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 ABSTRACT 

 In this article, free vibration analysis of variable stiffness composite laminate (VSCL) 

plates with flat and folded shapes is studied. In order to consider the concept of variable 

stiffness, in each layer of these composite laminated plates, the curvilinear fibers are 

used instead of straight fibers. The analysis is based on a semi-analytical finite strip 

method which follows classical laminated plate theory (CLPT). Natural frequencies 

obtained through this analysis for the flat plates are in good agreement with the results 

obtained through other methods. Finally, the effect of the fiber orientation angle, the 

folding order, crank angles and boundary conditions on the Natural frequencies is 

demonstrated.                                            © 2016 IAU, Arak Branch.All rights reserved. 

 Keywords : Vibration; Variable stiffness composite laminates; Finite strip method; 

Classical laminated plate theory; Laminated folded plate. 

1    INTRODUCTION 

 IBER reinforced composite laminates can have many advantages, such as high strength-to-weight ratio and 

high corrosion resistance. A lamina or ply is a typical sheet consisting of a reinforcing fiber imbedded in a 

matrix and a laminate made up of a series of laminas. In a constant stiffness composite laminate (CSCL), layers have 

straight fibers, whereas in a variable stiffness composite laminate (VSCL), they have curvilinear fibers. In VSCL 

plates, since fiber orientation at any point can be different, plate stiffness could vary accordingly. Use of VSCL 

instead of CSCL, can increase or decrease the natural frequencies and avoid vibrational resonance [1]. 

Folded plates are assemblies of flat plates rigidly connected together along their edges. Folded plate structures 

are easy to form and are economical compared with other shells (such as cylindrical ones). These structures can have 

applications in aircraft fuselage. 

In the following section, an attempt is made to touch upon previous studies into VSCL flat plates. 

In 2008, Gürdal et al. [2] analyzed variable stiffness panels for in-plane and buckling responses. In 2011, 

Akhavan and Ribeiro [1] analyzed VSCL plates for natural frequencies and vibrational mode shapes, using finite 

element method. They investigated the effects of using curvilinear fibers instead of straight fibers on the mode 

shapes and natural frequencies of vibration. They found that using VSCL plates can change mode shapes of 

vibration meaningfully and may lead to a significant decrease or increase in the natural frequencies. In 2012, Ribeiro 

and Akhavan [3] analyzed non-linear vibrations of VSCL plates using finite element method. In 2013, Akhavan et 

al. [4] studied large deflection and stresses of VSCL plates using finite element method. In 2013, Houmat [5] studied 

nonlinear free vibration of fully clamped VSCL plates using finite element method. In 2014, Yazdani et al. [6] 

analyzed linear and non-linear deflections of VSCL plates using finite element method. In 2014, Akbarzadeh et al. 

[7] studied static bending, buckling, and free vibration of VSCL plates. They first presented the governing equations 
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obtained via classical and shear deformation theories, and then solved them by using the hybrid Fourier-Galerkin 

Method. In 2015, Yazdani and Ribeiro [8] studied free vibration analysis of thick VSCL plates using finite element 

method. 

Because there is no data in the field about the analysis VSCL folded plates, in this article, free vibration analysis 

of VSCL flat and folded plates is studied. 

2    THEORY 

Here, a laminated composite of total thickness h composed of n layers with length L and width b is considered. In 

addition, application is made of X and Y and Z Cartesian coordinates system. XY-plane is taken in the mid-plane of 

the laminate. For the purpose of considering the variable stiffness, it is assumed that the orientation of the reference 

fiber path in each layer changes linearly with respect to the X coordinate and is defined as: 
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Fig.1 

Fiber orientation in a layer of VSCL. 

 

  

T0 is the path orientation in X=L/2, T1 is the path orientation in X=0 and X=L (Fig. 1). The remaining paths can be 

found by shifting the reference fiber path along the Y axis. Here, the ply angle for a layer of VSCL is defined as 

0 1/T T  . For example, a two-layer VSCL with stacking sequence [ 30/ 60 , 30/ 60 ]      means two layer VSCL 

with 0 130 , 60T T     in the first layer and 0 130 , 60T T      in the second layer (Fig. 2). 

