
 

© 2017 IAU, Arak Branch. All rights reserved.                                                                                                    

Journal of Solid Mechanics Vol. 9, No. 3 (2017) pp. 650-662 

Elastic Analysis of Functionally Graded Variable Thickness 
Rotating Disk by Element Based Material Grading 

A.K. Thawait 
1,*

, L. Sondhi
 1
 , Sh. Sanyal

 2
, Sh. Bhowmick 2 

1
Department of Mechanical Engineering, Shri Shankaracharya Technical Campus, SSGI,Bhilai, (C.G.), India 

2
Department of Mechanical Engineering, NIT Raipur, 492010, India 

Received 29 June 2017; accepted 29 August 2017 

 ABSTRACT 

 The present study deals with the elastic analysis of concave thickness rotating disks 

made of functionally graded materials (FGMs).The analysis is carried out using 

element based gradation of material properties in radial direction over the discretized 

domain. The resulting deformation and stresses are evaluated for free-free boundary 

condition and the effect of grading index on the deformation and stresses is 

investigated and presented. The results obtained show that there is a significant 

reduction of stresses in FGM disks as compared to homogeneous disks and the disks 

modeled by power law FGM have better strength. 

                                                             © 2017 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 ANY engineering components are modeled as rotating circular plates or disks in the field of marine, 

mechanical and aerospace industries such as gas turbines, gears, turbo-machinery, flywheel systems, 

centrifugal compressors, power transmission systems, machining devises, circular saws, microwave or baking ovens, 

and support tables, etc. The total stresses due to centrifugal load have important effects on their strength and safety. 

Thus, control and optimization of total stresses and displacement fields is an important task. Functionally gradation 

of the material properties and variable thickness profile optimize the component strength by controlling the changes 

of the local material properties. Depending on the function of the component, it is possible to utilize one, two or 

three-directional distributions of the material properties. 

A few researchers have reported work on analysis of FGM disks, plates, shells, beams and bars by analytical and 

finite element method. Eraslan et al. [1] has obtained analytical solutions for the elastic plastic stress distribution in 

rotating variable thickness annular disks. Thickness of the disks has parabolic variation and the analysis is based on 

the tresca’s yield criterion. Bayat et al. [2] reported work on analysis of a variable thickness FGM rotating disk. 

Material properties vary according to power law and the disk is subjected to both the mechanical and thermal loads. 

Afsar et al. [3] have analyzed a rotating FGM circular disk subjected to mechanical as well as thermal load by finite 

element method. The disk has exponentially varying material properties in radial direction. The disk is subjected to a 

thermal load along with centrifugal load due to non-uniform temperature distribution. An analytical thermoelasticity 

solution for a disk made of functionally graded materials (FGMs) is presented by Callioglu [4]. Bayat et al. [5] 

investigated displacement and stress behavior of a functionally graded rotating disk of variable thickness by semi 

analytical method. Radially varying one dimensional FGM is taken and material properties vary according to power 
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law and Mori-Tanaka scheme. Disk subjected to centrifugal load is analyzed for fixed boundary condition at inner 

surface and free boundary condition at outer surface. Callioglu et al. [6] have analyzed thin FGM disks. Density and 

Modulus of elasticity varies according to power law in an FGM of aluminum ceramic and the effect of grading 

parameter on displacement and stresses are investigated. Callioglu et al. [7] has analyzed functionally graded 

rotating annular disk subjected to internal pressure and various temperature distributions such as uniform 

temperature, linearly increasing and decreasing temperature in radial direction. Sharma et al. [8] worked on the 

analysis of stresses, displacements and strains in a thin circular functionally graded material (FGM) disk by finite 

element method. The disk is subjected to mechanical as well as thermal loads. Ali et al. [9] reported study on the 

elastic analysis of two sigmoid FGM rotating disks. Metal-Ceramic-Metal disk is analyzed for both uniform and 

variable thickness disks and effect of grading index on the displacement and stresses are investigated. Nejad et al. 

