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 ABSTRACT 

 This paper deals with the reflection and transmission of elastic waves from 

imperfect interface separating a micropolar elastic solid half-space and a fluid 

saturated porous solid half-space. Longitudinal and transverse waves impinge 

obliquely at the interface. Amplitude ratios of various reflected and transmitted 

waves are obtained and computed numerically for a specific model and results 

obtained are depicted graphically with angle of incidence of incident waves. It 

is found that these amplitude ratios depend on angle of incidence of the 

incident wave, imperfect boundary and material properties of half-spaces. 

From the present study, a special case when fluid saturated porous half-space 

reduces to empty porous solid is also deduced and discussed graphically. 

.                                     © 2018 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 OST of natural and man-made materials, including engineering, geological and biological media, possess a 

microstructure. The ordinary classical theory of elasticity fails to describe the microstructure of the material. 

To overcome this problem, Eringen and Suhubi [10] considered the microstructure of the material and they showed 

that the motion in a granular structure material is characterized not by a displacement vector but also by a rotation 

vector. Gautheir [12] found aluminum-epoxy composite to be a micro polar material. Many problems of waves and 

vibrations have been discussed in micro polar elastic solid by several researchers. Some of them are Parfitt and 

Eringen [23], Tomar and Gogna [26], Tomar and Kumar [27], Singh and Kumar [24], Kumar and Barak [18] etc. 

On the other side, Brown [4] and de Boer and Ehlers [7-8] developed an interesting theory for porous medium 

having all constituents to be incompressible. Based on this theory, many researchers like de Boer and Liu [5], Liu 

[21], de Boer and Didwania [6], Tajuddin and Hussaini [25], Kumar and Hundal [16], Kumari [19], Madan et al. 

[22], Kumar et al. [14-15] etc. studied some problems of wave propagation in fluid saturated incompressible porous 

media. Elastic waves propagation in fluid saturated porous media has its importance in various fields such as soil 

dynamics, hydrology, seismology, earthquake engineering and geophysics. Imperfect interface considered in this 

problem means that the stress components are continuous and small displacement field is not. The values of the 

interface parameters depend upon the material properties of the medium. Recently, using the imperfect conditions at 
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the interface, Kumar and Chawla [17], Kumari [20], Kaliraman [13], Barak and Kaliraman [1-2-3] etc. studied the 

various types of wave problems. 

Using the theory of de Boer and Ehlers [8] for fluid saturated porous medium and Eringen [11] for micro polar 

elastic solid, the reflection and transmission phenomenon of longitudinal and transverse waves at an imperfect 

interface between micro polar elastic solid half-space and fluid saturated porous solid half-space is studied. A 

special case when fluid saturated porous solid half-space reduces to empty porous solid half-space has been deduced 

and discussed. Amplitudes ratios for various reflected and transmitted waves are computed for a particular model 

and depicted with help of graphs and discussed accordingly. The model which is considered here is assumed to exist 

in the oceanic crust part of the Earth and the propagation of wave through such a model will be of great use in the 

fields which are related to Earth sciences. 

2    FORMULATION OF THE PROBLEM    

Consider a two-dimensional problem by taking the z-axis pointing into the lower half-space and the plane interface 

0z   separating the fluid saturated porous solid half-space  1 0M z   and micropolar elastic solid half-

space  2 0M z  . A longitudinal wave or transverse wave propagates through the medium 1M  and incident at the 

plane 0z   and making an angle 0  with normal to the surface. Corresponding to incident longitudinal or 

transverse wave, we get two reflected waves in the medium 1M  and three transmitted waves in medium 2M . See 

Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 

Geometry of the problem. 

