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 ABSTRACT 

 In this article, bending, buckling, and free vibration of viscoelastic 

sandwich plate with carbon nanotubes reinforced composite facesheets 

and an isotropic homogeneous core on viscoelastic foundation are 

presented using a new first order shear deformation theory. According to 

this theory, the number of unknown’s parameters and governing 

equations are reduced and also the using of shear correction factor is not 

necessary because the transverse shear stresses are directly computed 

from the transverse shear forces by using equilibrium equations. The 

governing equations obtained using Hamilton’s principle is solved for a 

rectangular viscoelastic sandwich plate. The effects of the main 

parameters on the vibration characteristics of the viscoelastic sandwich 

plates are also elucidated. The results show that the frequency 

significantly decreases with using foundation and increasing the 

viscoelastic structural damping coefficient as well as the damping 

coefficient of materials and foundation.                      

   © 2019 IAU, Arak Branch. All rights reserved. 

 Keywords: Viscoelastic sandwich plate; Carbon nanotube 

reinforcement; New first order shear deformation theory; Bending; 

Buckling; Free vibration.  

1    INTRODUCTION 

 N recent years, Composite sandwich structures are widely used in the field of transportation (helicopter blades, 

ship’s hull, etc.), urban services, and any other fields due to their low specific weight, bending rigidity, excellent 

vibration characteristics and good fatigue properties [1]. Sandwich construction has become even more attractive to 

the introduction of advanced composite materials for the face sheets, e.g. fiber reinforced composites especially 

carbon nanotubes (CNTs) reinforced composite facesheets. Experimental investigations show that CNTs have 
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extraordinary mechanical properties over carbon fibers [2-3]. Thereby, to improve the characteristics, the face sheets 

can be laminated composites [4], functionally graded materials [5] or polymer matrix with reinforcements [6]. 

Thostenson and Chou [7] showed that the addition of nanotubes increases the tensile modulus, yield strength and 

ultimate strengths of the polymer films. Their study has also showed that the polymer films with aligned nanotubes 

as reinforcements yield superior strength to randomly oriented nanotubes. Moreover, Zhu et al., [8] studied the static 

and free vibration of CNT reinforced plates based on the first-order shear deformation theory. They considered 

polymer matrix with CNT reinforcement. It was predicted that the CNT volume fraction has greater influence on the 

fundamental frequency and the maximum center deflection. Mohammadimehr et al., [9], considered biaxial buckling 

and bending of smart nanocomposite plate reinforced by CNT using extended mixture rule approach. It was shown 

that nonlocal deflection of smart nanocomposite plate decreases with an increase in the magnetic field intensity and 

the stability of smart nanocomposite plate increases in the presence of elastic foundation. Ghorbanpour et al., [10], 

studied the buckling and post-buckling characteristics of CNT reinforced plates using the finite element method. It 

was shown that the reinforcement with CNT increasing the load carrying capacity of the plate. Ghorbanpour et al., 

[11], used DQM for Nonlinear vibration analysis of laminated composite Mindlin micro/nano-plates resting on 

orthotropic Pasternak medium, they showed that considering elastic medium increases the nonlinear frequency of 

system and the effect of boundary conditions becomes lower at higher nonlocal parameters. While the shear 

deformation effect is more practical in thick plates or plates made of advanced composites, shear deformation 

theories such as first-order shear deformation theory (FSDT) and higher-order shear deformation theories (HSDT) 

should be used to anticipate the responses of FG sandwich plates. The FSDT needs to the shear correction factor for 

determining acceptable results but it is hard to determine and it depends on many parameters. Conversely, the HSDT 

do not require shear correction factor, but its equations of motion are more complicated than those of FSDTs. 

Zenkour and Sobhy [12] used FSDT, SSDT and third-order shear deformation theory (TSDT) for Thermal buckling 

of various types of FGM sandwich plates. They considered the effects of the gradient index, loading type and 

sandwich plate type on the critical buckling for sandwich plates. Sobhy [13] investigated buckling and free vibration 

of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions.  

