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 ABSTRACT 

 In this paper, the vibrations of thin plate in modified couple stress 

thermoelastic medium by using Kirchhoff- Love plate theory has been 

investigated. The governing equations of motion and heat conduction 

equation for Lord Shulman (L-S) [1] theory are written with the help of 

Kirchhoff- Love plate theory. The thermoelastic damping of micro-beam 

resonators is analyzed by using the normal mode analysis. The solutions for 

the free vibrations of plates under clamped-simply supported (CS) and 

clamped-free (CF) conditions are obtained. The analytical expressions for 

thermoelastic damping of vibration and frequency shift are obtained for 

couple stress generalized thermoelastic and coupled thermoelastic plates. A 

computer algorithm has been constructed to obtain the numerical results. The 

thermoelastic damping and frequency shift with varying values of length and 

thickness are shown graphically in the absence and presence of couple stress 

for (i) clamped-simply supported, (ii) clamped-free boundary conditions. 

Some particular cases are also presented. 

                                             © 2018 IAU, Arak Branch. All rights reserved. 

 Keywords : Modified couple stress theory; Thermoelasticity; Thermoelastic 

damping; Frequency shift. 

1    INTRODUCTION 

 N the basis of Cosserat continuum theory, the classical couple stress elasticity has been developed to describe 

the Cosserat size-dependent effects Mindlin [2,3], Toupin [4]. However, as it involves four material constants 

for isotropic elastic materials where two of them are separate material length scale parameters, it is a very difficult 

task to experimentally determine the micro-structural material length scale parameter. Yang et al. [5] presented 

couple stress based strain gradient theory for elasticity. The concept of representative volume element was 

introduced and the force and couple applied to a single material particle were defined. They developed a new set of 

equilibrium relations for a system of material particles to account for the rotations of these material particles and 

then results were generalized to the couple stress theory of continuum. By the introduction of a higher order 

equilibrium condition, the arbitrary nature of couples in the classical couple stress theory was resolved without the 

use of rigid vector attachment condition, as was used in the micropolar theory Eringen [6]. Tsiatas [7] developed a 

new Kirchhoff plate model in modified couple-stress theory. In this model, the static analysis of isotropic micro-

plates with arbitrary shape containing only one internal material length scale parameter which can capture the size 
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effect. Sun and Tohmyoh [8] investigated the thermoelastic damping of the vibrations in circular plate. The 

thermoelastic damping is also studied under the effects of environmental temperature, plate dimensions, clamped 

and simply supported boundary conditions. The basic equations of coupled thermoelastic theory are constructed by 

Sun and Saka [9] for out of plane vibration of a circular plate resonators.  Thermoelastic damping have many 

applications in sensing, resonators and communications. Sharma and Sharma [10] studied the problem of 

thermoelastic circular plate resonators in the context of L-S theory. Ezzat et al. [11], El-Karamany and Ezzat [12], 

Ezzat and El-Karamany [13], Ezzat et al. [14] studied different problems in thermoviscoelasticity and two-

temperature theory. Thermoelastic damping in circular plate with two dimensional heat conduction model with 

clamped and simply supported boundary conditions was studied by Fang et al. [15]. Shaat et al. [16] developed a 

new Kirchhoff plate model to study the effects of surface energy and microstructure on the plate rigidity and 

deflection using a modified couple-stress theory. Simsek et al. [17] studied the problem of forced vibration analysis 

of a microplate on the basis of modified couple stress theory and Kirchhoff plate theory. Darijani and Shahdadi [18] 

developed a new non-classical shear deformation plate model including two unknown functions using a modified 

couple stress theory. Gao and Zhang [19] constructed a non-classical Kirchhoff plate model by applying modified 

couple stress theory, surface elasticity theory and two –parameter elastic foundation. Reddy et al. [20] discussed the 

problem of functionally graded circular plates with modified couple stress theory by using finite element method. 

On the basis of global local theory, a model for a composite laminated Reddy plate of new modified couple-stress 

theory was developed by Chen and Wang [21]. Various problems related to micro polar bodies, micro stretch 

materials and dipolar thermoelastic bodies were investigated by Marin [22, 23], Sharma and Marin [24], Marin et al. 

[25]. 

In the present work, we studied the vibrations of thin plate in modified couple stress thermoelastic medium by 

applying Kirchhoff- Love plate theory. The theory of generalized (non-classical) thermoelasticity given by Lord and 

Shulman [1] has been employed to investigate the problem. The expressions for frequency shift and damping with 

varying values of length and thickness are shown graphically in the absence and presence of couple stress for 

clamped-simply supported and clamped-free boundary conditions. Special cases of interest are also deduced from 

the present problem. 

