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 ABSTRACT 

 Buckling strength of composite latticed cylindrical shells is one of the important 

parameters for studying the failure of these structures. In this paper, new governing 

differential equations are derived for latticed cylindrical shells and their critical 

buckling axial loads. The nested structure under compressive axial buckling load was 

analyzed. Finite Element Method (FEM) was applied to model the structure in order to 

verify the analytical results. The obtained results were validated based upon the results 

of previous case studies in literature. For the squared type of lattice composite shells, a 

new formula for the buckling load was developed and its value was compared to the 

critical load, using FEM with 3D beam elements. The processes were carried out for 

three different materials of Carbon/Epoxy, Kevlar/Epoxy and EGlass/Epoxy.                 

                                                                 © 2017 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 OWADAYS, many researchers have both theoretically and experimentally investigated buckling strength of 

composite cylindrical shells. In 1981 Rehfield et al. made an intensive study on the buckling strength of 

composite isogrid cylindrical shells and wide columns [1]. They found that local crippling of the ribs and skins 

buckling differ substantially from general buckling in terms of practical consequences for compressed stiffened 

cylindrical shells. Hosomura et al. [2] investigated the failure of cylindrical grid using finite element method and 

experimental tests. In this work, three dimensional straight beam elements were used. Also many other researchers 

(Hayashi [3], Kobayashi [4], Simitses [5] and Onoda [6]) investigated the buckling strength of composite cylindrical 

shells theoretically and experimentally. Chin et al [7] have studied the buckling behavior of composite hull 

structures for underwater service and suggested a design procedure for the most weight efficient structure with the 

highest buckling load using finite element method. Philips et al. [8] have discussed a smearing method for 

determining the global buckling load of this type of stiffened panel. Later on Graham [9] presented an analytical 

method for determining the buckling loads of ring and stringer stiffened cylinders. Also Pshenichnov et al. [10] 

preformed a new decomposition method for solving boundary value problems on the bending of latticed plates of 

various types with the general boundary conditions on the contour. By this method the problem is reduced to a one-

dimensional integral equation, which can be solved by the grid method. Holzer et al. [11] have determined the 
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governing failure mode and the ultimate snow loads of a wood dome using finite element method. The dome 

consisted of a triangulated network of curved wood beams. Each beam of the dome has been modelled by two 

straight, three dimensional, Bernoulli/Euler beam elements. Holzer found that the large curvature and slenderness of 

the beams made it unnecessary to use curved beam elements or to include shear deformation. Vassiliev et al. [12-13] 

made a complete research about designing and manufacturing of lattice structures by filament winding and wet 

winding methods. Totaro et al. [14] conducted some experiments on the subject of filament wound composite 

anisogrid structures. The main phases of design, manufacturing and testing are explored giving a rather 

comprehensive methodology to address the kind of concept toward primary structures for aerospace application 

aiming at structural efficiency and process reliability. Fan et al. [15] developed new techniques to make materials 

with a periodic three-dimensional lattice structure. Epoxy-Soaked continuous carbon fibers were first introduced to 

make lattice composite structure with maximum specific stiffness. An intertwining method was chosen and 

developed as the best route to make lattice composite materials reinforced by carbon fibers.  

Akbari Alashti et al. [16] have studied the buckling behavior of a composite lattice cylindrical shell and effects 

of rib defects on the distribution of stress field. In this research a finite element buckling analysis of the structure has 

been carried out by ANSYS software. Ghorbanpour Arani et al. [17] have investigated the buckling and 

postbuckling behaviors of a composite beam with single delamination using the commercial code ANSYS. In this 

research, effect of delamination length, position through thickness and stacking sequence of the plies on the 

buckling and postbuckling of laminates have been studied. It has been found that significant decreases occur in the 

critical buckling loads after a certain value of the delamination length. Eskandari Jam et al. [18] have studied the 

buckling analysis of circular annular plate reinforced by carbon nanotubes (CNTs) subjected to compressive and 

torsional loads with various axially symmetric boundary conditions. In this paper, the eigenvalues of the problem are 

obtained by means of an analytical approach based on the optimized Rayleigh-Ritz method. The effects of CNTs 

orientation angles, edge conditions, geometric ratio of plate and agglomeration of the randomly oriented straight 

CNTs have been investigated on the critical buckling loads.  

In this paper, the general buckling equation of a latticed composite shell was derived. Subsequently, a general 

relation for the buckling load was obtained for the special case of squared, latticed composite shell. Finally, the 

results were validated using FE method. 

2    MATHEMATICAL FORMULATION OF LATTICE STRUCTURE THEORIES  

In Fig.1, local curvilinear system of the orthogonal coordinates ,  and the normal to the surface is shown. 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 
Median surface of a shell curvilinear coordinates. 