He considered the effect of the inhomogeneity parameter, and the foundation parameters on the natural 

frequencies and critical buckling loads. Based on the new first-order shear deformation theory, Huu-Tai Thai et al., 

[14], considered the analysis of functionally graded sandwich plates. They showed that the new first-order shear 

deformation theory is not only more accurate than the conventional one, but also comparable with higher-order shear 

deformation theories which have a greater number of unknown parameters. Inspired by the concept of functionally 

graded materials (FGMs), researchers adopted the functionally graded (FG) pattern of reinforcement for FG–CNT 

reinforced composite plates in their study. Zhang et al., [15] considered an element-free IMLS-Ritz framework for 

buckling analysis of FG–CNT reinforced composite thick plates resting on Winkler foundations. It is found that FG–

CNT reinforced composite plates with top and bottom surfaces of CNT-rich have the highest critical buckling loads. 

Shen [16] studied the nonlinear bending of FG–CNT reinforced composite plates in thermal environment. He found 

that the load bending moment curves of the plates could be considerably improved through the use of a functionally 

graded distribution of CNTs in the matrix. Moreover, kp-Ritz method has been utilized to study the dynamic 

stability, large deflection, buckling and post buckling behaviors of FG–CNT reinforced composite plates and panels 

[17-20]. It should be observed that a large amount of previous researches have been concentrated on the 

computation of statics analysis of sandwich plates surrounded with elastic medium. In some proposed applications 

of sandwich plates such as FG–CNT reinforced composite plates and panels, the nanoplates are embedded in 

polymer that is depicted viscoelastic property [21]. Generally, in a viscoelastic medium, a part of deformation 

energy is recoverable and the other part is irrecoverable. Thus, the vibration analysis in viscoelastic medium has to 

pay more attention to elastic medium.  

Moreover, in the available articles, nano sandwich plates are modeled as elastic plates whereas they similar to 

many materials reveal viscoelastic structural damping. Su et al. [22] studied on viscoelastic properties of graphene 

oxide nano-plate experimentally. Pouresmaeeli et al., [23] considered vibration analysis of viscoelastic orthotropic 

nanoplates resting on viscoelastic medium. They showed that the frequency significantly decreases with increasing 

the structural damping coefficient as well as the damping coefficient of foundation. 

In this paper, a new FSDT which eliminated the shear correction factor and reduced the number of unknown and 

governing equation is used for viscoelastic functionally graded sandwich plates with CNT reinforced composite 

facesheets by considering of viscoelastic foundation. The viscoelastic medium such as polymer matrix and 

foundation is obtained as Kelvin–Voigt model. Equations of motion and boundary conditions are derived from 

Hamilton’s principle. Analytical solutions for rectangular plates under various boundary conditions are obtained. 

Thus, the result of bending, buckling, and free vibration that is considered in viscoelastic medium is compared with 

them in elastic medium. 

http://macs.journals.semnan.ac.ir/article_276_44.html
http://macs.journals.semnan.ac.ir/article_276_44.html
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2    THEORETICAL FORMULATION 

Consider a rectangular sandwich plate composed of three layers as shown in Fig. 1. We assume that the CNT 

reinforced layers as top and bottom facesheets are made from a mixture of single walled CNT, graded distribution in 

the thickness direction and the matrix is assumed to be isotropic, while a core is made of an isotropic homogeneous 

material as a middle layer. The core-to-facesheet thickness ratio is c fh / h , where,  ch  is the core thickness and  

fh  is the facesheet thickness. The length and the width of the plate are a and b in X and Y direction, respectively.  

 

 

 

 

 

 

 

 

 
Fig.1 

Geometry of viscoelastic sandwich plate on viscoelastic 

foundation with different functionally graded distribution 

of CNTs in the facesheets. 

 

The effective properties of reinforced structures can be used by Mori-Tanaka scheme [9] or by the rule of 

mixtures. In this article, we use simple rule of mixtures with correction factors to estimate the effective material 

properties of CNT reinforced matrix. The effective material properties of the CNT reinforced matrix are given by 

[24]: 
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where E
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 and G
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are the Young’s moduli and the shear modulus of the CNT, and 
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V  are the volume 

fraction of the CNT and the matrix, respectively. 

The volumes fractions are related by
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3
 are the efficiency of the inconsistency in the 

load transfer between CNT and matrix. The sandwich plate is made up of a homogeneous core with core thickness 

ch  and two facesheets with thickness fh . The facesheets are supposed to be reinforced with CNTs. We suppose the 

volume fraction 
CNT

V  for the top facesheet as: 
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CNT
w  is the mass fraction of the nanotubes.  

