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 ABSTRACT 

 Herein paper compares the analytical model with the FEM based numerical model of 

the axisymmetric bending of circular sandwich plates. Also, the paper describes 

equations of the circular symmetrical sandwich plates bending with isotropic face 

sheets and the nonlinear elastic core material. The method of constructing an analytical 

solution of nonlinear differential equations has been described. The perturbation 

method for differential equations with small parameters is used to represent nonlinear 

differential equations as a sequence of linear equations. Linear differential equations 

are reduced to Bessel’s equation. It is compared results of analytical model with results 

of other researches using two problems: 1) the problem of axisymmetric transverse 

bending of a circular sandwich plate, 2) the problem of axisymmetric transverse 

bending of an annular sandwich plate. The effect of accounting nonlinear elastic core 

material on the strain state of the sandwich plate is described. 

                                                 © 2016 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 OMPOSITE materials (composites) and layered materials are one of the great technological advances of a 

modern engineering. By the term , layered materials are assumed materials that are combinations of two or 

more organic or inorganic layers. Layered materials allow to optimize some physical and mechanical properties of 

constructions. Sandwich structures are widely used in the aircraft and shipbuilding industries, the aerospace 

industry, civil engineering, electronics and other industries. Thus the stress-strain state analysis of sandwich 

structural elements is urgent. Herein study has investigated by analytical and numerical methods. Currently, there 

are many experimental and theoretical works devoted to sandwich structures, for example [1-11]. Well- known 

articles reviews devoted to sandwich structures, for example [1,7]. These works presented linear elastic models for 

core material. On the other hand, for some materials (e.g. cooper, duralumin, aluminium bronze, composites ‎[12]) 

linear elastic models do not accurately describe the observed material behavior. Thus, bending of circular sandwich 

plates with nonlinear elastic core still less investigated. This paper has derived a nonlinear differential equations of 

symmetric sandwich plates bending with isotropic face sheets and nonlinear elastic core material by [12] (the 

analytical model). Using the perturbation method for differential equations with small parameters we reduce 
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nonlinear differential equations to linear systems. Linear differential equations are reduced to Bessel’s equation. 

Numerical results of the analytical model are compared with [2, 6, 8] and with the finite elements model. 

In numerical analysis of solids, two main approaches have been adopted to simulate layered materials [13]: 

1.  Techniques, which explicitly model the discontinuous nature of the material. This approach includes the 

Discontinuous Deformation (Displacement) Analysis (DDA) [14] and the Discrete Element Method (DEM) 

[15, 16]. The Finite Element Method (FEM) or the Finite Difference Method (FDM), which utilizes layers 

topology, interfaces or contact technology, also included in the first approach. The Discontinuous 

Deformation Analysis and the Discrete Element Method are common used in rock mechanics, simulation of 

granular materials and the micro-dynamics of powder flows. These techniques provide a more accurate 

description of layered material nature. 

2.  Techniques, which use equivalent continuum model of the material. This approach includes the FEM and 

the FDM equivalent continuum model. In the equivalent continuum technique the discrete material is 

replaced by a homogeneous continuum. e.g., in Cosserat theory, one of the mathematical models describing 

the mechanics of general micropolar continua, each point of the continuum is associated with independent 

rotational degrees of freedom in addition to translational degrees of freedom. The basic kinematics 

variables of Cosserat theory are the displacements, the first-order displacement gradients, the 

microstructural rotations and the rotation gradients. Higher-order displacement gradients are not considered 

[13]. 

In the numerical example we use FEM, which utilizes layers topology: obtained meshes approximate borders of 

layers by edges and faces of finite elements. 

The main objective of herein paper is to develop analytical model for stress-strain state of circular and annular 

sandwich plates with nonlinear elastic core. Analytical model shows difference between linear elastic model and 

nonlinear elastic model of the core. Also, it has developed numerical finite element model and compare analytical 

solutions with numerical solutions. This comparison demonstrates the accuracy of both models presented in the 

paper. 

2    THE STATE OF STRESS OF A PLATE 

Consider a circular sandwich plate that is loaded by a transverse load ( , )q r  . Face sheets are 
1  and 

2  thick 

correspondingly. Face sheets are made from isotropic material for which Hooke's law is a useful approximation. A 

core is 2h  thick (Fig. 1). It is made from nonlinear elastic isotropic material. 

 

   

 

 

 

 

 

 

 

 

Fig.1 

Circular and annular sandwich plates. 

