 

 

4    CONCLUSIONS 

In this study, a biomechanical model was presented for vibration and instability analysis of carotid arteries 

conveying blood surrounded by tissues. The blood flow was considered non-Newtonian based on Carreau, power 

law and Casson models. The tissues around the arteries were simulated by visc-Pasternak medium. Applying DQM, 

the frequency, critical blood velocity and transverse displacement of arteries were obtained. Results indicated that 

instability of the arteries will occur at higher blood velocities as the tissue becomes stronger and contiguous. In other 

words, contiguous tissue and muscles prevent from artery failure and tortuosity leads to wound recovery and 

improves the arteries and vein graft stability. In addition, the critical blood velocity predicted by Newtonian model is 
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higher than that of non-Newtonian models. Furthermore, the dimensionless transverse displacement predicted by 

Newtonian model is lower than that of non-Newtonian models. Meanwhile, the dimensionless transverse 

displacement obtained from visco-Winkler and visco-Pasternak foundations are higher than those obtained from 

Winkler and Pasternak mediums, respectively. Finally, it is hoped that the theoretical results presented in this paper 

would be helpful for experimental works by other researchers and development of new approaches for the treatment 

of arteries tortuosity and failure which has wide implications in vascular surgery, vascular physiology and 

pathology. 
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