 

 

 

 

 

 

 

 

 

Fig.2 

Two-layer VSCL with stacking sequence [ 30/60 , 30/ 60 ]     . 

2.1 Theory of VSCL plates 

To write the stress-strain relations, classical laminated plate theory has been used. According to this theory, the 

displacements are as follows [9]: 
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where u, v and w are the displacements in the X, Y, and Z directions respectively, and u0, v0 and w0 are the values of 

u, v, and w at the mid-plane, respectively. The strain–displacement relations can be written as [9]: 
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(0) (0) (0)( , , )XX Y Y XY    are the membrane strains, and (1) (1) (1)( , , )XX Y Y XY    are the mid-plane curvatures. Like a CSCL 

plate, in a VSCL plate, layers are orthotropic. Therefore, the stress–strain relations in kth layer, in principal material 

coordinates, are obtained from the following: 
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where the subscripts 1 and 2 refer to the material coordinate system (x1,x2). The material coordinate axis x1 is taken 

to be the direction of the fiber and the x2-axis is perpendicular to fiber longitudinal direction (see Fig. 1). The plane 

stress–reduced stiffnesses Qij are: 
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where E1 and E2 are the moduli of elasticity in 1 and 2 directions, G12 is the shear modulus, and υ12 is the major 

Poisson ratio. In Eq. (6), stress-strain relations are expressed in principal material coordinates, but a laminated 

composite is made of several orthotropic layers and each layer has its own principal material coordinates. Therefore, 

the stresses and strains must be transformed to the local coordinates X and Y. For that purpose, the following 

transformation matrices are used: 
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where   is the fiber angle in Eq. (1) and can be different at any point of a layer of VSCL plate. The stress–strain 

relations in the local coordinate system are presented as [5]: 
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In Eq. (10), the transformed reduced stiffnesses ( )ijQ X  are functions of coordinates X. Therefore, they are not 

constant over the laminate and are given by [5]: 
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The in-plane force resultants per unit length are given by: 
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The moment resultants per unit length are given by: 
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where Aij, Dij, and Bij are called extensional stiffnesses, bending stiffnesses, and bending- extensional coupling 

stiffnesses, respectively. When the laminates are symmetric about their middle plane, there is no linear coupling 

between the membrane deformations and bending [3]. In this article, VSCL plates symmetric about their middle 

plane will be analyzed and, therefore, Bij are null. Aij and Dij are defined in terms of ijQ  as: 
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2.2 Finite strip method for free vibration analysis of VSCL flat plates 

In the finite strip method (FSM), the plate is divided into a finite number of strips that are connected along the so-

called nodal lines. Displacements and rotations represent the degrees of freedom of each nodal line (Fig. 3). 

 

 

 

 

 

 

 

 

 

 

Fig.3 

A plate which is divided to some finite strips. 

 

The transverse displacement of the strip is approximated as a combination of the trigonometric series in the 

longitudinal direction x and the polynomial function f(y) in the lateral direction y. Thus the transverse displacement 

function for each strip is chosen in the form [10]: 
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where the vector of nodal line displacements for the nth harmonic ( )nd t  is given by: 
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and ( )f y  for a strip with the width a is defined as follows [10]: 
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The following basic function series Sn(x) corresponding to different types of end conditions in x = 0 and x = L 

can be used in FSM [11]: 
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b. Both clamped. Using boundary condition (0) (0) ( ) ( ) 0n n n nS S S L S L     , the specific forms of nS  
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In order to obtain stiffness matrix and mass matrix, the energy method is adopted. The bending strain energy Ub 

for each strip can be written as: 
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By using Eq. (5) and Eq. (13), and assuming Bij=0 (the equations mentioned in Section 2.1, can be used in the 

xyz coordinates system), the bending strain energy Ub can be rewritten as: 
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and by replacement the displacement field of a strip from Eq. (16), it can be obtained as: 
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where [kb]  is the bending stiffness matrix of the strip and can be obtained as: 
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The kinetic energy for each strip T with the density   is [10]: 

 
2

1
2

st

w
T h dA

t


 
  