 

3    BASIC EQUATIONS AND CONSTITUTIVE RELATIONS   

3.1 For medium M2 (Micro polar elastic solid) 

The equation of motion in micro polar elastic medium are given by Eringen [11] as: 
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Parfitt and Eringen [23] have shown that Eq. (1) corresponds to longitudinal wave propagating with velocity 1v , 

given by 2 2 2

1 1 3v c c   and Eqs. (2)-(3) are coupled equations in vector potential U  and   and these correspond to 

coupled transverse and micro-rotation waves. If 
2

2

0

2



 , there exist two sets of coupled-wave propagating with 

velocities 
2

1


 and 

3

1


; where 

 

2 2

2

1
4

2
B B C    
 

, 2 2

3

1
4

2
B B C    
 

 
 

      (5) 

 

where, 

 

 

 2 22 2
42 3

2 1 1q p
B

cc c


  


;

 2 2 2 2
4 2 3

1 2 1q
C

c c c

 
  

 
; p



 



;q




  

 

      (6) 

 

Considering a two-dimensional problem by taking the following components of displacement and micro-rotation 

as: 
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and components of stresses are as under 
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3.2 For medium M1 (Fluid saturated incompressible porous solid half-space) 

Following de Boer and Ehlers [8], the governing equations in a fluid-saturated incompressible porous medium are 

 

 S Fdiv 0S Fx x        (12) 

 

 div grad 0S S S F
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 div grad 0F F F F

E F ET p b x P           (14) 

 

where ix  and ( , )ix i S F  denote the velocities and accelerations, respectively of solid (S) and fluid (F) phases of 

the porous aggregate and p is the effective pore pressure of the incompressible pore fluid. 
S  and 

F  are the 

densities of the solid and fluid phases respectively and b is the body force per unit volume. S

ET  and F

ET  are the 

effective stress in the solid and fluid phase respectively. F

EP  is the effective quantity of momentum supply and 
S  

and 
F  are the volume fractions satisfying 

 

1S F        (15) 

 

If Su  and Fu  are the displacement vectors for solid and fluid phases, then 
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The constitutive equations for linear isotropic, elastic incompressible porous medium are given by de Boer, 

Ehlers and Liu [9] as: 
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where S  and 
S  are the macroscopic Lame’s parameters of the porous solid and SE  is the linearized Lagrangian 

strain tensor defined as: 
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In the case of isotropic permeability, the tensor vS  describing the coupled interaction between the solid and fluid 

is given by de Boer and Ehlers [8] as: 
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where 
FR  is the specific weight of the fluid and FK  is the Darcy’s permeability coefficient of the porous medium. 

Making the use of (16) in Eqs. (12)-(14), and with the help of (17)-(20), we obtain 
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For the two dimensional problem, we assume the displacement vector  ,iu i F S  as: 

 



659                                 Elastic Wave Propagation at Imperfect Boundary of Micro polar…. 
 

 

© 2018 IAU, Arak Branch 
 

 ,0,i i

iu u w  where ,i F S      (25) 

 

Eqs. (22) -(24) with the help of Eq. (25) in absence of body forces take the form 

 
2 2 2 2

0
S S F F

S Fu w u w

x t z t x t z t
 

      
      

          
 

     

    (26) 

 
2

2
0

F F S
F F

v

p u u u
S

x dt tt
 

    
    

   
 

     

    (27) 

 
2

2
0

F F S
F F

v

p w w w
S

z t tt
 

    
    

    
 

     

    (28) 

 

 
2

2

2
0

S S F S
S S S S S S

v

p u u u
u S

x x t tt


    

     
        

     
 

     

    (29) 

 

 
2

2

2
0

S S F S
S S S S S S

v

p w w w
w S

z z t tt


    

     
        

     
 

     

    (30) 

 

where, 
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Also, S

zzt  and S

zxt  the normal and tangential stresses in the solid phase are as under 
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The displacement components ju  and jw  are related to the dimensional potential 
j  and 

j  as: 
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Using Eq. (35) in Eqs. (26)-(30), we obtain the following equations determining
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F  and  p as: 
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Assuming the solution of the system of Eqs. (36) -(40) in the form 
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where   is the complex circular frequency. 

