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 ABSTRACT 

 In this paper, vibration of the protein microtubule, one of the most important 

intracellular elements serving as one of the common components among 

nanotechnology, biotechnology and mechanics, is investigated using stress and strain 

gradient elasticity theory and orthotropic elastic shells model. Microtubules in the cell 

are influenced by internal and external stimulation and play a part in conveying protein 

substances and taking medications to the intended targets. Therefore, in order to control 

the biological cell functions, it is important to know the vibrational behavior of 

microtubules. For this purpose, using the cylindrical shell model which fully 

corresponds to microtubule geometry, and by considering it as orthotropic which is 

closer to reality, based on gradient elasticity theory, frequency analysis of the protein 

microtubule is carried out by considering Love’s thin shell theory and Navier solution. 

Also, the effect of size parameter and other variables on the results are investigated. 

                                                 © 2016 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 IOMECHANICS is a new science which appeared in the recent years as mechanical engineering was 

becoming functional. Studying the biomechanics of living cells and biomolecules is significant for different 

reasons. Cell mechanics can considerably help to figure out how mechanical signals change and convert into 

intracellular biological and biochemical responses. If the relations between the mechanical medium of cells and 

tissues are identified, there will be much greater possibility to find a way to regulate the structure and function of 

these cells and tissues [1]. 

Protein microtubule or cellular micro tube is the most robust element of cytoskeleton, and, based on laboratory 

studies, is approximately 100 times as robust as other elements of the cytoskeleton [2]. Having polar properties, 

these nanotubes are polymers composed of microscopic sub-units. They are in the shape of hollow cylinders 25 and 

15 nm in external and internal diameters, respectively. These fibers are known as self-assembled nanotubes able to 

increase or decrease in length in the 10 nm to 100 µm interval.  

Structurally, microtubules are constructed by lateral connection of relatively long fibers known as protofilaments 

the number of which varies in different microtubules, causing geometric differences among microtubules [3,4]. 
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Protofilaments are in turn constructed by successive connection of fundamental elements known as α and β tubulins. 

The α-tubulin represents the negative pole and the β-tubulin represents the positive pole in the microtubule [5]. 

Considering the vital role played by microtubules in many biological activities, studying their mechanical 

behavior is of considerable importance. One of the important properties of protein microtubules is their mechanical 

vibration, offering significant hallmarks for studying and investigating intracellular behaviors, of which one is 

protein microtubule frequency. 

Considering its dimensions, the microtubule can be thought of as a biological nanostructure. Such structures 

must be investigated by considering the effect of small size [6]. This is done using higher order continuum theories 

[7-10]. In these theories, unlike the classical elasticity theory, stress in each node is not merely dependent on strain 

in the same node; rather, it is also a function of strain in other nodes as well [11, 12].   
Numerous experiments and simulations have so far been conducted to study the mechanical behavior and 

properties of protein microtubules. With respect to the literature on protein microtubules, researchers to date have 

used various beam models to conduct frequency analysis of microtubules, often employing classical elasticity theory 

and ignoring effects of the small size [13-16]. In recent years, some researchers have employed Eringen’s nonlocal 

theory [12] and other non-classical theories to study microtubule vibration by taking into account the effects of small 

size, either modeling the microtubule as a beam or assuming it as an isotropic shell. Wang & Ru [17] carried out 

frequency analysis of microtubule based on classical elasticity theory and using orthotropic cylindrical shell model, 

demonstrating that the frequencies resulting from the orthotropic model are considerably smaller than frequencies of 

the isotropic model. Using orthotropic cylindrical shell model and based on the classical elasticity theory, Zhang & 

Wang [18] studied microtubule vibration. Modeling microtubule as a nonlinear shear cylindrical shell and based on 

the Eringen’s nonlocal theory, Shen [19] investigated the nonlocal vibration of protein microtubule and examined 

the effect of nonlocal parameter and cytoplasm medium on microtubule frequency. Civalek & Akgöz [20] used the 

nonlocal Euler-Bernoulli beam model to examine the effect of length, nonlocal parameter and support conditions on 

microtubule vibration. They demonstrated that increase in microtubule length and nonlocal parameter is 

accompanied by decrease in vibration frequency. Tounsi et al. [21] investigated microtubule vibration based on 