   
 

(25) 

 

That 

 

   

   

2

2

1 1

f
f f f

i i ii

f f

i i

tt t t

t t A A t At

t t r r
T

m b nmn
m nt t

w w w w
Tdt h dAdt h w dA h w dAdt

t t t t

Tdt d m d dt


     

 
 

        
                   

     

     

 

 

 

 

 

(26) 

 

where [mb]  is the mass matrix and can be obtained by 
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T

b m nmn

A
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(27) 

 

The stiffness matrix of the flat plate [K] and the mass matrix of the flat plate [M] can be obtained by common 

methods of assembling [kb] and [mb] matrices of all strips of plate. Finally, free vibration frequencies of flat plate  

can be obtained by solving the following equation 

 

   2 0K M   (28) 

2.3 Finite strip method for free vibration analysis of VSCL folded plates 

VSCL folded plates can be considered as a compound of rectangular VSCL flat plates, which are simultaneously 

subjected to bending and in-plane action. Then at each of the two nodal lines there are four displacement 

components u, v,  , and w (Fig. 4). 

 

 

 

 

 

 

 

 

 

Fig.4 

Local and global coordinates and displacement components in 

the local coordinates. 

 

 

The approximation of displacements u and v in a single strip has the form [12] 
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(29) 

 

where the vector of degrees of freedom corresponding to the nth harmonic ( )n t  is given by 
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   1 1 2 2( ) , , ,
T

n n n n nt u v u v   (30) 

 

The energy due to in-plane forces Ug for each strip can be written as: 
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(31) 

 

By using Eq. (4), Eq. (12), and Eq. (29), and assuming Bij=0 and w0=0, the energy due to in-plane forces Ug can 

be obtained as: 
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where [kp] is the in-plane stiffness matrix of the strip and can be obtained as: 
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where [Bp]n and [A] are defined as: 
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Also, the in-plane mass matrix of the strip [mp] can be obtained as: 
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(36) 

 

where [C] denotes the shape function defined in Eq. 29. 

The stiffness and mass matrix of such a strip can be obtained as an appropriate assembly of stiffness and mass 

matrices for strips in the bending state and in-plane state as follows: 
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These matrices correspond to the following vector of degrees of freedom 

 

   1 1 2 2 1 1 2 2( ) , , , , , , ,
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The stiffness and mass matrix of the strip should be transferred from local coordinates to the global one. In Fig. 

4, the local coordinates are labelled as x, y, z and the global coordinates are labelled as , ,x y z .The transformations 

of mass and stiffness matrix of the strip between the two sets of coordinate systems are given by 
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where k 
   and  m are the stiffness and mass matrix in the global coordinates, respectively, and [T] is the 

transformation matrix as: 
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(42) 

 

where   is the angle between the y and y axes. The stiffness matrix of the folded plate [K'] and the mass matrix of 

the folded plate [M'] can be obtained by common methods of assembling k 
   and  m  matrices of all strips of 

plate and writing these matrices in the form of reduced matrices (by satisfying the boundary conditions at the 

straight lines). Finally, free vibration frequencies of folded plate   can be obtained by solving the following 

equation: 

 

    2 0K M      

(43) 

3    NUMERICAL RESULTS 

This section is divided into two parts. First, the accuracy of the present FSM is investigated by comparing the result 

of free vibration analysis results of CSCL and VSCL flat plates, isotropic folded plates, and CSCL folded plates 

with the findings of previous studies (there is no data in the field of VSCL folded plates analysis). Secondly, free 

vibration analysis of VSCL flat plates and VSCL folded plates is studied. The properties of the plates analyzed are 

defined in Table 1. The folded plates that are investigated in this article are one-fold, two-fold, three-fold, and four-

fold folded plates (Fig. 5). The parameters n and NS represent the number of terms of basic functions and the 

number of finite strips with equal width, respectively. In addition, in the flat plates, two types of boundary 
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conditions as four edges clamped CCCC and four edges simply supported SSSS are studied, and in the folded plates, 

four type of boundary conditions as SSSS, SFSF, SCSC, SCSF are studied, as defined below. 