Making the use of Eq. (42) in Eqs. (36) -(40), we obtain 
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Eq. (43) corresponds to longitudinal wave propagating with velocity 1v , given by 
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From Eqs. (44) and (45), we obtain 
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Eq. (50) corresponds to transverse wave propagating with velocity 2v , given by 2
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4    SOLUTION OF THE GOVERNING EQUATIONS   

For medium M2, let us consider 
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and for medium M1, we take 
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      3 01 2 0 0 2, 1, exp sin cosS F m B ik x z i t         2 2 2 2 2exp sin cosA ik x z i t        
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and 1 2 3, ,B B B  are amplitudes of transmitted P-wave, transmitted coupled transverse and transmitted micro-rotation 

waves respectively. Also 01A  or 01B , 1A  and 2A  are amplitudes of incident P-wave or SV-wave, reflected P-wave 

and reflected SV-wave respectively and to be determined from boundary conditions. 

5    BOUNDARY CONDITIONS   

Boundary conditions appropriate here are the continuity of displacement, micro rotation and stresses at the interface 

separating medium 1M  and 2M . These boundary conditions at z = 0 can be written in mathematical form as: 
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where nK  and tK  are normal and tangential stiffness coefficient. 

In order to satisfy the boundary conditions, the extension of the Snell’s law will be 
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Making the use of potentials given by Eqs . (52)-(54) and (58)-(59) in the boundary conditions given by Eq. (61) 

and using (62)-(65), we get a system of five non-homogeneous equations which can be written as: 

 

 
5

1

, 1,2,3,4,5ij j i

j

a Z Y i


     
     

    (66) 

 

where 
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1

1

0

B
Z

B
  ;  2

2

0

B
Z

B
  ;

 

3

3

0

B
Z

B
  ; 1

4

0

A
Z

B
  ; 2

5

0

A
Z

B
  

     

    (67) 

 

where 0 01B A  or 01B  is amplitude of incident P-wave or SV-wave respectively. 

Also 1Z  to 5Z  are the amplitude ratios of transmitted longitudinal wave, transmitted coupled-wave at an angle 

2 , transmitted coupled-wave at an angle 
3 , reflected P-wave and reflected SV-wave, respectively. Also 

ija  and 

iY  in non-dimensional form are as: 

 

  2 2 2

1 1 1

11 2

1

2 cos
a

    



  
  ; 

  2

2 2 2

12 2

1

2 sin cos
a

    




  ;

 

  2

3 3 3

13 2

1

2 sin cos
a

    




  ; 

 2 2

1 1 2

14 2

1

2 cosS Sk m
a

  



 
  ; 

2

2 2 2

15 2

1

2 sin cosS k
a

  




 ;

  

  2

1 3 1

21 2

1

2 sin cos
a

    




 ; 

2 2 2

2 2 2 2

22 2

1

cos 2 cos E
a

    



 
  ;

 

2 2 2

3 3 3 3

23 2

1

cos 2 cos F
a

    



 
  ; 

2

1 1

24 2

1

sin 2S k
a

 




 

; 

     

 

2

2 2

25 2

1

cos 2S k
a

 


  ; 31 0a   ; 

32 2cosa   ; 3 3

33

2

cosF
a

E

 


 ; 34 0a  ; 35 0a  ; 

  2 2 2

1 1 1 1 1

41

1

2 cos cosn

n

k i
a

k

      



  
  ; 

  2

2 2 2 2 2

42

1

2 sin cos sinn

n

k i
a

k

      



  
  ; 

  2

3 3 3 3 3

43

1

2 sin cos sinn

n

k i
a

k

      



  
  ; 1 1

44

1

cosik
a




  ; 2 2

45

1

sinik
a




   

  2

1 1 1 1 1

51

1

2 sin cos sint

t

ik
a

k

      



  
  ; 

2 2 2

3 3 3 3 3 3

53

1

cos 2 cos cost

t

F k
a

k

      



   
 ; 

1 1

54

1

sinik
a






 

; 2 2

55

1

cosik
a




  

 

For incident P-wave 

 

1 14Y a  ;  2 24Y a  ;

 
 3 34Y a  ;

 4 44Y a  ; 
 5 54.Y a            

 

For incident SV wave 

 