 

 

Face sheets correspond to Kirchhoff plate theory. The state of stress in these layers is determined by Hooke's law 

[17, 18] 
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where E is Young's modulus, G is the shear modulus, and   is Poisson’s ratio for the material of the layer 

1h z h    . Index * in Eq. (1) refers to mechanical properties of the layer 
2h z h     . The state of stress 

in the core is determined by expressions [12] 
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In Eq. (2), the shear modulus is denoted by G  and the bulk modulus is denoted by 
0:K   is elongation, 2

0  is 

the strain intensity factor 
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Parameter 
2  characterizes shape changes of the structural element in the nonlinear elastic deformation stage. 

This parameter is determined experimentally [12]; parameter 
2  characterizes the volume element changes. 

3    STRAIN-DISPLACEMENT RELATIONS FOR SANDWICH PLATES 

The state of strain at some midplane point of the sandwich plate face sheets is determined by radial displacements 

( , )iu r  , angular displacements ( , ),( 1,2)iv r i  , and deflection ( , )w r . 

By adopted hypotheses, we have [10]: 
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Using [10] in Eq. (3), we obtain 
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Functions 1 2( ), ( )f z f z are transverse shear-stress distribution functions for stresses  rz  and 
z  in the thickness 
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direction. Strains are represented by [12]. 

The face sheet layer 
1h z h    : 
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Another face sheet layer 
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and the core layer h z h   : 
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The total potential energy of the circular sandwich plate is 
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Differential equations of equilibrium are obtained from total potential energy by applying the principle of 

possible movements [9]. 

4    EQUILIBRIUM EQUATIONS FOR AXISYMMETRIC BENDING 

Consider axisymmetric transverse bending of a circular sandwich plate. Now suppose that the transverse load ( )q r  

is axisymmetric and uniform. In addition, suppose that the plate have face sheets with equal thickness 
1 2    .  

Using the symmetry of the strain state of the plate and taking into account the absence of any angular 

displacement (
1 2 1 2, 0u u u v v v       ), we obtain nonlinear differential equations of equilibrium 
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Nonlinear terms of the Eqs. (4) 
1 2,   and the coefficients presented in [3] become very cumbersome. 

Boundary conditions were considered by A.P. Prusakov in [8]. 
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Clamped or fixed edge: 
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Now if we recall (4) with boundary conditions (5) or (6) we obtain the analytical model. 

Perturbation method are widely used for solving differential equations [12, 19]. To solve these equations we use 

approximation techniques in terms of a small parameter. The small parameter appears naturally in the equations or 

may be artificially introduced for convenience. Thus we use perturbation method for simplifying nonlinear 

differential equations. 

Let the naturally small parameter in Eqs. (4) be a ratio of mechanical properties of the core 
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Displacements are represented by series 
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The solutions of Eqs. (4) are represented by the first few terms of an asymptotic expansions (7), usually not more 

than two or three terms. In present paper we use three terms of series (7). 

Substituting (7) in (4) and collecting coefficients in terms of the powers of   we obtain a system of equations 

for zeroth-order and higher-ordered approximations. 

We have the system of equations of the zeroth-order approximation (linear elastic formulation of the problem) 
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System of equations for the first-order approximations 
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The coefficients 1 1 1 1
110 149 210 281, B B B B  are related to mechanical properties of the plate. 

Now, using [3], we get higher-order approximations 

 

 

 

11 , 12 , 13 , 14 , 15 , 16 1

21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 2

,i rrr i rr i rr i r i r i i

i rrrr i rrr i rrr i rr i rr i r i r i i

B w B w B u B w B u B u r

B w B w B u B w B u B w B u B u r

      

         
 

 

(9) 

 

In Eq. (9), 
1i  and 

2i  are nonlinear terms for i -order approximations. Now we can consider a sequence of 

linear equations instead nonlinear system (4). 
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5    SOLVE A SYSTEM OF DIFFERENTIAL EQUATIONS 

Now, differential Eqs. (8) will be represented by operators 

   

1 151 0, 15 0 3 141 0, 141 0

2

2 151 152 0, 151 0 4 141 0, 141 0

2
0,

2 2

3 (2 ) ( 2)
6

r r

r r

L B w B u L B w B u
h

L B B w B u L B h w B u rq






 

   
       

   
 
          
 

 

 

 

(10) 

 

where by 
1 2 3, ,L L L  and 

4L  denoted differential operators that are defined for arbitrary function ( )g r . Therefore, 

 

   

,

, 1 , ,2,
,

,

2 1 , , 3 4 3 ,2, ,

1
( ) , ( ) ( ) ,

( ) ( ) 2 , ( ) , ( ) ( )

r

rr rr rr
r

r

rrr rr rr r

g g g
L g rg g L g rL g rg g

r r rr
g g

L g L g rg g L g rg L g L g rg g
r r

 
        
 

        

 

 

 

 

 

Fist we integrate the Eq. (10); secondly, we add the first equation to the second. Now by simplifying, we obtain 

the modified Bessel differential equation 

  2

0 0 0 ( )L u u r    (11) 

 

where 

  

2 1512 1 141 1

141 0 0 0

1 15 1 151 2 1 1 15 1 151 2

2

1 151 152 2 151 152

3

1

0 1

2 22
, ( ) ( ) ( ) ,

2 2 2 2

, 2( ) 2 ,
6

1 1
( )

2 16 4

BD D B D
B r L r r

h D B D B D D D B D B D

D hB B D h B h B

Cqr qr
r r dr dr C r

r r


   

  


  



    
               
 

       
 

  
     

  
  2 3

1 1
(2ln( ) 1) .