SSSS: At x = 0 and x = L, simply supported. At straight lines, simply supported. 

SFSF: At x = 0 and x = L, simply supported. At straight lines, free. 

SCSC: At x = 0 and x = L, simply supported. At straight lines, clamped. 

SCSF: At x = 0 and x = L, simply supported. At straight lines, clamped and free. 

 
Table 1 

Mechanical properties of the plates. 

 E1(Gpa) E2(Gpa) G12(Gpa) 12   (kg/m3) 

Plate 1, Ref. [14] for E1=173 Gpa 173 70.612 33.89 0.23 8000 

Plate 2, Ref. [1] 173 7.2 3.76 0.29 1540 

Plate 3, Ref. [20] 60.7 24.8 12 0.23 1300 

Plate 4, Ref. [21] for E1=257.5 Gpa 257.5 10.3 5.15 0.25 1600 

 

 

 

 

 
 

  

  
Fig.5 

Geometrical properties of the folded plates. 

 

3.1 Validation 

In Table 2. and Table 3., the results of free vibration analysis of three-layer CSCL flat plates obtained by the present 

FSM are compared with those of relevant studies [13,14,15,16]. In this comparison, the normalized natural 

frequency is determined as
2 2

12 21 112 (1 ) /L E h      . The mechanical properties are the same as those of 

Plate 1 in Table 1., and the geometry is L=1m, b=1m, and h=0.06m. The results presented in Table 2. and Table 3. 

represent the frequencies of the CSCL plates for SSSS and CCCC boundary conditions, respectively. In Table 3., 

analysis has been performed with different values of n. Here, by using n=6, we come close to the a suitable 

response. 

In Table 4., the results of free vibration analysis of four-layer VSCL flat plates obtained by the present FSM are 

compared with those of Houmat [5]. In this comparison, the normalized natural frequency is determined 
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as 2/L E   . The mechanical properties are the same as those of Plate 2 in Table 1., and the geometry is 

L=0.5m, b=0.5m, and h=0.005m. The boundary conditions are considered CCCC, and the stacking sequence is 

0 1[ / ]ST T  which means 0 1 0 1 0 1 0 1[ / , / , / , / ]T T T T T T T T        . In addition, in this table, analysis has been 

performed with different values of n. Here, by using n=9, we come close to the suitable response. 

Natural frequencies of a cantilever isotropic one-fold folded plate (as shown in Fig. 5(a)) are presented in Table 

5. The plate is clamped at 0X   and its geometric properties are as follows:  =150°, b1=b2=0.5L and h=0.02L. 

The Young’s modulus E is taken to be 10.92 Gpa, the Poisson’s ratio   is 0.3 and the density   is 1000 kg/m
3
. In 

the table, the first three normalized frequencies of the plate obtained by the present FSM are compared with those of 

relevant studies [17,18,19]. In this comparison, the normalized natural frequency is determined as 

2(1 ) /L E     .  

Fundamental frequencies of a cantilever CSCL two-fold folded plate (as seen in Fig. 5(b)) with clamped 

boundary condition at 0X   are shown in Table 6. The geometric properties of the plate are as follows: 

b1=b2=b3=L/3, h=0.02L. The mechanical properties are the same as those of Plate 3 in Table 1. and the stacking 

sequence is [30/-30/-30/30]. In the table, the results obtained by the present FSM are compared with those of 

relevant studies [19,20,21]. In this comparison, the normalized natural frequency is determined 

as 2
12 1(1 ) /L E     .  

In Table 7. , the first four normalized frequencies of CSCL four-fold folded plate obtained by the present FSM 

are compared with those obtained by Haldar and Sheikh [22]. In this comparison, the normalized natural frequency 

is determined as 2 2
2/L E h   . The mechanical properties are the same as those of Plate 4 in Table 1. The 

geometry corresponds to Fig.5(d) (b1=b2=b4=b5=L/6, b3=L/3, h=0.01L and the crank angle   is considered as being 

various). The boundary conditions are considered SFSF, and the stacking sequence is [90/0/90]. 

