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 ABSTRACT 

 In this research, flat rolling process of bonded sandwich sheets is investigated by the 

method of upper bound. A kinematically admissible velocity field is developed for a 

single layer sheet and is extended into the rolling of the symmetrical sandwich sheets. 

The internal, shear and frictional power terms are derived and they are used in the 

upper bound model. Through the analysis, the rolling torque, the roll separating force 

and the thickness of each layer at the exit of deformation are determined. The validity 

of the proposed analytical method is discussed by comparing the theoretical predictions 

with the experimental data found in the literature and by the finite element method. It is 

shown that the accuracy of the newly developed analytical model is good. 

                                              © 2017 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 LAT rolling is a continuous metal forming process in which thickness of metal sheet or strip is reduced by 

passing it between a pair of rotating cylindrical rolls having their axes parallel to one another. The primary 

purpose in analyzing rolling process is to determine unknown process variables, such as rolling force and torque. In 

this process, accurate prediction of the required torque and the roll force is a major issue. The problem is especially 

important in multilayered sheet rolling process. Multilayer sheets, consisting of two or more different material 

layers, make possibility of combining properties of dissimilar sheet metals. 

In the past, a number of investigators have presented mathematical analyses for the flat rolling process of single 

and multilayered sheet materials. Avitzur and Pachla [1-2] proposed an upper bound approach for the plane strain 

deformation of a rigid-perfectly plastic sheet material. In that approach the deformation region is divided into a 

finite number of rigid triangular bodies sliding with respect to each other. Explicit equation are then derived to 

describe the surfaces of velocity discontinuities, shear boundaries, between the moving rigid zones, the velocity 

discontinuities and the shear power loses along those surfaces. Based on the upper bound theorem, Hwang et al. [3, 

4] proposed their own theoretical models to investigate the deformation behavior of the multilayer sheets in the 

rolling process. A mathematical model using stream functions and the upper bound method has been proposed by 

the present authors to investigate the plastic deformation behavior of sheets at the roll gap with the assumption that 

the bonding is completed after rolling [5, 6]. Martins et al. [7] presented an approach based on a solution resulting 

from the combination of the upper bound method with the weighted residuals method for analysing plane strain 

rolling. They assumed that plastic deformation zone, bounded by two planes perpendicular to the symmetry axis and 

contact surface. Dogruoglu [8] presented a method for constructing kinematically admissible velocity fields, which 

were necessary in the analysis of the flat rolling process by the upper bound method. It was assumed that the 

trajectories followed by the material point in the plastic deformation zone could be represented as a one-parameter 
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family of curves in Cartesian coordinates. In the analysis, he assumed that one of the entry or exit surfaces to the 

deformation zone was plane perpendicular to the symmetry axis. Maleki et al. [9] developed an analytical model 

based on upper bound method for cold rolling of bimetal strips. The deformation region divided into six rigid zones 

and for constricting each deformation zone assumed a large number of assumptions. Zhang et al. [10] proposed a 

three-dimensional velocity field for plate rolling by global weighted method based on assuming cross-sections 

remain plane and vertical lines remain straight. 

In this research, we begin in the next section with explaining of the kinematically admissible velocity field for 

the flat rolling of single layer sheet and discussing of some mathematical aspects involved in this method in details. 

In section 3, the proposed kinematically admissible velocity field is extended to rolling of symmetrical sandwich 

sheets bonded before rolling and the internal, shear and frictional power terms are derived. Section 4 is devoted to 

demonstrate the validity of this method. The analytical rolling torque and roll separating force are compared with the 

experimental data of Ref. [11]. Finally, the FEM simulation on the rolling of single layer and sandwich sheets are 

conducted and a further discussion and comparison with FEM simulation results are presented. 

2    ROLLING OF THE SINGLE LAYER SHEET  

2.1 Geometric shape of deformation zones 

Fig. 1 shows the flat rolling process parameters in a schematic diagram. Due to symmetry of the deformation, only 

the upper half of the process is needed for the analysis. The material starts as a sheet of thickness 2 ot and is rolled 

into a sheet product of thickness 2 ft . In Fig. 1, R denotes the roll radius. To analyze the process by using the upper 

bound method, the material under deformation is divided into three zones, as shown in Fig. 1. In zones I and III the 

material moves rigidly parallel to the symmetry axis with velocities 
ov and 

fv , respectively.  

Since it is assumed that there is no change in width (plane strain problem) and because of volume constancy, the 

following relation holds 

 

, o f

o o f f

f o

v t
v t v t

v t
        

    

      (1) 

 

Therefore, the speed of the sheet material steadily increases as it moves through the rolls. Zone II is the 

deformation zone and is surrounded by two cylindrical velocity discontinuity surfaces
1S  and 

2S as well as the 

contact surface
3S . The mathematical equations for radial positions of surfaces

1S and 
2S are given by 

 

 

 

 

 

 

 

Fig.1 

Schematic diagram of half-section of the flat rolling process. 