CNT
  and 

m
  are the mass densities of carbon nanotube and the 

matrix, respectively. The CNTs are either uniformly distributed or functionally graded along the thickness direction 

according to three cases of FG-V, FG-O, and FG-X types, given by [25]: 
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Note that the case corresponds to the uniformly distributed CNT layers referred to as UD. It is assumed that the 

mass fraction of the CNTs (
CNT

w ) is the same in all cases. 

2.1 Kinematics equation of sandwich plate 

The displacement field of the conventional FSDT is given by: 
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where u, v, and w are displacement functions of the mid-plane of the plate in x, y, and z direction. By assuming 
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As it is shown in Eq. (6) there are four unknown parameter (u, v, w, θ) instead of five. Therefore, the 

displacement field and subsequent equations of motion will be completely different with simple FSDT. In addition, 

the present FSDT does not require a shear correction factor because the transverse shear stresses are directly 

computed from the transverse shear forces by using equilibrium equations. The strain–displacement relations in Eq. 

(6) are: 
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Eq. (7) can be rewritten in a compact form as: 

 

     

   

z  

 

 



0

0
 

 

   (9) 

 

where  

 

   
x x

y y

xyxy

u

xx

v

y y

u v

y x x y



 


   




   
  
       

        
           

        
        

    
       

2

2
0

2

0 0

2

0

2

,

2

 

 

 

 

       (10a) 

 

 
xz

yz

w

x x

w

y y








  
       

    
      

   

0

0

0
 

 

 

       (10b) 

2.2 Constitutive equations 

The linear elastic constitutive equations of FG-CNT sandwich plates can be written as: 
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where 
ij

Q  is the stiffness coefficient matrix for each layer that k= 1, 2, and 3, defined as: 
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For the homogeneous core, the shear modulus G is related to the Young’s modulus by: E G  2 (1 ) . Based on 

Kelvin-Voigt’s model on elastic materials with viscoelastic structural damping coefficient g, Young’s moduli and 

shear modulus are substituted by the operator g t    (1 ) [26]. Thus, constitutive equations can be written in a 

new form as: 
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2.3 Equations of motion 

Hamilton’s principle is used herein to derive equations of motion. The principle can be stated in an analytical form 

as: 
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where N, M, and Q are the stress resultants defined by 
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Variations of work done by the viscoelastic foundation and transverse force can be written as: 
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k k c q N N N, , , , , , are Winkler spring, Pasternak shear parameters, damping coefficient, distributed 

force acting on the top surface of the plate, and in-plane load, respectively. Finally, variation of kinetic energy can 

be written as: 
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 where  z is the mass density, and (
0 1 2
, ,I I I ) are mass inertias defined by: 



Analysis of Viscoelastic Functionally Graded Sandwich….                                696 

© 2019 IAU, Arak Branch 
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Substituting Eqs. (13), (15), and (16) into Eq. (12) the Hamilton principle by collecting , ,u v w    and   for 

viscoelastic sandwich plate is obtained as: 
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, , , , ,

2

, , , , , 1 , , 2 ,

: 2

2

x xx xy xy y yy x x y y

x xxt xy xyt y yyt x xt y yt ttx tty tt

M M M Q Q

g M M M Q Q I u v I





    

       
 

        

       (20c) 

 

, , , , ,

2

, , , , 0 ,

: ( )

2

x x y y x xt y yt t w

g t x xx y yy xy xy tt

w Q Q g Q Q w q k

k w cw N w N w N w I w

       

     
 

 

       (20d) 

 

By using of Eqs. (8), and (11) and substituting results into Eq. (16a) the axial forces N and bending moments M 

are obtained in terms of strains as: 

 
0

11 12 11 12

0

12 22 12 22

0

66 66

11 12 11 12

12 22 12 22

66 66
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0 0 0 0
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0 0 0 0

x x

y y

xy xy

xx

yy

xyxy

N A A B B

N A A B B

N A B

M B B D D

M B B D D

M B D













       
       
       
             
   
      
      
      
            










 

 

 

 

 

 

         (21) 

 

where , ,
ij ij ij

A B D are the stiffness coefficients defined by: 

 

       
3

2

1 1

, , 1, ,

h

n

ij ij ij ij

n h

n

n

A B D z z Q z dz
 

   
 