As shown in all the tables (i.e., Tables 2-7), the results obtained by the present FSM agree well with those 

obtained in similar studies. 

 
Table 2 

Normalized natural frequencies of fully simply supported CSCL flat plates. 

  Mode      

stacking sequence  1 2 3 4 5 6 

[0/0/0] Present: FSM [NS=4, n=3] 15.171 33.253 44.387 60.678 64.521 90.192 

 Exact-CLPT Ref. [13] 15.171 33.248 44.387 60.682 64.457 90.145 

 CLPT Ref. [14] 15.19 33.31 44.52 60.79 64.55 90.31 

 CLPT Ref. [15] 15.19 33.30 44.42 60.78 64.53 90.29 

        

[15/-15/15] Present: FSM [NS=4, n=3] 15.530 34.395 43.949 62.124 66.29 91.544 

 CLPT Ref. [14] 15.37 34.03 43.93 60.80 66.56 91.40 

 CLPT Ref. [15] 15.43 34.09 43.80 60.85 66.67 91.40 

        

[30/-30/30] Present: FSM [NS=4, n=3] 16.226 37.148 42.567 64.907 71.311 85.916 

 CLPT Ref. [14] 15.86 35.77 42.48 61.27 71.41 85.67 

 CLPT Ref. [15] 15.90 35.86 42.62 61.45 71.71 85.72 

 
Table 3 

The normalized fundamental frequency of fully clamped CSCL flat plate. 

 

 

 Present FSM [NS=4]       

stacking sequence n=1 n=2 n=3 n=4 n=5 n=6 Ref. [14] Ref. [16] 

[45/-45/45] 29.39 28.88 28.58 28.51 28.45 28.41 28.38 28.50 

         

[30/-30/30] 29.46 29.06 28.74 28.68 28.62 28.60 28.55 28.69 

         

[15/-15/15] 29.56 29.42 29.06 29.04 28.97 29.94 28.92 29.07 

         

[0/0/0] 29.61 29.61 29.22 29.22 29.15 29.15 29.13 29.27 
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Table 4 

The normalized fundamental frequency of fully clamped VSCL flat plate. 

 
Table 5 

The first three normalized frequencies of cantilever isotropic one-fold folded plate (clamped at x=0). 

 Mode   

 1 2 3 

Present FSM [NS=4, n=4] 0.0491 0.0805 0.1792 

Ref. [17] 0.0490 0.0801 0.1778 

Ref. [18] 0.0489 0.0801 0.1778 

Ref. [18] 0.0491 0.0804 0.1883 

 
Table 6 

The normalized fundamental frequency of cantilever CSCL two-fold folded plate (clamped at x=0). 

Crank angle Present FSM [NS=6, n=4] Ref. [20] Ref. [19] Ref. [21] 

 =90° 0.0922 0.0921 0.0901 0.0925 

 =120° 0.0816 0.0800 0.0781 0.0736 

 =150° 0.570 0.0573 0.0551 0.0522 

 
Table 7 

The first four normalized frequencies of CSCL four-fold folded plate (simply supported at x=0, L and other two sides being free). 

  Mode    

Crank angle  1 2 3 4 

 =150° Present FSM [NS=12, n=3] 46.369 67.548 83.409 90.807 

 Ref. [22] 46.215 67.151 84.321 90.213 

      

 =135° Present FSM [NS=12, n=3] 44.720 58.366 83.387 88.108 

 Ref. [22] 44.814 58.331 84.029 87.038 

      

 =120° Present FSM [NS=12, n=3] 38.786 49.311 71.549 75.661 

 Ref. [22] 38.575 49.126 72.362 76.231 

3.2 Free vibration analysis 

3.2.1 Variable stiffness composite laminated flat plate 

In this study, we conducted the free vibration analysis of a three-layer VSCL flat plate. The mechanical properties 

are the same as those of Plate 2 in Table 1. The geometry is L=0.5m, b=0.5m and h=0.005m. In addition, the 

 Present FSM [NS=6]          

stacking sequence n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 Ref. [5] 

[ 40/80 ]s   0.308 0.288 0.277 0.273 0.273 0.270 0.269 0.268 0.268 0.268 

           