[10] have found closed-form Analytical solution of an exponentially varying FGM disk which is subjected to 

internal and external pressure. Ghorbanpour et al. [11, 12] have worked on Thermo-piezo-magnetic behavior of a 

functionally graded piezo-magnetic (FGPM) rotating disk, under mechanical and thermal loads.  A semi-analytical 

solution for magneto-thermo-elastic problem in functionally graded (FG) hollow rotating disks with variable 

thickness placed in uniform magnetic and thermal fields is also presented. 

In a recent work Zafarmand et al. [13] worked on elastic analysis of two-dimensional functionally graded 

rotating annular and solid disks with variable thickness. Axisymmetric conditions are assumed for the two-

dimensional functionally graded disk and the graded finite element method (GFEM) has been applied to solve the 

equations. Rosyid et al. [14] worked on finite element analysis of nonhomogeneous rotating disk with arbitrarily 

variable thickness. Three types of grading law namely Power law, sigmoid and exponential distribution law is 

considered for the volume fraction distributions. Zafarmand et al. [15] investigated nonlinear elasticity solution of 

functionally graded nanocomposite rotating thick disks with variable thickness reinforced with single-walled carbon 

nanotubes (SWCNTs). The governing nonlinear equations derived are based on the axisymmetric theory of elasticity 

with the geometric nonlinearity in axisymmetric complete form and are solved by nonlinear graded finite element 

method (NGFEM).   

In present research work rotating disks of parabolic concave thickness profile having free-free boundary 

condition are analyzed. Material properties of the disks are graded along the radial direction according to three types 

of distribution laws, namely power law, exponential law and Mori-Tanaka scheme by element based material 

grading. A finite element formulation based on principle of stationary total potential is presented for the rotating 

disks and finally the effect of grading parameter n on the deformation and stresses for different material gradation 

law is investigated.  

2    PROBLEM FORMULATION  

In this section geometric equation as well as different types of material property distributions are presented and the 

governing equations for the rotating disk are derived.  

2.1 Geometric modeling 

For an annular disk, the governing equation of radially varying thickness is assumed as:  
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(1) 

 

where a and b are inner and outer radius, h(r ) and h0 are half of the thickness at radius r and at the root of the disk, k 

and q are the constants that control the thickness profiles of the disk. For uniform thickness disk q = 0 and for 

variable thickness q > 0; k < 1 for concave thickness profile.   
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Fig.1 

Geometric parameters of the rotating disk. 

2.2 Material modeling 

Three types of material models namely power law distribution [7], exponential distribution [3] and Distribution by 

Mori-Tanaka scheme [5] are considered in the present analysis. The effective Young’s modulus E(r) and density 
ρ(r) of a disk having inner radius a and outer radius b can be obtained as: 
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where Eo, ρo are modulus of elasticity and density at the outer radius. 

 

Exponential law 
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Ei, Eo and ρi, ρo are modulus of elasticity and density at the inner and outer radius. 

 

Mori -Tanaka Scheme 

The effective bulk modulus B(r)and shear modulus G(r) of the FGM disk, evaluated using the Mori-Tanaka 

scheme [5] are given by: 
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Here, V is the volume fraction of the phase material. The subscripts i and o refer to the inner and outer materials 

respectively. The volume fraction of the inner and outer phases are related by 

 

1i oV V   (13) 

 

and Vo is expressed as: 
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where n(n ≥  0) is the volume fraction exponent. The elastic modulus E can be found as: 
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The mass density ρ can be given by the rule of mixtures as: 
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(16) 

2.3 Finite element formulation 

The rotating disk, being thin, is modeled as a plane stress axisymmetric problem. Using quadratic quadrilateral 

element, the displacement vector {u} can be obtained as: 

 

    u N   (17) 

 
where {u} is element displacement vector, [N] is matrix of quadratic shape functions and {δ} is nodal displacement 

vector. 
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In natural coordinates (ξ-η), the shape functions are given as [16]: 
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The strain components are related to elemental displacement components as: 
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where εr and εθ,  are radial and tangential strain respectively. By transforming the global coordinates into natural 

coordinates (ξ-η), 
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The above elemental strain-displacement relationships can be written as: 
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where [B] is strain-displacement relationship matrix, which contains derivatives of shape functions. For a quadratic 

quadrilateral element it is calculated as: 
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(23) 