         (22) 

 

The in-plane stresses , ,
x y xy

    are obtained from constitutive equations as: 

 

           0Q Q z                (23) 

The axial strain and the curvature are related to the axial forces N and bending moments M by the inversion of 

Eq. (21) as: 

 

 
 

   
   

 

 

0
a b N

b d M





        
    

      

 
          

         (24) 

 

Substituting Eq. (24) into Eq. (23), the in-plane stresses can be rewritten as: 

 

                Q a z b N b z d M               (25) 
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In this theory ,
xz yz

   are obtained from equilibrium equation instead of constitutive equation that it should be 

used of correction factor because of the zero transverse shear stress conditions on the top and bottom surfaces of the 

plate. The equilibrium equations of a body are given by: 

 

0
xyx xz

x y z

  
  

  
 

        

       (26a) 

 

0
xy y yz

x y z

    
  

  
 

        

       (26b) 

 

0
yzxz zz

x y z

  
  

  
 

        

       (26c) 

 

The transverse shear stresses can be derived from Eq. (23) as: 

 

2

z

xyx

xz

h

dz
x y






 
   

  
  

        

       (27a) 

 

2

z

xy y

yz

h

dz
x y

 




  
   

  
  

        

       (27b) 

 

Substituting Eq. (25) into Eq. (27) and omitting the weak terms, transverse shear stresses are obtained as [14]: 

 

 xz x
z Q          (28a) 

 yz y
z Q          (28b) 

where  

 

   11 11 11 12 21 21

2

z

h

Q b zd Q b zd dz


        
        

       (29a) 

 

   12 12 12 22 22 22

2

z

h

Q b zd Q b zd dz


        
        

       (29b) 

 

According to shear stresses defined in Eq. (28) the shear deformation energy per unit middle surface area is 

defined by: 

 

 

 

22 2

2

55
2 2

1 1

2 2

h h

s xz xz x

h h

z
dz Q dz

Q z


 

 

     
        

         (30) 

 

where the average shear deformation energy per unit middle surface area is defined by: 

 
2

0

55

1 1

2 2

x

sa x xy

Q
Q

H
    

        

         (31) 

 

where 
55

H  is transverse shear stiffness that is obtained as: 
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 
   

1
2

( )
3

55

1 1 55

nh

n
n h

n

n

z
T dz

Q z




 

    
 
 

   

        

         (32) 

 

Similarly, the transverse shear stiffness 
44

H  can be obtained as: 

 

 
   

1 44

1
2

( )
3

44

1

n

n

nh

n
n h

z
T dz

Q z









    
 
 

   

        

         (33) 

 

Based on equilibrium equations the transverse shear forces are obtained as follow: 

 
0

55

0

44

0

0

x xz

y yz

Q T

Q T





       
    

       

 
        

         (34) 

 

Due to the isotropic properties of FG-CNT sandwich plates, 
55 44T T T  . Then, equations of motion of the new 

FSDT can be used in terms of displacements (u, v, w, θ) by substituting Eq. (10) into Eqs. (21) and (34) and the 

subsequent results into Eq. (20).  

 

   

   

11 , 66 , 12 66 , 11 , 12 66 , 11 , 66 ,

12 66 , 11 , 12 66 , 0 , 1 ,

2 (

2 )
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xyt xxxt xyyt tt ttx

A u A u A A v B B B g A u A u

A A v B B B I u I

 

  

       

      
 

        

       (35a) 
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       (35b) 
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(35c) 
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w g t tt x xxt y yyt xy xyt tt

H w H q k k w cw N w N w N w g H w H

q k k w cw N w N w N w I w

               

        
 

   

(35d) 

3    ANALYTICAL SOLUTION 

  

In this section, governing equation of viscoelastic sandwich plates with homogeneous core and FG-CNT reinforced 

facesheets is solved with supposing of the following expansions of generalized displacements. 