2    BASIC EQUATIONS
 

Following Yang et al. [5] and Rao [26], the constitutive equation, the equations of motion and the equation of heat 

conduction for Lord-Shulman theory in a modified couple stress thermoelastic model in the absence of body forces 

and body couples are: 

 

Constitutive relations 
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Equation of heat conduction 
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(6) 

 

where ijt  are the components of stress tensor,  and   are Lame constants, ij  is Kronecker’s delta, 
ij are the 

components of strain tensor, 
ijk is alternate tensor, 

ijm are the components of couple-stress,  3 2 t     . Here 

t are the coefficients of linear thermal expansion respectively, T is the temperature change,   is the couple stress 

parameter, 
ij  is symmetric curvature, i  

is the rotational vector.  1 2 3, , u u uu  is the components of 

displacement vector, 
 
is the density,   is the Laplacian operator,   is del operator. K is the coefficient of the 

thermal conductivity, ec  is the specific heat at constant strain, 0T  is the reference temperature assumed to be such 

that 0/ 1T T  . Here 0  is the thermal relaxation time.
 

3    FORMULATION OF THE PROBLEM
 

We consider a thin couple stress thermoelastic plate with uniform thickness h. The origin of the Cartesian coordinate 

system   , ,x y z  is taken at the centre of the plate. In equilibrium conditions, the plate is unstrained, unstressed and 

continues at uniform environmental temperature 0T  everywhere. We define the displacement components 

   , , , ,  , , , ,u x y z t v x y z t  , , ,w x y z t and temperature
 

 , , ,T x y z t . According to Kirchhoff’s-Love Plate 

theory, the displacement components are given by 
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(7) 

Here t denotes the time. 

The strain and stress components are taken Rao [26] as: 
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Following Rao [26], the bending and torsion moments are defined as:
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Using Eqs. (7)-(13) in Eqs. (14)-(16), yield 
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The equations for shear force resultants are 
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The equation of motion (force equilibrium z in the direction) is given by 
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(21) 

 

Substituting Eqs. (17) -(19) in Eqs. (20) and (21) then the equation of motion for micro plate with symmetry 

about y-
 
axes is taken as: 
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(22) 

 

where 
 
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 is the flexural rigidity of the plate, 
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 is 

the Poisson ratio and  0 ,q x t represents the load acting along the thickness direction. 

The equation of heat conduction for L-S theory is given by 
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For convenience, we define the non-dimensional parameters as: 
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From Eqs. (22) and (23), with the aid of non-dimensional quantities given by (24) after surpassing the primes, 

we obtain  

 

 

   2 24 4 2 2 2
00

4 2 4 2

2 ,
,

1 2

T T
dhLq x tE T h Lw h w h L w

D D D Dx x x t

    



     
      

     

M
                         

 

(25) 

 
2 2 2 2

02 2 2 2
0.ecK T T w

T z
L tx z t x



 

        
        

       
τ                          

 

(26) 

4    PROBLEM SOLUTION

 

Assuming the time harmonic vibrations as: 
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where   is the frequency of the beam, q is the magnitude of the load applied and ( ) represents the Direc-delta 

function. Making use of (27) in the Eqs. (25) and (26), yield 
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5    THERMAL FIELD ON THE THICKNESS DIRECTION 

We assume that the thermal gradient of the beam is very small as compared to that along its thickness direction  

   1 1. . ,are taken from Sharma and kaur 27 . Therefore,  the Eq. 29  take the form
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Let us assumed that there is no heat of flow across the upper and lower surfaces of the beam, then 
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with the use of this condition, the general solution of equation (30) is written as: 
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Substituting Eq. (33) in Eq. (31), the thermal moment is given by 
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Using Eq. (34) in Eq. (28), yield
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6    BOUNDARY CONDITIONS

 

Let us consider a micro plate whose ends are either clamped-clamped (CC) or simply supported (SS), so we have 

following the two set of boundary conditions: 

  Clamped-simply supported (CS) plate 
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Clamped-free (CF) plate 
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7    SOLUTION OF THE PROBLEM 

The Laplace transformation is applied to solve the Eq. (36) under the boundary conditions (38) and (39). The 

Laplace transform with respect to x is defined as: 
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where S is the Laplace transform parameter. Making use of Laplace transform defined by Eq. (40) on Eq. (36), yield 
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Applying boundary conditions (38) and (39) in Eq. (41) at 0x =  , we obtain 
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Appling inverse Laplace transform on Eqs. (43) and (45), gives 

Case (i) 
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The symbol  aS x  used in Eqs. (47) and (48) can be written from  S x  by replacing x  by x a and 

   a aH x H x a  denotes the Heaviside unit function. 