 

Based upon the thin-walled shell theory, the strains and curvature changes of the shell’s middle surface can be 

determined using the components of the displacement vector u,v  and w [19]: 
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The quantities of 1 2,   and 12  refer to the normal and shear strains of the point in the middle surface, 

respectively. 1k and 2k  represent changes in the curvature of the middle surface during deformation. Moreover, the 

amount of   indicates the twisting of the middle surface during deformation. Fig. 2 demonstrates a lattice with four 

families of members. The parameter ia  is defined as a member length of the i
th

 member and the parameter i is 

defined as the angle between axis   and the member’s axis. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 
Lattice with four families of members. 

 

As two members have crossed at a point, it is assumed that they have equal lengths i.e., 1 2a a a   and 

1 2     . Strains and curvature changes of a point on the middle surface of the i
th

 member in the deformed 

state in terms of 1 2 12 1 2, , , ,k k   and   are: 

 
* 2 2 * 2 2 *

1 2 12 1 2 2 1sin(2 ) ( ) cos(2 )
ii i i i i i i i i i i ic s s c k k c k s k k k c s                 (3) 

 

where: cos , sini i i ic s     

The quantities of * *,i ik  and *
i  represent the normal strain in the longitudinal direction. The curvature change 

due to the bending moment is represented by *
iM , and the twisting angle of the i

th
 member due to the twisting 

moment is given by *
iH . 

 
* * * * * *
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The system of moments is: 
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The change of the rod’s axis of curvature in the plane tangent to the shell’s middle surface can be derived using 

the formula [20]: 
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 where A

*
 and B

*
 are coefficients of the first quadratic form of the shell’s 

middle surface, and iE  and iG are Young’s modulus and shear modulus of the i
th

 member respectively. In addition, 

1 2 3, , ,i i i iA J J J are respectively the member’s cross-sectional area, bending sectional moment with respect to x-

axis, bending sectional moment with respect to y-axis, and twisting sectional moment. Moreover, 0
iik     and 

  is the turning angle of the fiber projection defined as, 12 2 12 2 cos(2 ) ( )sin(2 )i i i i           in which 
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1 1

i i
i

E A

E A
  . In the aforementioned equation,  Ai is the cross-section area and Ei  is the Young's modulus of the i

th
 

member [20]. Fig. 3 demonstrates the system of forces ( * * *, ,i i iN Q S ) and ( * * *, ,i i iM G H ) in the cross-section of 

the i
th

 member. 

 

 

 

 

 

 

 

 

 

Fig.3 
Positive directions of forces and moments in the cross-section 

of the ribs. 

 

The relations between the system of internal forces, the moments with external system of forces and moments 

in a shell element are as follows (see Figure 4) [21]: 
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(8) 

 

where n defines the class of grid configuration e.g. for a triangle lattice; 3n   and for a square lattice, 2n  . 

1 1 2 2, , ,N S N S  are respectively in-plane internal normal and shear forces; 1 2,Q Q  are internal transverse shear 

forces; 1 1 2 2, , ,s sM M M M  are internal bending moments, and 1 2,H H  are internal twisting moments, all per unit of 

length. 

 

 

 

 

 

 

 

 

Fig.4 
Direction of forces and moments acting in the shell. 

 

The equilibrium equations for the cylindrical shell’s element while neglecting body forces are: 
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(9) 

 

where X, Y and Z are the external forces and R is the lattice shell’s radius. Summation of moments in the  and   

directions are given by: 
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By combining Eqs. (1) to (9) and expressing forces and moments in terms of displacement components [22], Eq. 

(11) can be obtained as mentioned below: 
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3    BUCKLING OF SQUARED LATTICED SHELL  

For a cylindrical square cell, the angles are 
1 2

o45     and 3 0J  . By substituting 2n   in Eqs. (7) and (8), 

and setting external forces equal to zero, the forces N1, N2 and S2 will be obtained as follows 
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By inserting values of 
1 2 1 2 1,  ,  , ,  N N S  and 2S  in general forms of L operators; assuming 0X Y  , and  

respecting the fact that in this case, *,u u   , Eq. (11) can be simplified  to: 
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(13) 

 

Of note is that in the above-mentioned relation, 4
1 / 4sinZ Z  . By using Eq. (13) and the exact form of   

function, the particular solution for the system of external loads can be derived as follows: 
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It can be assumed that the appropriate form of   function for the current case is: 
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where  kf   is a function that should be defined. 
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In the axial buckling analysis, it is clear that 0X Y   and 0Z   (compressive). In order to carry out the 

buckling study, Eq. (15) was substituted for Eq. (13), and by setting 0X Y   and Z values, the following relation 

for  kf   was derived: 

 

 
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Eq. (16) can be met in case  kf   is considered as: 
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where, 0 0/ ,ml mp x   is the initial length of the cylinder and kmA  are constant coefficients which can be found  

by  applying boundary conditions. 