2
r C r C

r
  

 

 

 

Integrating (11) in 
0u , we get 

 

2 0

0 4 1 5 1 1 1 0 1 1 0 0

1

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) , .

r D u
u C I r C K r K r I r r rdr I r K r r rdr w dr

D


       


      

 

 

 

Similarly, we obtain the solution of (9). In this case, functions 
0 ( )r  and 

0 ( )r  that depend on the right-hand 

side of (9). 

6    FINITE ELEMENT MODEL 

Consider the finite element model of a sandwich plate. We may assume that the sandwich plate is the thin three-

dimensional solid. Thus we can explicitly model the discontinuous nature of the material. In this case, obtained 

meshes utilize layers topology. Borders of layers is approximated by edges and faces of finite elements (see Fig. 2). 

Obtained meshes can be block-structured or unstructured. In both cases, for each layer of material we generate 

layers of elements (each layer of material needs at least one element along the thickness of the layer). 
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Fig.2 

Finite elements layers. 

 

 

Let the finite elements mesh M consist of two subsets of elements 

 

,f c f cM M M M M      

 

where 
fM  is the set of face sheets finite elements; 

cM  is the set of the core finite elements. 

For three-dimensional stress and strain we get the element stiffness equation as: 

 

  [ ] [ ][ ]T

m m m mk = B D B dxdydz     

 

where for 8-node hexahedra element m we get 
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Here , ( 1,8)iH i   is a standard three-dimensional shape function ( ( , , )iH     for isoparametric hexahedra). 

Elasticity matrix [D ]m
 depends on properties of layer's material. Now we get 
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where 
mE  is Young's modulus, 

m  is Poisson's ratio of the element m. For sandwich plate 
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Here E is Young's modulus of face sheets,   is Poisson's ratio of face sheets; E  is Young's modulus of the 

core,   is Poisson's ratio of the core. 

Remark. A full three-dimensional finite element modelling is computationally expensive. Meshes with good 

aspect ratio of hexahedrons require a large number of elements (e.g. 3-D model of the circular sandwich plate has 

more than 200,000 nodes). 

7    NUMERICAL EXAMPLES AND VALIDATION TEST 
7.1 Circular sandwich plates with elastic core 

Consider a circular sandwich plate with elastic core; the plate loaded transversely by a distributed load q. Suppose 

the core thickness 2h  is equal to 316 10 m ; face sheets of equal thickness: 3

1 2 1 10 m       ; the radius of 

the plate R is equal to 0.4  m; the shear modulus of the core G  is equal to 42.77 10 Mpa  and the bulk modulus of 

the core K  is equal to 46 10 Mpa ; the shear modulus of face sheets G is equal to 48 10 Mpa and the Poisson's ratio 

of face sheets   is equal to 0.27 . The tensile properties of the core are linear in transverse directions. 

Table 1. compares the maximum deflection in the center of the sandwich plate with elastic core.  

 
Table 1 

Transverse bending of the circular sandwich plate with elastic core. 

 

,q Mpa  

3

max (0),10w w m  

Boundary conditions 

Simply-supported Edge Clamped Edge 

Model Model 

1 2 3 4 1 2 3 4 5 

0.05 1.586 1.383 1.430 2.621 0.385 0.339 0.348 0.635 0.291 

0.07 2.221 1.937 2.001 3.670 0.539 0,474 0.487 0.889 0.407 

0.09 2.855 2.490 2.573 4.718 0.693 0.610 0.626 1.142 0.523 

0.11 3.489 3.043 3.145 5.767 0.847 0.745 0.765 1.396 0.639 

 

Models are denoted by numerals 1-5 as follows: 1 – the analytical model; 2 – the finite element model; 3 – 

model considered in the paper [6]; 4 – model considered in the paper [8]; 5 – model considered in the paper [2]. 

7.2 Annular sandwich plates with elastic core 

In this subsection we consider a sandwich annular plate with elastic core; the plate loaded transversely by a 

distributed load q. The annular plate has an external radius R (R is equal to 0.4 m) and internal radius b (b is equal to 

0.2 m). Other properties of the plate are the same as subsection 7.1. 