 

 

 

 

 

, , sin( )sin( )

, , sin( )sin( )

, , sin( )sin( )

, , sin( )sin( )
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mn

i t

mn

i t

mn

i t

mn

u x y t U x y e

v x y t V x y e

w x y t W x y e

x y t x y e









 

 

 

   









 

 

 

   

(36) 

 

where 1, , , ,
mn mn mn mn

i U V W    are coefficients and   is the natural frequency, and ,m a n b     . The 

transversely load q is supposed as: 
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 , sin( )sin( )
mn

q x y Q x y    (37) 

where the coefficient 
mn

Q  is given 
0

q  for sinusoidal load. By substituting Eqs. (37) and (36) into Eq. (35) the 

analytical solution can be obtained as: 
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(38a) 
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(38b) 

 

where  , [M], [C] and [K] denote coefficient of critical buckling load, mass matrix, damping matrix and stiffness 

matrix, respectively.  

By substituting 0  and   0M   in Eq. (38a) and if the determinant of coefficient of Eq. (38a) set to zero, the 

deflection of viscoelastic sandwich plate will be obtained. Also by assuming 0q  and   0M   in Eq. (38a) and if 

the determinant of coefficient of Eq. (38a) set to zero, the critical buckling load of viscoelastic sandwich plate will 

be obtained. For the free vibration analysis of viscoelastic sandwich plate, it is convenient to rewrite the coefficients 

of Eq. (38a) in form as follows: 

 

 
1 1

[0] [ ]

[ ] [ ] [ ] [ ]

I

M K M C 

 
   

  
 

  

(39) 

 

where [ ]I  is the unitary matrix. The free vibration of viscoelastic sandwich plate will be obtained by supposing 

0q    in Eq. (38) and the determinant of coefficient of Eq. (39) set to zero. 

In this study, only simply supported boundary condition is considered and is as follows: 

 

0 0,

0 0,

x x

y y

N v w M at x a

u N w M at y b





     

     
 

  

(40) 

 

where a and b refer to the length and width of the plate, respectively. 

4    NUMERICAL RESULTS AND DISCUSSION 

In this section, first, the accuracy of the present formulation is investigated through example of elastic sandwich 

plates with carbon nanotubes (CNTs) reinforced composite facesheets. Then, a parametric study is carried out to 

show the effects of the viscoelastic parameter in the free vibration characteristics of the viscoelastic sandwich plates. 

In addition, in this theory, the result is estimated near to HSDT or SSDT [14]. For the present study, four different 

core-to-facesheet thickness ratios /
c f

h h , three thickness ratios /a h , and two dimension ratios /a b  are considered. 
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In this case, we take Polymethyl methacrylate (PMMA) as the matrix in which the CNTs are used as reinforcements. 

The materials properties of which are assumed to be: mass density,
31150 /

m
kg m  , Poisson’s ratio, 

0.34
m

  ,and Young’s modulus, 2.1mE Gpa . Single walled CNTs are used as reinforcements and the material 

properties are given in Table 1. The following CNT efficiency parameters are used [28]: 1 0.137  , 2 1.002  and 

3 0.175 
 
for 0.12CNTV   ; 1 0.142  , 2 1.626  , and 3 1.138  for 0.17CNTV   or 1 0.149  , 2 1.381  , 

and 3 2   for 0.17CNTV    that it is assumed for this study; 1 0.141  , 2 1.585  and 3 1.109  for 

0.28CNTV   , and also we assume 12 13 23G G G  . For the homogeneous core, we use Ti-6Al-4V Titanium alloy. 

The properties are: 102.6982cE Gpa , 0.29c  , and 
34429 /c kg m   [24]. For convenience, the following non-

dimensional forms are used: 
 

3 2 2 2

4 3 2

0 0

( , ), , , ( , , )
2 2 100 2 2

c cr c
xx xx

c c

E h N aa b a h a b
w w N z

q a E h h E q a


        

  

(41) 

 
 

Table 1 

Material properties depended on temperature for (10, 10) SWCNT (R=0.68nm, L=9.26nm, h=0.067nm, 3

12
1400 / , 0.175kg m v    

[27]. 