[ 40/70 ]s   0.311 0.289 0.281 0.276 0.274 0.273 0.272 0.272 0.271 0.270 

           

[ 40/60 ]s   0.315 0.292 0.286 0.281 0.280 0.279 0.278 0.278 0.278 0.276 

           

[ 40/50 ]s   0.320 0.297 0.293 0.289 0.287 0.286 0.285 0.285 0.285 0.284 

           

[ 40/30 ]s   0.335 0.312 0.310 0.308 0.308 0.308 0.307 0.307 0.307 0.306 

           

[ 40/ 20 ]s   0.341 0.319 0.318 0.317 0.317 0.316 0.316 0.316 0.315 0.315 

           

[ 40/10 ]s   0.345 0.325 0.324 0.324 0.323 0.323 0.323 0.323 0.322 0.322 
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stacking sequence is considered as 0 1 0 1 0 1[ / , / , / ]T T T T T T      . The results of this analysis are determined as the 

normalized natural frequency 2/L E   , as shown in Table 8. and Table 9. 

In Table 8. , the first six normalized frequencies of this plate with SSSS boundary conditions are presented. Also, 

the same results appear in Fig. 6. As seen, when the value of T1 is increased while keeping constant the value of T0, 

the first natural frequencies increase. Also, when the value of T1 remains constant, the first natural frequencies 

increase as the value of T0 varies from 0° to 30°. Nonetheless, by performing free vibration analysis of VSCL flat 

plate, but with CCCC boundary conditions, Yazdani and Ribeiro [8] realized that by increasing T1 and keeping T0 

constant, the first natural frequencies decrease. 

In Table 9., the normalized fundamental frequency of this plate with CCCC boundary conditions is presented. In 

this table, it could be seen that by increasing either T0 or T1, and keeping another constant, normalized fundamental 

frequency decreases. 

 
Table 8 

The first six normalized frequencies of fully simply supported VSCL flat plate (NS=4, n=4). 

  Mode      

T0 T1 1 2 3 4 5 6 

0° 0° 0.150 0.203 0.328 0.558 0.568 0.601 

 10° 0.154 0.215 0.345 0.568 0.577 0.612 

 20° 0.164 0.246 0.390 0.566 0.628 0.640 

 30° 0.176 0.282 0.445 0.560 0.674 0.698 

 40° 0.186 0.314 0.498 0.550 0.703 0.773 

        

10° 0° 0.151 0.211 0.340 0.568 0.574 0.612 

 10° 0.157 0.231 0.371 0.564 0.610 0.629 

 20° 0.168 0.266 0.425 0.560 0.661 0.676 

 30° 0.180 0.304 0.485 0.550 0.697 0.758 

 40° 0.191 0.336 0.537 0.541 0.725 0.844 

        

20° 0° 0.154 0.232 0.381 0.566 0.633 0.640 

 10° 0.161 0.256 0.422 0.560 0.661 0.688 

 20° 0.173 0.296 0.481 0.551 0.694 0.768 

 30° 0.185 0.333 0.539 0.544 0.729 0.861 

 40° 0.195 0.364 0.523 0.602 0.756 0.957 

        

30° 0° 0.157 0.266 0.451 0.560 0.674 0.756 

 10° 0.166 0.296 0.500 0.550 0.697 0.826 

 20° 0179 0.333 0.539 0.562 0.729 0.917 

 30° 0.190 0.369 0.526 0.626 0.762 1.019 

 40° 0.198 0.398 0.508 0.684 0.785 1.004 

 
Table 9 

The normalized fundamental frequency of fully clamped VSCL flat plate (NS=4, n=8). 

0 1,T T   0/10   0/ 20   0/30   0/ 40   10/0   20/0   30/0   40/0   

  0.324 0.314 0.299 0.282 0.326 0.321 0.316 0.311 
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Fig.6 

The effect of T0 and T1 on the normalized fundamental 

frequency of VSCL plate, simply supported at all edges. 