1 15Y a ;  2 25Y a  ;

 
 3 35Y a ;

 4 45Y a  ; 
 5 55Y a      (68) 

6    PARTICULAR CASE: WELDED CONTACT  ,n tK K   

Again in this case, a system of five non-homogeneous equations is obtained as in Eq. (68) with some 
ija  changed 

as: 

 

1 1

41

1

cosi
a

 


 ; 2 2

42

1

sini
a

 




  ;

 

3 3

43

1

sini
a

 






 
;
 51 1sina i   ; 

 
2 2

52

1

cosi
a

 




 ; 

3 3

53

1

cosi
a

 




  

  

 

     

 

(69) 

 



V. Kaliraman and R.K. Poonia                      664 
 

© 2018 IAU, Arak Branch 

7    SPECIAL CASE  

If pores are absent or gas is filled in the pores then 
F  is very small as compared to 

S  and can be neglected, so 

the relation (41) gives us 

2S S

S
C

 




  

  

 
     

(70) 

 

In this situation the problem reduces to the problem to empty porous solid half-space lying over micro polar 

elastic solid half-space. 

8    NUMERICAL RESULTS AND DISCUSSION   

In order to study in more detail, the behavior of various amplitude ratios, we have computed them numerically for a 

particular model for which the values of relevant elastic parameters are as follow: 

In medium M1, the physical constants for fluid saturated incompressible porous medium are taken from de Boer, 

Ehlers and Liu [9] as: 

 

0.67S  ,  0.33F 
 
,
 

31.34 Mg/mS   ,
 

30.33 Mg/mF   , 25.5833 MN/mS  , 

0.01 m/sFK   ,
 

310.00 KN/mFR   ,
 

28.3750 N/mS   

         

 

In medium M2, the physical constants for micro polar elastic solid are taken from Gauthier [12] as: 

 
10 27.59 10  N/m   ,  

10 21.89 10  N/m   ,
 

8 21.49 10  N/m   ,
 

3 32.19 10  kg/m  
 
,
 

42.68 10  N   ,
 

6 21.96 10  mj   ,
 

2

2

0

200



  

  

 

    (71)        

 

To calculate the modulus of amplitude ratios of various reflected and transmitted waves for the particular model 

and to depict graphically, a computer program in MATLAB has been developed. The amplitude ratios are computed 

for the angle of incidence varying from 0° to 90
o
. The variation of modulus of amplitude ratios iZ  with angle of 

emergence 0  of longitudinal P-wave or transverse SV wave are shown in Figs. (2)-(31). In Figs. (2)-(21) dotted 

lines show the variations of amplitude ratios iZ  when medium-M1 is incompressible fluid saturated porous 

medium (FS) and medium-MII is micro polar elastic solid and boundary between half-space is imperfect whereas 

solid lines show the variations of amplitude ratios when contact between half-spaces is welded. In Figs. (2) -(6), 

there is P-wave incident whereas in Figs. (7) -(11), SV wave is incident. In Figs. (12) -(16), there is P-wave incident 

and incompressible fluid saturated porous medium (FS) becomes empty porous solid (EPS) whereas in Figs. (17)-

(21), SV wave is incident and medium-M1 is empty porous solid. The nature of dependence of modulus of amplitude 

ratios iZ  on P-wave or SV is shown in Figs. (22)-(31). The nature of dependence of modulus of amplitude ratios 

iZ  is different for different reflected and transmitted waves. 

8.1 Longitudinal wave incidence 

The Figs. (2)-(6), show the variations of the modulus of amplitude ratios of reflected P-wave i.e. 4Z , reflected SV 

wave i.e. 5Z , transmitted P-wave i.e. 1Z , transmitted CDI-wave i.e. 2Z , and transmitted CDII-wave i.e. 3Z , 

with angle of incidence of incident P-wave. In Figs. (2) -(6), the effect of welded contact is significant to general 

stiffness case (imperfect interface) and is clear from the graphs. Also, in Figs. (12) -(16), in case of empty porous 

solid, the effect of stiffness is clear. In these figures, the modulus value of amplitudes ratios for imperfect interface 
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is small than all other cases except in Figs. (5) and (15)-(16). The effect of fluid filled in pores of fluid saturated 

porous medium is evident after comparing the corresponding Figs. (2)-(6) and (12)-(16). 