The cylindrical coordinate system and deformation zones are 

shown. 
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The arc of contact, which is labeled as ( )r in Fig. 1, is given in the cylindrical coordinate system,  , ,r z , 

where ( )r is the angular position of the contact arc as a function of the radial distance from the origin. The origin 

of cylindrical coordinate system is located at point O which is defined by the intersection of the symmetry axis with 

a line at angle that goes through the points where the contact arc begins and the exit point. The equation, which 

relates the processing parameters to the die angle , is 
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The angular position of the cylindrical surface of the contact as a function of the radial distance from the origin is 

given by solving the following equation 
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      (4) 

2.2 Velocity field in the deformation zone  

After designing each zone and bounding conditions. In each individual zone, the velocity field and its derivatives 

should be continuous. The expressions describing the velocity vector in two neighboring zones are not identical, but 

because of volume constancy, the normal component of velocity across boundaries between two zones should be 

continuous. Parallel to the surface, velocity discontinuity may exist. The method presented in this study is similar to 

the method proposed in [16, 17] for constructing kinematically admissible velocity fields for axisymmetric and 

plane strain problems to analyse the deformation of the material in extrusion. 

The velocity component in the radial direction within the deformation zone II, 
rU , can be obtained by assuming 

volume flow balance. In Fig. 1, the volume flow of material per unit with of the sheet, across the surface
1S at the 

point  , ,or z in the radial direction is 

 

coso odQ v r d               (5) 

 

where   is an arbitrary angle on cylindrical surface
1S . The volume flow of material in the radial direction at the 

point ( , , )r z in the deformation zone II is 

 

rdQ U r d             (6) 

 

Equating Eqs. (5) and (6), it follows that 
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Assuming proportionality distances from the symmetry axis in the deformation zone, the relationship between 

angular positions  on
1S and the angular position  in deformation zone is given by 
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      (8) 

 

where is the angular position of a point on the roll surface at radial distance r from the origin O. Differentiating 

Eq. (8) yields 
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Substitution of Eq. (9) into Eq. (7) gives the radial velocity component in the deformation zone II as: 
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The full velocity field for the flow of metal in the deformation zone II is given by the three components of 

velocity in the cylindrical coordinate system as ,rU U and 
zU . The three velocity components for the flow of the 

material in deformation zone II is obtained by invoking volume constancy. Volume constancy in cylindrical 

coordinate system is defined as: 

 

0rr zz              (11) 

 

where 
ii is the normal strain rate component in the i-direction. The strain rates components in cylindrical 

coordinates can be found from 
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For the plane strain rolling process (i.e. 0zU  ) and a full velocity field is obtained by placing 
rU , from Eq. 

(10) into Eqs. (11)-(12), solving for U  and applying appropriate boundary conditions, 0 0U    for symmetry 

axis and 
r

U
r
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
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
 for contact surface, we have 
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Based on the developed velocity field, the strain rate field for deformation zone II can be obtained by Eq. (12) as: 
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where
r




is given by differentiation of Eq. (4) as: 
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With the strain rate field and the velocity field, the standard upper bound method can be implemented. This upper 

bound method involves calculating the internal power of deformation over the deformation zone volume, calculating 

the shear power losses over the two surfaces of velocity discontinuity, and the frictional power losses between the 

material and the roll. 

2.3 Determination of power terms 

The internal power of deformation is given by 
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where 0 is the mean flow stress of the material and dV is a differential volume in the deformation zone. The 

internal power of deformation in zone II, is determined by  
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where 0 is given as: 
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The equation for the power loss along a shear surface is 
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where v is the absolute value of the difference between the velocity components tangent to the boundary, S or 

velocity discontinuity. The velocity discontinuity between the zones is determined using the velocity of the 

neighboring zone and the direction of motion in each zone as: 
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At the entrance and the exit shear surfaces, by placing ( , )or r   and ( , )fr r   into Eq. (15), it 

follows, respectively, that 
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Substituting Eqs. (22)-(23) into Eqs. (20)-(21), and then into Eq. (19) and integrating, the shear power losses 

along surfaces 1S and 2S , respectively, become 
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The power expended along the contact surface between the rigid roll and the deforming material will be 

calculated using 

 

0
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For contact surface
3S , the element of area per unit of width is 
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Amount of velocity discontinuity can be determined by  
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where is local angle of the contact arc with respect to the local radial velocity component and 
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Placing Eqs. (27)-(29) into Eq. (26), the frictional power loss per unit with of sheet, along contact surface can be 

determined as: 
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2.4 Position of neutral point 

The relative velocity between the sheet material and the roll is zero at the neutral point. In this point, point N in Fig. 