3.2.2 Variable stiffness composite laminated folded plates 

In this section, we study the free vibration analysis of VSCL one-fold, two-fold, three-fold and four-fold folded 

plates and the normalized natural frequency is determined as 2/L E   . In Table 10. and Table 11. , the 

mechanical properties of the plates investigated are the same as those of Plate 2 in Table 1. The geometry of these 

plates is shown in Fig.5 and their dimensions are listed as follows: 

For one-fold folded plate: b1= b2=L/2 and h=0.01L. 

For two-fold folded plate: b1= b2= b3=L/3 and h=0.01L. 

For three-fold folded plate: b1= b2= b3= b4=L/4 and h=0.01L. 

For four-fold folded plate: b1= b2= b4= b5=L/6, b3=L/3 and h=0.01L. 

In Table 10., the first four normalized frequencies of VSCL one-fold and two-fold folded plates with three types 

of stacking sequence are presented. The boundary conditions are considered SFSF, and the crank angle is assumed 

 =120°. 

In Table 11., the effect of crank angle  on the natural frequencies of VSCL one-fold, two-fold, three-fold and 

four-fold folded plates is investigated. The boundary conditions of all these folded plates are considered SFSF, and 

the stacking sequence is [ 0/ 45 , 45/ 60 , 0/ 45 ]       . As seen, when the folding order is increased from one-folding 

to four folding, by changing the crank angle, more variation is created in the natural frequencies. In other words, the 

crank angle has no significant effect on the natural frequencies for VSCL one-fold folded plate whereas it has 

significant effects on the natural frequencies for VSCL four-fold folded plate. 

In Table 12. , the first four normalized frequencies of VSCL four-fold folded plate are determined. The geometry 

of this plate is shown in Fig.7 and its dimensions are: b1= b2= b4= b5=L/6, b3=L/3 and h=0.01L. The stacking 

sequence is considered as[ 30/ 0 , 30/ 0 , 30/ 0 ]      and the mechanical properties of this plate are the same as 

those of Plate 2 in Table 1. In this table, it could be seen how natural frequencies change by crank angles  =150°, 

 =135° and  =120°, and boundary conditions SSSS, SFSF, SCSC and SCSF. 

 
Table 10 

The first four normalized frequencies of VSCL one-fold and two-fold folded plates. 

stacking sequence Mode One-fold (NS=4, n=3) Two-fold (NS=6, n=3) 

[ 30/0 , 30/0 , 30/0 ]       1 0.13479 0.17279 

 2 0.14776 0.18118 

 3 0.36518 0.54373 

 4 0.44550 0.57553 

    

[ 0/ 45 , 0/ 45 , 0/ 45 ]        1 0.18548 0.25667 

 2 0.20340 0.26385 

 3 0.48578 0.56857 

 4 0.49640 0.60287 

    

[ 30/ 45 , 30/ 45 , 30/ 45 ]        1 0.17810 0.27893 

 2 0.21035 0.29010 

 3 0.44045 0.56825 

 4 0.47976 0.60203 
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Table 11 

The first four normalized frequencies of VSCL folded plates. 

  Mode    

 Crank angle (  ) 1 2 3 4 

One-fold (NS=4, n=3) 90° 0.18473 0.20483 0.49371 0.49756 

 120° 0.18475 0.20466 0.49368 0.49772 

 150° 0.18476 0.20375 0.49347 0.49778 

      

Two-fold (NS=6, n=3) 90° 0.25872 0.26771 0.56898 0.60275 

 120° 0.25864 0.26676 0.56876 0.60246 

 150° 0.25796 0.26169 0.56736 0.60066 

      

Three-fold (NS=8, n=3) 90° 0.34081 0.34250 0.66351 0.69783 

 120° 0.34397 0.34430 0.66464 0.69913 

 150° 0.34332 0.34509 0.66495 0.69945 

      

Four-fold (NS=12, n=3) 120° 0.43854 0.44205 0.64350 0.86956 

 135° 0.48596 0.49377 0.63900 0.89256 

 150° 0.50386 0.51281 0.61763 0.89997 

 
Table 12 

The first four normalized frequencies of VSCL four-fold folded plates (NS=12, n=3). 