Temperature(K) 11
( )CNTE TPa  

22
( )CNTE TPa  

12
( )CNTG TPa  

12
(1/ . )CNT GPa K  

22
(1/ . )CNT GPa K  

300 5.6466 7.08     1.9445 3.4584 5.1682 

500 5.5308 6.9348 1.9643 4.5361 5.0189 

700 5.4744 6.8641 1.9644 4.6677 4.8943 
 

The first analysis discuses about the bending responses of FG-CNT sandwich plates for all type of FG-CNT 

distribution of nanotubes in facesheets. In Fig. 2, variations of bending parameter versus thickness ratios are 

presented for different kind of FG-CNT distribution of nanotubes in facesheets. It is clear that the FG-X is more 

stiffness than other models because of excessive distribution of nanotubes in facesheets edges. For verifying the 

accuracy of the present study, the obtained result of the bending responses of FG-CNT sandwich plates are 

compared with those generated by Natarajana, [24], based on omitting of viscoelastic parameter of materials and 

foundation and good agreement between the results is found as shown in Table 2. Moreover, it can be seen that non-

dimensionalized bending ( w ) of the sandwich plate decreases with increasing of the plate thickness, CNT volume 

fraction, and the core-to-facesheet thickness. 
 

 

Table 2 

Dimensionless deflections ( w ) of sandwich plates with homogeneous core and CNT reinforced facesheets for two volume 

fraction of CNTs distribution.  

a /a h  /
c f

h h  

FG-X UD 

0.17CNTV  

 
0.28CNTV    

0.17CNTV    0.28CNTV    

Present [24] Present [24] 

1 

5 

1 0.098989 0.082078 0.116142 - 0.093934 - 

2 0.074298 0.060651 0.082708 0.0813 0.070642 0.0659 

6 0.041302 0.035075 0.048023 0.0504 0.041828 0.0441 

10 0.034784 0.029923 0.040255 - 0.035827 - 

10 

1 0.044466 0.033126 0.060777 - 0.044037 - 

2 0.039103 0.028730 0.052846 0.0658 0.039610 0.0485 

6 0.031507 0.024612 0.040575 0.0461 0.033379 0.0391 

10 0.029927 0.024540 0.036378 - 0.031637 - 

20 

1 0.030836 0.023194 0.046936 - 0.031852 - 

2 0.030304 0.021996 0.045381 - 0.031562 - 

6 0.029058 0.020888 0.038713 - 0.031267 - 

10 0.028713 0.020750 0.035408 - 0.030589 - 
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Fig.2 

Comparison of dimensionless deflection ( w ) of sandwich 

plate with different functionally graded distribution of 

CNTs in the facesheets for 0.17CNTV    and 2 .c fh h  

 

In Fig. 3, variations of the non-dimensionalized natural frequency ( ) of FG-CNT sandwich plates versus 

thickness ratios are presented for 0.17
CNT

V  
 
in all type of FG-CNT distribution of nanotubes in facesheets. It can 

be observed that the natural frequency of FG-X is the highest in all type of distribution again. By neglecting of 

viscoelastic parameters for verifying the accuracy of the present study, the results of natural frequency are tabulated 

in Table 3. It can be opined that non-dimensionalized natural frequency ( ) increases with increasing CNT volume 

fraction and the core-to-facesheet thickness ratios and increases with decreasing of sandwich plate thickness. 
 

Table 3 

Non-dimensionalized natural frequency ( ) of sandwich plates with homogeneous core and CNTs reinforced facesheets for two 

types of CNTs distribution.  

/a b

 

/a h

 
/

c f
h h  

UD FG-X 

0.17CNTV  

 
0.28CNTV    

0.17CNTV    0.28CNTV    

Present [24] Present [24] 

1 

5 

1 3.465808 3.773022 3.881289 - 4.083990 - 

4 3.706537 3.937642 4.495638 - 4.686465 - 

6 4.522709 4.685133 4.775714 4.7512 4.967339 5.0871 

10 4.807927 4.950888 5.031100 - 5.221526 - 

10 

1 4.088209 4.583354 4.829541 - 5.342312 - 

4 4.118581 4.703114 4.925100 - 5.442312 - 

6 4.768067 4.994028 5.107724 5.0895 5.455984 5.5223 

10 5.079717 5.233136 5.320693 - 5.563700 - 

20 

1 4.247947 4.913319 4.985125 - 5.479573 - 

4 4.308636 5.073246 5.056681 - 5.559837 - 

6 4.837750 5.083771 5.204892 5.1886 5.588221 5.6534 

10 5.157394 5.313885 5.403658 - 5.663309 - 
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Fig.3 

Comparison of non-dimensionalized natural frequency 

( ) of sandwich plate with different functionally graded 

distribution of CNTs in the facesheets for 

0.17CNTV   and 2c fh h . 