1 with radial and angular positions 
Nr and

N , the linear velocity of roll is equal to the material velocity. On the left 

hand of the point N, the roll surface is moving faster than the sheet material, whereas on the right hand of the point 

N, material moves faster than the roll surface. The velocity vector at a point on the roll surface is coinciding with the 

tangential line passing through neutral point N. Since the velocity discontinuity is in the same direction with the 

tangent of the roll surface, their values are the same in neutral point N, then 
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where   is the angular velocity of the roll and R  is the linear velocity of a point on the roll surface. Placing 

,N Nr r    into Eq. (13), the velocity components of neutral point N can be determined and by substituting them 

into the above equation and simplification, we have 
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2.5 The required rolling torque 

The externally supplied power, J  , for flat rolling is 

 

J T         (33) 

 

where T is the required rolling torque per unit width of the sheet. By the upper bound model, the externally supplied 

power is less than or equal to the sum of the powers described in previous sections. If one assumes the equality, then 

the total power is 

 

1i S fJ W W W           (34) 

2.6 Roll separating force 

Neglecting the contribution of the horizontal forces, the roll separating force per unit of width is calculated by the 

following equation [8, 14] 
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where *, ,F J L  and  are the rolling force, the rolling power calculated by the upper bound solution, the contact 

length and the angular velocity of roll respectively. The contact length is calculated as: 
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where r is the reduction in thickness. 

3    THE ROLLING PROCESS OF SYMMETRICAL SANDWICH SHEETS  

3.1 Geometric shape of deformation zones 

Fig. 2 shows the arrangement of the sheets and the roll in rolling process of an initially bonded sandwich sheet. An 

initially sheet, made up two different ductile materials with the mean flow stresses 0i and 0o , is considered. The 

subscripts o and i denote outer and inner layers, respectively. The material starts as a sheet with total 

thickness 2 ot and outer layer thickness oot and it rolls into a sheet of total thicknesses 2 ft and 
oft for inner layer. 

Velocity zones are shown in Fig. 2. The process has one symmetry plane, and then, only a half of the sheet is 

considered. The same velocity fields of the zones I, II and III described in previous section are used for zones Io, IIo 

and IIIo of outer layer material and the zones Ii, IIi and IIIi of inner layer material, respectively. In zones Io, Ii, IIIo 

and IIIi the materials are rigid and move as rigid bodies. Before entering the die, each metal moves with the same 

velocity ov

 

in the drawing direction; after drawing, each metal moves with the same velocity fv in the axial 

direction. Zone IIo and IIi are the deformation regions. In zones IIo and IIi, the velocities of inner layer and outer 

layer materials can be given by Eq. (13).  

From continuity of material the angle  , shown in Fig. 2, is given by  
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Fig.2 

Schematic diagram of the rolling of sandwich sheets bonded 

before rolling and deformation zones. 

 

where 
 
is the angle of the line connecting the initial point of the interface surface to the final point of the interface 

surface with axis of symmetry. 

3.2 Power terms and total power  

The internal power of zones Io, IIIo, Ii, and IIIi, are zero and the equation to calculate the internal power of 

deformation in zone IIo is  
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where 0o is the mean flow stress of outer layer material and is determined by 
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and ( )
i

r is the angular position of the interface surface as a function of the radial distance from the origin O and is 

given by 

 

1 sin
( ) sin [ sin ( )]

sin
i r r


 



       
  

(40) 

 

The general equation to calculate the internal power of deformation in zone IIi is determined as: 
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where oi is the mean flow stress of the inner layer material and is determined as: 
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The shear power consumed along shear boundary 1S can be split up into two parts as: 
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The frictional power loss along the contact surface, is calculated by Eq. (25) by placing 0o  instead of 0 . The 

total upper bound solution for rolling torque is given by 

 

1 1o iiIIo iIIi S S fW W W W W
T


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       

  

(45) 

4    RESULTS AND DISCUSSION  

4.1 Single layer sheet rolling 

In order to verify the validity of the upper bound approach for flat rolling process, presented in the previous sections, 

results obtained from the theoretical model are compared with available experimental of  data of  Ref. [15] as well as 

with the finite element simulations results. The calculation has been carried out under various rolling conditions, 

geometrical data and mechanical properties utilized in the rolling analysis are summarized in Table 1. During 

theoretical analysis and numerical simulations, m is set at 0.3 for the contact surface between the roll and sheet.  

 
Table 1  

Geometrical data and mechanical properties used for computations. 