  Mode    

Crank angle(  ) Boundary condition 1 2 3 4 

120° SSSS 0.37939 0.60778 0.81083 0.84893 

 SFSF 0.37612 0.38276 0.61250 0.81083 

 SCSC 0.37941 0.60953 0.81083 0.84893 

 SCSF 0.37941 0.60953 0.81083 0.84893 

      

135° SSSS 0.36520 0.59902 0.80682 0.84445 

 SFSF 0.36224 0.36824 0.60371 0.80682 

 SCSC 0.36523 0.60120 0.80682 0.84445 

 SCSF 0.36523 0.60120 0.80682 0.84445 

      

150° SSSS 0.32965 0.56998 0.65866 0.77874 

 SFSF 0.32749 0.33179 0.57866 0.65502 

 SCSC 0.32968 0.57584 0.68413 0.79537 

 SCSF 0.32968 0.57584 0.68413 0.79537 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 

Geometrical properties of the four-fold folded plate. 

 

 

In Fig.8, the effect of crank angle   on the fundamental frequency of VSCL four-fold folded plate for wide 

range of   from 0° to 180° is depicted. The geometry of this plate is shown in Fig.7 and its dimensions are: L=3m, 
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b1= b2= b4= b5=0.5m, b3=1m and h=0.03m. The mechanical properties of this plate are the same as those of Plate 2 

in Table 1. The stacking sequence is 1 1 1[ 0/ , 0 / , 0 / ]T T T      and the boundary conditions are considered as 

SCSC. 

 

 

 

 

 

 

 

 

 

Fig.8 

The effect of crank angle  on the fundamental frequency of 

a VSCL four-fold folded plate with stacking sequence 

1 1 1[ 0/ , 0/ , 0/ ]T T T      . 

 

 

The effect of length to thickness ratio (L/h) and the effect of E1/E2 ratio on the first frequency are depicted in Fig. 

9 and Fig. 10, respectively. Here, one-fold (L=2m, b1=b2=L/2,  =120°), two-fold (L=2m, b1=b2=b3=L/3,  =120°) 

and three-fold (L=2m, b1=b2=b3=b4=L/4,  =120°) folded plates are investigated. The geometry of the plates 

investigated corresponds to Fig. 5. The mechanical properties of these plates are: E2=7.2Gpa, G12=0.522E2, 12  

=0.29 and  =1540kg/m
3
. The results presented in Fig.9 and Fig.10 are calculated for E1=24.08E2 and h=0.01L, 

respectively. Moreover, the stacking sequence of these plates is considered as [ 30/ 45 , 30/ 45 , 30/ 45 ]        and the 

boundary conditions are considered as SFSF. As seen in Fig. 9, as L/h ratio increases the fundamental frequency 

decreases, and, as the folding order increases the fundamental frequency increases. This is the reason why as L/h 

ratio increases the rigidity of the plate decreases, and as the folding order increases the rigidity of the plate increases. 

 

 

 

 

 

 

 

 

 

 

Fig.9 

The effect of L/h ratio on the fundamental frequency for 

VSCL folded plates. 

 

  

 

 

 

 

 

 

 

 

 

 

Fig.10 

The effect of E1/E2 ratio on the fundamental frequency for 

VSCL folded plates. 
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4    CONCLUSIONS 

In this study, natural frequencies of variable stiffness composite laminated (VSCL) flat and folded plates are 

presented. Most of the studies on VSCL flat plates are limited to their analysis with clamped boundary conditions or 

are based on the finite element method. In addition, there is no data in the field of VSCL folded plates analysis. In 

the present study, a semi-analytical finite strip method based on classical laminated plate theory is developed to 

study the free vibration of VSCL flat and folded plates. In this study, it was observed that in fully simply supported 

VSCL flat plate, by increasing the value of the angle of curvilinear fibers at the edges of plate T1 and keeping 

constant the value of angle of curvilinear fibers at the center of plate T0, the first natural frequencies increase. 

However, in fully clamped VSCL flat plate, by increasing T1 and keeping T0 constant, fundamental frequency 

decreases. Moreover, in VSCL folded plates, when the folding order increases, by changing the crank angle, more 

variation is created in the natural frequencies. 
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