By back-substitution of  kf   into Eq. (15), the following form for   function will be obtained: 
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Substituting Eq. (18) in Eqs. (14), u, v and w would be: 
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From Eq. (12), for a square lattice cell where o90 
, 
it can be clear that 2 0N  . Having the values for u, v and 

w, strain components can be derived using Eqs. (1)-(2). Thereafter, by substituting the derived strains in Eq. (4), the 

values for *N  can be calculated, and by implementing Eq. (7) we will have: 
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The critical value for N occurs when 0k   and 1m  , which means: 
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where 01A  is a constant coefficient which can be calculated by applying boundary conditions as mentioned above. 
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4    RESULTS AND VERIFICATIONS  

A new approach for the critical load of a squared lattice shell has been derived as represented in Eq. (21). Also finite 

element models have been considered for verifying the suitability and the accuracy of the analytical results. The FE 

model was simulated using commercially available software programs [23] in which a 3D beam element was used 

instead of each rib. It is noteworthy that the beam element used for this model was a uniaxial element with tension, 

compression, torsion and bending capabilities. The element has six degrees of freedom at each node, including 

translations in the nodal x, y, and z directions and rotations about the nodal x, y and z axes. Stress stiffening and large 

deflection capabilities were included as well. A consistent tangent stiffness matrix option is available for large 

deformation analyses. In order to obtain the numerical results, Carbon/Epoxy material was used, the mechanical 

properties of which are given in Table 1. The error between the analytical and the FEM results is given by: 

 

 
% 100

Analytical FEM

Analytical

N N
Error

N


   

 

(22) 

 

Table 1 

Properties of Selected Materials [24]. 

Material Type 
Mechanical Properties Geometric Properties 

 1E GPa    01A   m   0 m   Radius m  

Carbon/Epoxy 207 0.25 

10-5 1.5 ξ/2 1 Kevlar/Epoxy 76 0.34 

EGlass/Epoxy 54 0.25 

 

The maximum error between the analytical and FEM results (Eq. (22)) is about 7%. To the best of our 

knowledge at this stage, the achieved analytical results are of acceptable accuracy and for all applications. 

Moreover, the same calculations were performed for two other media, namely Kevlar/Epoxy and E-Glass/Epoxy 

with the same geometry and boundary conditions mentioned for the case study of Carbon/Epoxy material. The 

results for the first three critical buckling loads of the abovementioned composites were calculated using analytical 

and FE methods. These results along with the corresponding errors are listed in Table 2. The maximum error is 

approximately 7% for the first mode of Carbon/Epoxy material, and due to the convergence of the solutions in 

analytical method, the error reduces with the increase of the mode number. Under aforementioned conditions, 

squared lattice cylinders with longitudinal and circumferential ribs are efficient with external axial compressive 

forces. Based on Eq. (21), the values of critical buckling loads for the aforementioned materials are calculated and 

represented in Fig. 5. Furthermore, among all the materials which were used for modelling the squared latticed 

cylindrical shell, Carbon/Epoxy had the highest strength against external axial compressive forces. In other words, 

for square latticed cylindrical shells, materials with higher longitudinal modulus  1E  are more effective in handling 

axial compressive loads. 

 
Table 2 

Critical Buckling Modes of Lattice cylindrical shell. 

Material Type Buckling Mode 

Critical 

Buckling Load (N) Error (%) 

Analytical FEM 

Carbon/Epoxy 

First 14076 13080 7.07 

Second 13561 12580 7.23 

Third 13429 12420 7.51 

E-Glass/Epoxy 

First  3672     3412.8 7.05 

Second     3408.7        3412.8   0.12 

Third    3395.5     3369.6 0.76 

Kevlar/Epoxy 

First 5168     5411.2 4.49 

Second 5032       5411.2   7.53 

Third 4941     4924.8 0.32 
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5    CONCLUSIONS 

A composite latticed cylindrical shell with square cells was analyzed and the governing equations were derived. The 

equations were followed to give the relation of critical buckling loads with respect to critical axial loads. The results 

for the critical buckling load using analytical method were compared with corresponding results from FEM analysis, 

indicating a well agreement in between. The following statements can be briefly noted as the results and conclusions 

accomplished through this study. 

 Three critical buckling modes for three different materials are obtained using analytical and FE methods. 

  Carbon/Epoxy has superior strength against axial external force; hence in designing squared latticed cells 

cylinders, this composite material has a pronounced merit over the other two. 

 Composite materials with higher longitudinal modulus (
1E ) are more effective in designing the squared 

latticed cylindrical shells. 
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Fig.5 

Deformation modes under critical load for: a) Carbon epoxy, b) Kevlar epoxy, c)E-glass epoxy. 
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