8    ANALYSIS OF FREE VIBRATION 

In case of free vibration, the load is absent i.e. 
* 0q  , and Eqs. (47) and (48) are written as: 

Case (i) 

 

     1 2
1 2 3

.
2 2

b b
W x C x S x 

 
                           

 

(49) 

 

Case (ii) 

 

     *3 4
1 3

.
2 2

b b
W x S x S x 

 
                           

 

(50) 

 

Using boundary conditions (38) and (39) at 1x =  of the plate, we obtain a homogeneous system of two 

equations in pairs of  1 2 3, ,b b b  and  4b . These system of equations have non-trivial solution if and if the determinant 

of the coefficients of unknown variables vanish.  This requirement leads to the characteristic equations of the plate 

vibrations in the respective cases: 

Case (i) 

 

tan tanh 0.L L                            (51) 

 

Case (ii) 

 

cos cosh 1.L L                              (52) 

 

The characteristic roots of the Eqs. (51) and (52) are taken as: 

Case (i) 

 

 4 1 ,          I
4

m m
L


                            

 

(53) 
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Case (ii) 

 

 2 1 ,          I
2

m m
L


                            

 

(54) 

 

The solutions for the defection and thermal moment are written as: 

Case (i) 

 

 
 

       1 2

1
, ,

2
ni tn

n n n n
n n n

A
W x t S C x C S x e

S

   
 

                             
 

(55) 

 

 
  

 
       

1

* *

2

1
, , .

24
n

t i tn
T n n n n

n n

i L f p A
M x z t S C x C S x e

SKp


  

   


 
                             

 

(56) 

 

Case (ii) 

 

 
 

       * *

1 *

1
, ,

2
ni tn

n n n n
n n n

B
W x t S S x S S x e

S

   
 

                             
 

(57) 

 

 
  

 
       

1

* *

2 *

1
, , .

24
n

t i tn n
T n n n n

n n

i L f p B
M x z t S S x S S x e

Kp S


   

   


 
                             

 

(58) 

9    FREQUENCY SHIFT AND DAMPING  

Now the vibration frequency of the plate in the presence of thermoelastic coupling and thermal relaxation time is 

given by 

 
2

4 1 .



 

a

D
                         

 

(59) 

 

 
  

1

22 2 12

0
0 2

1

1 1 ,
2 12 1

T tn
n

i E T h Lh
D f p

D Kp Da


   
 



  
       

    

                         

 

 

(60) 

 

where  

 
2

0

1

.n

a


                           

 

(61) 

 

and following Sharma [28], we can replace  f p

 

with  0f  and expand Eq. (60) upto first order, we obtain 

 

 
  

2 2 1

0
0 2

1 1 ,
4 24 1

T t
n

i E T h Lh
f p

D Kp D

  
 



  
      

    

                         

 

(62) 

 

 

 



S. Devi
 
and R. Kumar                  630 

© 2018 IAU, Arak Branch.  

The thermal gradients in the plane of cross-section along the thickness direction of the plate are much larger than 

those along its length and hence 
2

2
0

T

x





 so that 

 
1

2 0,e tc i L
p

K

  
                           

 

(63) 

 

This implies that 

 

1 *
* 2 12

0 0 0 1

0

1
,  ,  1 ,  tan .

i

e n
n

n

c L s
p p e p s

K


  

  
 




 

      
 

                         
 

(64) 

  

Replacing n  with 0   in Eqs. (63) and (64), we obtain 

 

*

02 cos sin ,
2 2

p p i
  

  
 

                         
 

(65) 

 

and  

 
*

* * 2 10 0
0 0 0 0

0 0

1
,  1 ,  tan .