 

where J is the Jacobian matrix, used to transform the global coordinates into natural coordinates. It is given as: 
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From hooks law, components of stresses in radial and circumferential direction are related to components of total 

strain as: 

 

   
1 1

,       r r r
E E

            
 

(24) 

 

By solving above equations, stress strain relationship can be obtained as follows: 
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In standard finite element matrix notation above stress strain relations can be written as [16]: 
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In FEM, the functional grading is popularly carried out by assigning the average material properties over a given 

geometry followed by adhering the geometries thus resulting into layered functional grading of material properties. 

The downside of this approach is that it yields singular field variable values at the boundaries of the glued 

geometries. To get better results, it is an established practice to divide the total geometry into very fine geometries. 

However, a better approach is to assign the average material properties to the elements of mesh of the single 

geometry. This is, in other words, better described as assigning material properties to the finite elements instead of 

geometry.  In Eq. (27), the [D(r)] matrix, being a function of r, is calculated numerically at each node and this 

results into continuous material property variation throughout the geometry.  

The element based grading of material property yields an appropriate approach of functional grading as the shape 

functions in the elemental formulations being co-ordinate functions make it easier to implement the same [13]. 
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where ϕ
e  

is element material property, ϕi  is material property at node i and Ni is the Shape function.  

Upon rotation, the disk experiences a body force which under constrained boundary results in deformation and 

stores internal strain energy U [16]. 
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The work potential due to body force resulting from centrifugal action is given by 
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Upon substituting Eqs. (22) and (27) in Eqs. (29) and (30), the elemental strain energy and work potential are 

obtained as: 
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For a disk rotating at ω rad/sec, the body force vector for each element is given by  
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The total potential of the element is obtained from Eqs. (31) and (32) as: 
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Here, defining element stiffness matrix [K]
e
 and element load vector {f}

e
 as: 
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By transforming the global coordinates into natural coordinates 
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The element matrices are then assembled to yield the global stiffness matrix and global load vector respectively. 

Total potential energy of the disk is given by 
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N = no. of elements. Using the Principle of Stationary Total Potential (PSTP), the total potential is set to be 

stationary with respect to small variation in the nodal degree of freedom that is 

 

 
0

p

T









 

 

(39) 

 

From above, the system of simultaneous equations is obtained as follows: 
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3 RESULTS AND DISCUSSION  

3.1 Validation 

A uniform thickness rotating disk having power law distribution of material properties (grading parameter n = 0, 0.5 

and 1) of reference [7] is reconsidered and analyzed again and results are presented in Fig 2. The results obtained are 

in good agreement with the pre-established results of reference. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Comparison of the results of current work with reference [7]. 

 

3.2 Numerical results and discussion  

In this section rotating annular disks of parabolic concave thickness profiles having free-free boundary condition are 

analyzed. Disks are made of aluminum and zirconia ceramic as well as their different FGM’s. Finally the effects of 

grading parameter n on stresses and deformation states are investigated.  
The material properties of aluminum and zirconia are given as [5]: EAl = 70 GPa, Ecer = 151 GPa, ρAl = 2700 

kg/m
3
, ρcer = 5700 kg/m

3
, BAl = 58.3333 GPa, Bcer = 128.8333 GPa, GAl = 26.9231GPa, Gcer = 58.0769 GPa, υ = 0.3. 

The disks have geometric parameters as k = 0.5, inner diameter = 0.2 m, outer diameter = 1 m, q = 0.96 and h0 is 

0.075 m. Disks are rotating with unit angular velocity that is 1 rad/sec. Grading index n = 0 indicates that the disk is 

made of outer material completely means the disk is homogeneous in composition. For ceramic-metal FGM, n = 0 

indicates homogeneous metallic (aluminum) disk while for metal-ceramic FGM it indicates homogeneous ceramic 
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(zirconia) disk. For values of n other then 0, volume fraction varies with the radius according to different equations 

and gives different types of FGMs. 