Table 2. compares the maximum deflection of the sandwich annular plate with free internal edge and simply-

supported or clamped external edge. Conversely, Table 3. compares the maximum deflection of the sandwich plate 

with simply-supported or clamped internal edge and free external edge. 

 
Table 2 

Transverse bending of sandwich annular plate with free internal edge. 

 

,q Mpa   

3
max ( ),10w w b m  

Simply-supported Edge Clamped Edge 

Model Model 

Analytical FEM Analytical FEM 

0.005 0.151 0.134 0.0129 0.0114 

0.007 0.212 0.187 0.0181 0.0159 

0.009 0.273 0.241 0.0233 0.0204 

0.011 0.333 0.294 0.0284 0.0249 
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Table 3 

Transverse bending of sandwich annular plate with free external edge. 

 

,q Mpa   

3
max ( ),10w w R m    

Simply-supported Edge Clamped Edge 

Model Model 

Analytical FEM Analytical FEM 

0.005 0.199 0.176 0.0218 0.0188 

0.007 0.279 0.247 0.0305 0.0264 

0.009 0.359 0.317 0.0393 0.0339 

0.011 0.439 0.387 0.0480 0.0411 

7.3 Validation test 

Finite element model validation is the verification that idealization premises and analysis conclusions are valid. 

Thus it has compared analytical solutions with numerical finite element methods in Tables 1., 2 and 3. This 

comparison demonstrates the accuracy of both approaches presented in herein paper. 

Next, the influence of the mesh size on the results of the numerical simulation will be examined. Element size in 

the thickness direction should be less than or equal to corresponding layer thickness. Consider mapped mesh for the 

annular plate with clamped external edge (Table 2.). Fig. 3 shows influence of the mesh size on the maximum 

bending of the plate under transversal load 0.005q Mpa . 

Fig. 3 shows that number of finite elements increases from the left to right (the mesh size decreases). Mapped 

meshes for the annular plate with the small number of elements have big aspect ratio of element edges. We can get 

cube-like finite elements (element edges aspect ratio is close to 1) in meshes with the big number of elements (e.g. 

using mesh with 140000 element we get that maximum bending is 30.0115 10 m , as we can see numerical solution 

tends to this value). Thus an increase in the number of finite elements in the mesh facilitates getting to more reliable 

result of finite-element modelling. 

Remark. It has obtained similar dependences for the influence of the mesh size on the result of the numerical 

simulation for other cases of boundary conditions and for circular plates. 

 

 

 

 
 
 
Fig.3 

Influence of the mesh size on maximum bending of 

clamped annular plate. 

8    INFLUENCE OF NONLINEARITY: NUMERICAL INVESTIGATION 

Now consider a circular sandwich plate with nonlinear elastic core. Geometrical and mechanical properties are the 

same in the previous case. Let 2  is equal to 0 and 2  is equal to 53.878 10  .  

Table 4. compares the maximum deflection in the center of the sandwich plate with nonlinear elastic core for 

zeroth-order and higher approximations.  
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Table 4 

Transverse bending of the circular sandwich plate with nonlinear elastic core. 

 

,q Mpa  

3
max (0),10w w m   

Boundary conditions 

Simply-supported Edge Clamped Edge 

Approximation Approximation 

0 1 2 3 0 1 2 3 

0.05 1.586 1.598 1.598 1.598 0.385 0.389 0.389 0.389 

0.07 2.221 2.253 2.254 2.254 0.539 0.550 0.551 0.551 

0.09 2.855 2.924 2.929 2.929 0.693 0.717 0.718 0.718 

0.11 3.489 3.615 3.628 3.630 0.847 0.891 0.892 0.892 

 

Remark. Numerical finite element model has developed with idealization premises for linear elastic model of 

core material. Numerical finite solutions for nonlinear elastic models of core material will be presented in the future 

researches.  

9    CONCLUSIONS 

As the result it has implemented the analytical model and the finite element model for stress-strain state analysis of 

circular and annular plates. The analytical model uses the perturbation method for differential equations with small 

parameters to represent nonlinear differential equations as a sequence of linear equations; further, linear differential 

equations are reduced to Bessel’s equation. The finite element model is a full three-dimensional model; this model 

explicitly utilize layers topology. 

As shown in Tables 1, 2, 3, difference between the analytical model and the finite element model is 13-16%. The 

difference between the analytical model and other models is 11-40%; respectively, between the finite element model 

and other models is 3-47% (Table 1.). Note that these models have various simplifying assumptions. 

In addition, it is compared deflection in the center of the nonlinear elastic core sandwich plate with deflection of 

the linear elastic core sandwich plate. The difference between linear deflection and nonlinear deflection is 1-5%. 

Nonlinear dynamics and stability of sandwich structural elements are suggested as opportunities for future 

researches.  
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