2

ec L s
p s

K

  
  

 


 

     
 

                         
 

(66) 

 

The frequency n  is complex in nature and hence we take 

 

   ,    Re ,    Im ,n n n n

n R I R n I ni                                   (67) 

 

and 

 

 
  

 
 

2 2 1 2 2 2 1

0 0 0 0
0 2 2

1 1 ,    .
4 24 1 24 1

n nT t T t
R I

i E T h L i E T h Lh
f R f I

D Kp D Kp D

     
  

 

    
         

         

                         
 

(68) 

 

where 

 

 
   

1 1 2

2 3
* *

1 1 2
0 0

6 2 cos sin tan sinh
6cos 2 2 ,

cos cos h
f R

p h p h

 
 



 

  
 

   
 

  

                         

 

 

(69) 

and 

 

 
   

1 1 2

2 3
* *

1 1 2
0 0

6 2 cos tan sin sinh
6sin 2 2 ,

cos cosh
f I

p h p h

 
 



 

  
 

   
 

  

                         

 

 

(70) 

 

Here,
 

*

1 0 2 2 cos ,  tan  
2 2

p h
 

 
   

    
   

 and  0  is taken from Eq. (60).  

The frequency shift and damping in a thermoelastic plate are taken from Sharma [28] 

 

0

0

.R
s

 





                          

 

(71) 



631                              Damping and Frequency Shift in Microscale Modified….    
 

© 2018 IAU, Arak Branch.  

and 

 

1 2 .
I

n

R

n

Q




                           
 

(72) 

10    PARTICULAR CASES 

Coupled thermoelastic (CT) plate 

In the absence of thermal relaxation time  0 0 ,   we obtain 

 

  * * *0
0 0 0 2 1 01 ,  ,  1,  = ,  1,  . 

2 2

ec L
p p i p s p h

K

   
                                 

 

 

 

Accordingly, Eqs. (69) and (70) became 

 

 
 

1 1

3
*

1 1
0

sin sinh6
,

cos cos h
f R

p h

 

 

 
  

 

                         
 

(73) 

and 

 

 
   

1 1

2 3
* *

1 1
0 0

sin sinh6 6
.

cos cosh
f I

p h p h

 

 

 
   

 

                         
 

(74) 

 

If couple stress parameter  0 ,   Eq. (68) reduces to 

 

 
  

 
 

2 2 1 2 2 2 1

0 0 0 0
0 2 2

1 1 ,    ,
24 1 24 1

n nT t T t
R I

i E T h L i E T h L
f R f I

Kp D Kp D

     
  

 

    
        

         

                         
 

(75) 

 

where 

  

 
   

 
   

1 1 2 1 1 2

2 3 2 3
* * * *

1 1 2 1 1 2
0 0 0 0

6 2 cos sin tan sinh 6 2 cos tan sin sinh
6cos 6sin2 2 2 2,  .

cos cos h cos cosh
f R f I

p h p h p h p h

   
   

 

   

      
    

      
       

   

                        

 

(76) 

11    NUMERICAL RESULTS AND DISCUSSION 

The mathematical model is prepared with magnesium material for the purpose of numerical computations. The 

material constants of the problem are taken from Daliwal and Singh
 
[29]. The values of damping factor and 

frequency shift of first two vibration modes have been computed from Eqs. (71) and (72) in the absence and 

presence of couple stress. The numerical computations have been carried out with the help of MATLAB software 

for magnesium material. The computed simulated results have been presented graphically in Figs. 1-8 for clamped-

simply supported and clamped-free plate. The different cases of plate with respect to dimensions considered as: 

(i)   Fixed length 50L   and varying thickness (h).  

(ii)  Fixed thickness 10H    and varying length (L). 
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Table 1 

Following Daliwal and Singh [29], for taking the physical data for Magnesium material. 

Quantity Magnesium material Unit 

  102.696 10  Kg m-1 s-2 

  101.639 10  Kg m-1 s-2 

  31.74 10  Kg m-3 

0T  102.696 10  K 

ec  31.04 10  J Kg-1  K-1 

K  21.7 10  W m-1 K-1 

t  51.78 10  K-1 

  15 N 
  10

 

Sec-1 

0  0.2 Sec 

 

 
Fig. 1 represents the thermoelastic damping of first two modes in case of clamped-simply supported plate in the 

absence and presence of couple stress with fixed length and varying thickness. It is observed that the damping factor 

of vibration modes decreases smoothly with increase in the value of thickness in the assumed range. The value of 

damping factor of vibration modes is observed to have greater value in the absence of couple stress then that of 

presence of couple stress.  

Fig. 2 depicts the thermoelastic damping of first two modes in case of clamped-free plate in the absence and 

presence of couple stress with fixed length and varying thickness. It is noticed that the damping factor of vibration 

modes initially decreases rapidly and then stable in the considered range of thickness. Moreover, it is observed that 

the damping factor of first mode of vibration has more value than that of second mode of vibration for both cases of 

couple stress. 