 

 

 

 

 

 

 

 

Fig.2 

Variation of the amplitude ratio iZ , i=1, 2,…,5 with angle of 

incidence of incident P-wave. 

  

 

 

 

 

 

 

 

 

Fig.3 

Variation of the amplitude ratio iZ , i=1, 2,…,5 with angle of 

incidence of incident P-wave. 

  

 

 

 

 

 

 

 

Fig.4 

Variation of the amplitude ratio iZ , i=1, 2,…,5 with angle of 

incidence of incident P-wave. 

  

 

 

 

 

 

 

 

Fig.5 

Variation of the amplitude ratio iZ , i=1, 2,…,5 with angle of 

incidence of incident P-wave. 

  

 

 

 

 

 

 

 

Fig.6 

Variation of the amplitude ratio iZ , i=1, 2,…,5 with angle of 

incidence of incident P-wave. 
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8.2 Transverse wave incidence 

The Figs. (7) -(11), show the variation of the modulus of amplitude ratios of reflected P-wave, reflected SV wave, 

transmitted P-wave, transmitted CDI-wave, and transmitted CDII-wave, with angle of incidence of incident SV-

wave. In the Figs. (7) -(11), the amplitude ratios are small for imperfect boundary in comparison to welded contact 

except in Fig. (11). Also, in Figs. (17) -(21), in case of empty porous solid, the effect of stiffness is clear and 

amplitude ratios are small for imperfect interface in comparison to welded contact. After comparing the 

corresponding Figs. (7) -(11) and (17) -(21), the effect of fluid filled in pores of fluid saturated porous medium is 

clear. 

 

 

 

 

 

 

 

Fig.7 

Variation of the amplitude ratio iZ , i=1,2,…,5 with angle of 

incidence of  incident SV wave. 

  

 

 

 

 

 

 

Fig.8 

Variation of the amplitude ratio iZ , i=1,2,…,5 with angle of 

incidence of  incident SV wave. 

  

 

 

 

 

 

 

Fig.9 

Variation of the amplitude ratio iZ , i=1,2,…,5 with angle of 

incidence of  incident SV wave. 

  

 

 

 

 

 

 

Fig.10 

Variation of the amplitude ratio iZ , i=1,2,…,5 with angle of 

incidence of  incident SV wave. 

  

 

 

 

 

 

 

Fig.11 

Variation of the amplitude ratio iZ , i=1,2,…,5 with angle of 

incidence of  incident SV wave. 
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Fig.12 

Variation of the amplitude ratio iZ  i=1, 2,…,5 with angle of 

incidence of incident P- wave for empty porous solid. 

  

 

 

 

 

 

Fig.13 

Variation of the amplitude ratio iZ  i=1, 2,…,5 with angle of 

incidence of incident P- wave for empty porous solid. 

  

 

 

 

 

 

 

Fig.14 

Variation of the amplitude ratio iZ  i=1, 2,…,5 with angle of 

incidence of incident P- wave for empty porous solid. 

  

 

 

 

 

 

 

 

Fig.15 

Variation of the amplitude ratio iZ  i=1, 2,…,5 with angle of 

incidence of incident P- wave for empty porous solid. 

  

 

 

 

 

 

Fig.16 

Variation of the amplitude ratio iZ  i=1, 2,…,5 with angle of 

incidence of incident P- wave for empty porous solid. 

  

 

 

 

 

 

 

Fig.17 

Variation of the amplitude ratio iZ  i=1, 2,…,5 with angle of 

incidence of incident SV wave for empty porous solid. 
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Fig.18 

Variation of the amplitude ratio iZ  i=1, 2,…,5 with angle of 

incidence of incident SV wave for empty porous solid. 