 

In Fig.4, variations of the non-dimensionalized critical buckling load ( N ) of FG-CNT sandwich plates versus 

thickness ratios in absence of viscoelastic parameter of materials and foundation are presented for 0.17
CNT

V    in all 
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type of FG-CNT distribution of nanotubes in facesheets. Then, the maximum critical buckling load is related to FG-

X, the minimum critical buckling load is related to FG_O, and UD,FG-V are the same as each other. In Table 4, the 

results of the non-dimensionalized critical buckling load for two types of UD and FG-X are tabulated. It can be seen 

that critical buckling load increases with increasing of CNT volume fraction and the core-to-facesheet thickness and 

increases with decreasing of sandwich plate thickness. 
 

Table 4 

Non-dimensionalized critical buckling load ( N ) of sandwich plates with homogeneous core and CNT reinforced facesheets for 

two volume fraction of CNTs distribution.  

/a b  /a h  /
c f

h h  
UD FG-X 

0.17CNTV    0.28CNTV    0.17CNTV    0.28CNTV    

1 

5 

1 0.521657 0.554679 0.629263 0.652391 

2 0.731164 0.740902 0.824412 0.882877 

6 1.163730 1.269278 1.390385 1.526614 

10 1.361646 1.488923 1.605029 1.789512 

10 

1 0.956422 1.199943 1.334737 1.616445 

2 1.087296 1.339823 1.490138 1.863785 

6 1.356021 1.601126 1.770854 2.175627 

10 1.495996 1.691572 1.836793 2.182015 

20 

1 1.208151 1.679169 1.854518 2.308605 

2 1.238053 1.692033 1.867057 2.434358 

6 1.414451 1.713097 1.900895 2.563470 

10 1.533831 1.751156 1.905584 2.580556 
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Fig.4 

Comparison of non-dimensionalized critical buckling load 

( N ) of sandwich plate with different functionally graded 

distribution of CNTs in the facesheets for 

0.17CNTV   and 2c fh h . 
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Fig.5 

Non-dimensionalized stress in x direction ( xx ) of 

sandwich plate versus thickness with different functionally 

graded distribution of CNTs in the facesheets for 

0.17CNTV   and 4c fh h . 

 

In Fig. 5, through thickness variation of stresses in all type of square FG-CNT sandwich plate for with 

4c fh h and a/h = 5 and is demonstrated. A significant difference in the through thickness non-dimensionalized 

stresses are related to FG-X and FG-O. It can be seen that, FG-V type behavior different in top and bottom of 

facesheets because the distribution of CNTs is not symmetry. In other words, the volume fractions of CNTs in 

bottom edges of both facesheets are closed to zero. 
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 After representing the accuracy of the formulation, parametric study of the frequency for the viscoelastic 

sandwich plates is presented. For numerical results, the following parameters for material of viscoelastic sandwich 

plates and viscoelastic foundation are considered [9-29]: 

 

2.071273
g

k N m , 8.9995035wk  TN m , 
71*10 .c pa s , and 

101*10g s  

 

  

 

In Table 5., variations of dimensionless frequency of viscoelastic sandwich plate for all types of FG-CNTs 

reinforced composite facesheets on viscoelastic foundation are tabulated. As expected, the ratios of frequency in 

viscoelastic medium have been exceedingly decreased and still frequency of FG-X distribution is higher than other 

types of FG-CNTs distribution. It can be seen that by increasing core-to-facesheet thickness ratios and decreasing of 

sandwich plate thickness, non-dimensionalized frequency ( ) will be increased. Fig. 6 depicted the non-

dimensionalized frequency ( ) versus viscoelastic structural damping coefficient (g) for various FG-CNTs 

distribution, 0.17CNTV   , and 2c fh h . It can be observed that ( ) decreases by increasing (g) and 

for
40.5*10g  , viscoelastic structural damping coefficient effect on the ( ) is same for all types of FG-CNTs 

distribution. 
 

Table 5 

Non-dimensionalized frequency ( ) of viscoelastic sandwich plates based on viscoelastic foundation with CNTs reinforced 

facesheets for all types of CNTs distribution and 0.17CNTV   .  