Fig. 3 shows the thermoelastic damping of first two modes in case of clamped-simply supported plate in the 

absence and presence of couple stress with fixed thickness and varying length. It is observed that the damping factor 

increases monotonically with increase in the value of length. Also, it is clear from the figure that in the presence of 

couple stress, the damping factor has smaller value in the range 0 0.2L   and remains opposite in the remaining 

range.  

Fig. 4 represents the thermoelastic damping of first two modes in case of clamped-free plate with fixed thickness 

and varying length in the context of absence and presence of couple stress. It is observed that the damping factor of 

vibration modes increases slowly for smaller value of length and also increases rapidly for higher values of length in 

the considered range of thickness. In addition, the value of damping factor of first vibration mode has greater value 

than that of second vibration mode for both cases of couple stress. 

Fig.5 shows the frequency shift of first two modes in case of clamped-simply supported plate with fixed length 

and varying thickness in the context of absence and presence of couple stress. It is observed that the frequency shift 

increases smoothly in the range 0 0.05h 
 
and then remains stable in the assumed region of thickness.  

Fig. 6 shows the frequency shift of first two modes in case of clamped-free plate with fixed length and varying 

thickness in the absence and presence of couple stress. It is noticed from the figure that the frequency shift decreases 

slowly in the range 0 0.07h 
 
and then remains stable in the remaining region of thickness. Moreover, the value 

of frequency shift for first and second modes is observed to have more value in the presence of couple stress than 

that for absence of couple stress.   

Fig. 7 depicts the frequency shift of first two modes in case of clamped- simply supported plate with fixed 

thickness and varying length under the effects of couple stress. It is clear from the figure that the frequency shift 

increases monotonically for first mode of vibration and decreases very slowly in case of second mode of vibration. 

Fig. 8 shows the frequency shift of first two modes in case of clamped-free plate with fixed thickness and 

varying length in the absence and presence of couple stress. It is observed that the value of frequency shift increases 

very slowly in the range 0 0.07h   and then increases rapidly in the considered region of length for both cases of 

couple stress and both modes of vibration.  
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Fig.1 

Damping of different modes with thickness (h) in a clamped-

simply supported plate of fixed length. 
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Fig.2 

Damping of different modes with thickness (h)  in a clamped-

free plate of fixed length. 
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Fig.3 

Damping of different modes with length (L) in a clamped-

simply supported plate of fixed thickness. 

  

 

 

 

 

 

 

 

 

 

 

Fig.4 

Damping of different modes with length (L) in a clamped-

free plate of fixed thickness. 
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Fig.5 

Frequency shift of different modes with thickness (h) in a 

clamped-simply supported plate of fixed length. 
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Fig.6 

Frequency shift of different modes with thickness (h) in a 

clamped-free plate of fixed length. 
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Fig.7 

Frequency shift of different modes with length (L) in a 

clamped-simply supported plate of fixed thickness. 
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Fig.8 

Frequency shift of different modes with length (L) in a 

clamped-free plate of fixed thickness. 
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12    CONCLUSIONS 

In this work the vibrations of thin plate in modified couple stress thermoelastic medium has been discussed in the 

context of Kirchhoff-Love plate theory and Lord-Shulman thermoelasticity theory. The mathematical expressions 

for thermoelastic damping of vibration and frequency shift are obtained for couple stress generalized thermoelastic 

and coupled thermoelastic plates. Damping factor and frequency shift with varying values of length and thickness 

are shown graphically to show the effect of couple stress for first two vibration modes with clamped-simply 

supported and clamped-free boundary conditions. It is concluded from the figures that the damping factor and 

frequency shift decreases with increasing value of thickness, whereas its value increases with increasing in length 

for both cases of couple stress and also both modes of vibration. In case of clamped-simply supported plate, the 

damping factor has larger value in the absence of couple stress and smaller in the presence of couple stress. Also, the 

damping factor has greater value for first mode of vibration than that of second mode of vibration in case of 

clamped-free plate. Similarly, frequency shift has more value for first mode of vibration than that of second mode of 

vibration for both clamped-simply supported plate and clamped-free plate. Moreover, frequency shift has larger 

value in the presence of couple stress as compared with the absence of couple stress for both clamped-simply 

supported plate and clamped-free plate. The results of this problem may be useful for Infra-Red (IR) detections and 

imaging in addition to chemical and biological agent sensing. 
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