It can be observed that ceramic-metal FGM disks have less radial deformation and radial stress while higher 

circumferential and von Mises stress as compared to metal-ceramic FGM disks in exponential FGM. Radial stress is 

zero at the inner and outer radius for all cases, which confirms the free-free boundary condition applied on the disks.  

In metal-ceramic FGM disks modeled by Mori-Tanaka scheme radial deformation increases and stresses decreases 

with increasing value of grading parameter n while in ceramic-metal FGM radial deformation decreases and stresses 

increases with increasing value of n. Increasing n means volume fraction of the outer material is decreasing and 

inner material is increasing. In case of metal-ceramic FGM, increasing metallic content and decreasing ceramic 

content results in higher deformation and lesser stresses while in case of ceramic-metal FGM, increasing ceramic 

and decreasing metallic content results higher stresses and lesser deformation. Metal-ceramic FGM having n = 1.5 

has highest radial deformation while ceramic-metal FGM having n = 0.5 has the lowest radial deformation. 

Ceramic-metal FGM disk having n = 0 has lowest stresses and metal-ceramic FGM having n = 0 has highest stresses 

among all the FGMs modeled by Mori-Tanaka scheme. 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Distribution of radial displacements for exponential FGM 

disks. 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.4 

Distribution of radial stress for exponential FGM disks. 

  

 

 

 

 

 

 

 

 

 

 

Fig.5 

Distribution of circumferential stresses for exponential FGM 

disks. 
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Fig.6 

Distribution of von mises stresses for exponential FGM disks. 

 

  

 

 

 

 

 

 

 

 

 

 

Fig.7 

Distribution of radial displacements for Mori-Tanaka FGM 

disks. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.8 

Distribution of radial stresses for Mori-Tanaka FGM disks. 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.9 

Distribution of circumferential stresses for Mori-Tanaka FGM 

disks. 
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Fig.10 

Distribution of von mises stresses for Mori-Tanaka FGM disks. 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.11 

Distribution of radial displacements for Power law FGM disks. 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.12 

Distribution of radial stresses for Power law FGM disks. 

  

 

 

 

 

 

 

 

 

 

 

Fig.13 

Distribution of circumferential stresses for Power law FGM 

disks. 
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Fig.14 

Distribution of von mises stresses for Power law FGM disks. 

In power law FGM disk radial deformation increases and stresses decreases with increasing grading parameter n. 

Increasing n means decreasing (r/b) ratio, which decreases E(r) and hence deformation increases and stresses 

decreases. FGM disk having metal at outer surface and n = 1.5 has maximum radial deformation and minimum 

radial, circumferential and von mises stresses while disk having n = 0.5 and ceramic at outer radius has minimum 

radial deformation and maximum stresses. Further it is also observed that hoop or tangential stress is higher as 

compared to radial and von mises stress for all cases. Therefore for designing the rotating disks, hoop stress should 

be taken as limit working stress criteria. By comparing all types of distribution law it is observed that power law 

FGM disk having metal at outer radius and n = 1.5, has the highest radial deformation and least hoop stress while 

exponential law (Ceramic-Metal) disk has the lowest radial deformation and disk of full ceramic has the highest 

hoop stress. Therefore it suggested that FGM modeled by power law having metal at outer radius and n = 1.5 can be 

most effectively employed for rotating disk. 

4    CONCLUSIONS 

In present study stress and deformation analysis of FGM rotating disks of variable thickness is done. Material 

properties are modeled by three different distribution law, which is achieved by element based material grading. The 

disks are subjected to free-free boundary condition and analysis is carried out for metal-ceramic as well as ceramic-

metal both the type of FGM. The governing equations are derived using principle of stationary total potential. It is 

observed that there is a significant reduction in stresses and deformation behavior of the FGM disks compared to 

homogeneous disks. Further it is observed that metal-ceramic FGM disk having n = 1.5 and modeled by power law 

possesses better strength than all other FGMs investigated and therefore is most economical for the purpose of 

rotating disk.   
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