/a b  /a h  /
c f

h h  FG-O UD FG-V FG-X 

1 

5 

1 0.007987 0.010461 0.013476 0.011680 

4 0.017368 0.020341 0.022139 0.022504 

6 0.022361 0.025658 0.026895 0.028041 

10 0.030116 0.033894 0.034510 0.036564 

10 

1 0.009993 0.014716 0.016433 0.017526 

4 0.018742 0.024184 0.024893 0.028319 

6 0.024179 0.029401 0.029858 0.033603 

10 0.033216 0.038004 0.038229 0.042040 

20 

1 0.010750 0.016814 0.017406 0.020916 

4 0.019015 0.025260 0.025474 0.030176 

6 0.024496 0.030243 0.030381 0.035024 

10 0.033768 0.038728 0.038801 0.043092 
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Fig.6 

Non-dimensionalized frequency ( ) of sandwich plate 

versus viscoelastic structural damping coefficient (g) with 

different functionally graded distribution of CNTs in the 

facesheets for 0.17CNTV   and 2c fh h . 

 

Fig. 7 depicted dimensionless frequency ( ) of viscoelastic structural sandwich plate to thickness ratios ( /a h ) 

for various FG-CNTs distribution in the facesheets,
 

0.17CNTV   , and 2c fh h . It can be seen that   increases with 

an increase in /a h . In addition, as it is mentioned in above, frequency of FG-X distribution is higher than other 

types of FG-CNTs distribution.   is tended to constant value at / 11a h   for other types of CNTs distribution.    
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In Fig. 8, Non-dimensionalized frequency ( ) of viscoelastic sandwich plate to core-to-facesheet thickness 

ratios ( / )c fh h  is demonstrated for various length to width ratios (a/b) for UD distribution, 0.28CNTV  
 
, and 

20a h . It is clear that   increases by increasing of ( / )c fh h and for 1a b  ,   will be increased, for 1a b  ,   

will be decreased.  
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Fig.7 

Non-dimensionalized frequency ( ) of viscoelastic 

sandwich plate versus thickness ratios with different 

functionally graded distribution of CNTs in the facesheets 

for 0.17CNTV   and 2c fh h . 
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Fig.8 

Non-dimensionalized frequency ( ) of viscoelastic 

sandwich plate versus core-to-facesheet thickness ratios for 

UD distribution, 0.28CNTV   , and 20a h . 
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Fig.9 

Non-dimensionalized frequency ( ) of viscoelastic 

sandwich plate versus core-to-facesheet thickness ratios 

for a b , and 10a h . 

 

Fig. 9 shows the variations of Non-dimensionalized frequency ( ) with increasing of core-to-facesheet 

thickness ratios for two cases of CNTs distribution with different volume fraction of CNTs. The Non-

dimensionalized frequency is changed with respect to the core-to-facesheet thickness ratios and the frequencies with 

increasing the volume fraction of CNTs and those distributions are increased. Moreover, in the lower volume 

fraction of CNTs, differences of frequencies are very low between types of CNTs distribution.  

Finally, the variation of the non-dimensionalized frequency ( ) with increasing of damping coefficient (c) is 

plotted in Fig.10. This diagram is depicted for various FG-CNTs distribution with 0.17CNTV   and 2c fh h . It is 

clear that non-dimensionalized frequency decreases by increasing of damping coefficient and the frequencies tend to 

the constant value with increasing of damping coefficient. 
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Fig.10 

Non-dimensionalized frequency ( ) of sandwich plate 

versus damping coefficient (c) with different functionally 

graded distribution of CNTs in the facesheets for 

0.17CNTV   and 2c fh h . 

 

5    CONCLUSION 

The vibration analysis of the viscoelastic sandwich plates was investigated based on new first order shear 

deformation theory and Kelvin–Voigt model. Verification studies confirm that the new FSDT is more accurate than 

the conventional one which the number of unknowns and governing equations are reduced. After deriving the 

equation of motion, the analytical method was used to solve the problem. Considering the various parameters such 

as the sandwich type, the thickness ratio and the volume fraction of the CNTs with the structural damping and 

viscoelastic foundation is the main contributions of the present paper. Based on the numerical results, the following 

main conclusions are drawn. It was found that the volume fraction of the CNTs, FG-CNTs distribution, the 

structural damping, core-to-facesheet thickness ratios, stiffness and damping of the foundation are affected on the 

stability of viscoelastic sandwich plate. Moreover, the frequency decreases with using foundation, increasing the 

viscoelastic structural damping coefficient, and increasing damping coefficient of materials and foundation. 
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