  

 

 

 

 

 

 

 

Fig.19 

Variation of the amplitude ratio iZ  i=1, 2,…,5 with angle of 

incidence of incident SV wave for empty porous solid. 

  

 

 

 

 

 

 

 

Fig.20 

Variation of the amplitude ratio iZ  i=1, 2,…,5 with angle of 

incidence of incident SV wave for empty porous solid. 

  

 

 

 

 

 

 

Fig.21 

Variation of the amplitude ratio iZ  i=1, 2,…,5 with angle of 

incidence of incident SV wave for empty porous solid. 

8.3 P-wave or SV wave incidence 

Figs. (22) -(26) depicts the effect of incident longitudinal and incident transverse wave on the variation of amplitude 

ratios. From these figures it is very clear that the amplitude ratios depend on incident wave. Also, the amplitude 

ratios are small for incident P- wave in comparison to SV wave except for modulus of amplitude ratio of reflected 

P-wave i.e. 4Z . Effect of incident longitudinal or incident transverse wave on the variation of amplitude ratios in 

case of empty porous solid is shown in Figs. (27) - (31). In these figures, the modulus of amplitude ratios for 

transmitted waves, are large in case of SV wave incidence and small for reflected waves. 

 

 

 

 

 

 

 

Fig.22 

Variation of the amplitude ratio iZ , i=1, 2,…,5 with angle of 

incidence of incident P- wave or SV wave. 
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Fig.23 

Variation of the amplitude ratio iZ , i=1, 2,…,5 with angle of 

incidence of incident P-wave or SV wave. 

  

 

 

 

 

 

 

 

 

Fig.24 

Variation of the amplitude ratio iZ , i=1, 2,…,5 with angle of 

incidence of incident P- wave or SV wave. 

  

 

 

 

 

 

 

 

Fig.25 

Variation of the amplitude ratio iZ , i=1, 2,…,5 with angle of 

incidence of incident P- wave or SV wave. 

  

 

 

 

 

 

 

 

Fig.26 

Variation of the amplitude ratio iZ , i=1, 2,…,5 with angle of 

incidence of incident P- wave or SV wave. 

  

 

 

 

 

 

 

 

Fig.27 

Variation of the amplitude ratio iZ  with angle of incidence of 

incident P- wave or SV wave for empty porous solid. 
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Fig.28 

Variation of the amplitude ratio iZ  with angle of incidence of 

incident P- wave or SV wave for empty porous solid. 

  

 

 

 

 

 

 

 

 

Fig.29 

Variation of the amplitude ratio iZ  with angle of incidence of 

incident P- wave or SV wave for empty porous solid. 

  

 

 

 

 

 

 

Fig.30 

Variation of the amplitude ratio iZ  with angle of incidence of 

incident P- wave or SV wave for empty porous solid. 

  

 

 

 

 

 

 

 

Fig.31 

Variation of the amplitude ratio iZ  with angle of incidence of 

incident P- wave or SV wave for empty porous solid. 

9    CONCLUSIONS 

In conclusion, a mathematical study of reflection and transmission coefficient at an imperfect interface separating 

micro polar elastic solid half-space and fluid saturated incompressible porous solid half space is made when 

longitudinal wave or transverse wave is incident. It is observed that 

1.   The amplitudes ratios of various reflected and transmitted waves are found to be complex valued. 

2.   The modulus of amplitudes ratios of various reflected and transmitted waves depend on the angle of 

incidence of the incident wave and material properties of half-spaces. 

3.   The effect of fluid filled in the pores of incompressible fluid saturated porous medium is significant on the 

amplitudes ratios. 

4.    The effect of incident wave is significant on amplitude ratios. All the amplitudes ratios are found to depend 

on incident waves. 

5.    The effect of stiffness is significant either longitudinal wave is incident or transverse wave is incident. 
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The model presented in this paper is one of the more realistic forms of the Earth models. The present theoretical 

results may provide useful information for experimental scientists/researchers/seismologists working in the area of 

wave propagation in micropolar elastic solid and fluid saturated incompressible porous solid. 
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