Case                     ot (mm) 
ft (mm) Reduction 

1 6.274 5.385 14.17 

2 6.274 4.902 21.86 

3 6.274 4.445 29.40 

4 6.274 4.115 34.41 
Radius of the rolls, R=79.375 (mm) 

Material: Aluminum 0.2650.3(1 )
0.05


    

4.1.1 Numerical Simulation 

The FEM simulations are conducted on the available commercial explicit/FEM software, ABAQUS, to verify the 

analytical model and study the effects of upper bond method assumptions on the obtained results. Due to the 

symmetry of the process, the finite element meshes are generated on the upper half cross-section of the sheet. The 

sheet is meshed by 2D plane strain, linear, four-noded CPE4R elements. The sheet model contains 2700 elements. In 

this model, the rolls are modeled as rigid bodies. The rolls are rotated by constant angular velocity of 

201.6rad / s  about their axes. For verification of theoretical study, the results of the rolling torque and the rolling 

force are extracted from FEM simulations. 

4.1.2 Rolling torque and roll separating force 

The comparisons between the computed results and the experimental values for the rolling torque and roll separating 

force as a function of the rolling reduction are shown in Figs. 3 and 4, respectively. It is observed 

 

  

 

 

 

 

 

 

 

 

Fig.3 

Comparison of analytical, FEM and experimental roll torque 

(per unit of width) as a function of the percentage of reduction. 
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Fig.4 

Comparison of analytical, FEM and experimental roll 

separating force (per unit of width) as a function of the 

percentage of reduction. 

That the proposed velocity field leads to a computationally efficient procedure which gives good agreement with 

experimental data. From Figs. 3 and 4, it can be seen that the calculated forces and torques are basically in 

agreement with the measured ones. As expected, the predicted rolling torques and forces are always greater than the 

experimental and FEM results, because the present theoretical values are upper bound solutions. As it can be seen 

the FEM results for the torque and force are smaller than the measured values. The reason for such discrepancies 

may be attributed to the assumption of rigid rolls as well as to difficulties in modeling friction in the contact surface 

between the rolls and the deforming sheet. It can be checked from Figs. 3 and 4 that both rolling force and torque 

increase with increase in reduction. 

4.2 Sandwich sheet rolling  

To test the validity of the present approach for the rolling of symmetrical sandwich sheets, results obtained from the 

theoretical model are compared with the finite element simulations results. Four combinations of sandwich sheets 

St/Al/St are tested. Geometric data utilized in the analysis are summarized in Table 2. Friction factor 0.3 is 

considered for contact surface between the sheet and the rigid roll. The flow stresses for copper and aluminum in 

room temperature are obtained as [12] 

 

 0.21212 ( ) MPa for purealuminum Al1100         (46) 

 

 0.4552( ) MPa for mild steel St12         (47) 

 
Table 2  

Geometric data and mechanical properties used for computations. 

Case                     ot (mm) 
oot (mm) 

ft (mm) Reduction 

1 6.274 2 5.385 14.17 

2 6.274 2 4.902 21.86 

3 6.274 2 4.445 29.40 

4 6.274 2 4.115 34.41 

 

The comparison between the computed results and the FEM values for the rolling torque as a function of the 

rolling reduction is shown in Fig. 5. It can be seen that the calculated forces and torques by Eq. (45) are basically in 

agreement with the FEM ones; their average errors are no more than 20%. In addition, it should be noted that further 

validation with experimental data, is also need to be carried out in the future. 

The relation between the FEM and theoretically predicted values of the final thickness of each layer can also be 

assessed. Analytical predictions of final thickness of outer layer for different reductions are compared with the FEM 

results in Table 3. This table reveals that the close agreement existing between the two sets of results. 
 

Table 3 

Comparing the thickness of outer layer 
fot with FEM results. 

Case                     Initial  thickness Analytical prediction (mm)  FEM prediction (mm) 

1 2 1.7164 1.68 

2 2 1.5628 1.52 

3 2 1.4120 1.33 

4 2 1.3118 1.26 
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Fig.5 

Comparison of analytical and FEM roll separating force (per 

unit of width) as a function of the percentage of reduction for 

sandwich sheet rolling. 

5    CONCLUSIONS 

(1) A kinematically admissible velocity field for use in upper bound analysis of flat rolling process was 

developed.  

(2) Equations for the strain rate field, power dissipation within the plastic deformation zone, at the velocity  

discontinuities and at the friction surface have been developed in terms of ordinary integrals. These allow 

the calculation of the total power required for the rolling process.  

(3) The theoretical predictions of rolling torque, rolling force and final thicknesses of the sheet are found to be 

in good agreement with those obtained by FEM simulations. 

(4) With attention to the good agreement between the analytical and FEM results, the mathematical model is 

capable to assess the rolling of symmetrical sandwich sheet and is able to offer useful knowledge in 

manufacturing the sandwich sheets with certain thickness of each layer. 
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