Eringen’s nonlocal theory and using Timoshenko beam model. They examined the effect of the nonlocal parameter 

and shear modulus on microtubule vibration frequency. Liew and Xiang [22] employed atomistic-continuum model 

and strain gradient theory to carry out frequency analysis of microtubules. They demonstrated that increase in length 

is accompanied by decrease in microtubule frequency, and increase in size parameter is accompanied by increase in 

microtubule frequency. Karimi & Tadi Beni [23] analyzed the vibration of protein microtubules based on Euler-

Bernoulli beam model and modified strain gradient theory, and investigated the effect of small size parameters and 

microtubule dimensions on the results. 

Based on research done in the past on the nano-scale, it is well-established that mechanical behaviors of 

micro/nano structure are size dependent [24,25]. Experiments reveal an increase in material characteristics such as 

yield strength, hardness, bending rigidity, Young modulus, etc. with decreasing the size at the ultra-small scales [25-

29]. All previous experimental studies imply that when the characteristic size (thickness, diameter, etc.) of a 

micro/nano element is in the order of its intrinsic material length scales (typically sub-micron), the material elastic 

constants highly depend on the element dimensions. Unfortunately, while much is known about the mechanical 

characteristics of isolated bulk materials, the properties of material at nano-scale cannot necessarily be predicted 

from those measured at larger scales. However, this problem can be resolved by the incorporation of an intrinsic 

material length scale parameter in the governing equations of continuum mechanics theory. Note that classical 

continuum mechanics is unable to simulate the size effect in micro/nano structures. One way to model the size 

dependency in micro/nano structures is using the atomistic methods such as molecular dynamics (MD). But, it is still 

not possible to conduct time-consuming molecular simulations on realistic structures. Another way to model the size 

dependency is using higher order continuum mechanics theories such as strain gradient theory, couple stress theory 

and nonlocal theory. Because of low computations and modeling accuracy, these theories are used by several 

researchers to model microtubules in recent years. The researcher's results indicate that applying the nonlocal theory 

will cause softening of mechanical properties of nano structure while applying the strain gradient or couple stress 

theories will cause hardening of mechanical properties. Prediction of softening and hardening properties in 

microtubules also is established by Refs [19,30]. On the other hand, microtubules have actually orthotropic 

properties; then, applying the strain gradient or couple stress theories for orthotropic material is difficult which can 

be done as a new research avenue. According to the above discussion, in order to achieve a model that have both 

properties of high-order continuum theories (softening and hardening) and capability of modeling orthotropic 

microtubules, in this paper, stress and strain gradient elasticity theory is used. In addition, according to the reference 
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[31], the advantages of stress and strain gradient elasticity, compared to classical elasticity, are threefold: (i) with 

gradient elasticity the singularities can be avoided that typically appear in classical elasticity, (ii) the size-dependent 

mechanical response of heterogeneous materials can be captured with gradient elasticity, and (iii) dispersive wave 

propagation can be described by gradient elasticity. 

As mentioned, microtubules have a cylindrical shell shape and non-isotropic properties. Besides, they are in the 

nano-scale. Yet, in modeling, it seems that researchers so far have paid attention to one of the three geometrical, 

mechanical and nano-scale properties of microtubules, or have simultaneously investigated two properties. In this 

study, however, using cylindrical shell model, a more efficient modeling of microtubule is presented. Moreover, by 

taking into consideration the orthotropic property, the mechanical behavior of microtubules is more precisely 

modeled. Finally, using stress and strain gradient elasticity theory, nano-scale behavior and size effects are modeled.  

Hence, in this paper, to juxtapose effective parameters of the higher order theory, cylindrical shell model and 

orthotropic case, the effect of parameters of small size and microtubule dimensions on protein microtubule vibration 

is investigated based on gradient elasticity theory. 

2    PRELIMINARIES  

2.1 Orthotropic shell model 

In order to investigate the mechanical behavior of microtubules, we need a mathematical model to define the 

displacement field. Regarding how to choose the model, this model must have acceptable geometrical similarity to 

the structure under study. Considering the long cylindrical structure of the microtubule, this structure is commonly 

modeled using beam models or cylindrical shell models.  

 

   

 

 

 

 

 

 

 

 

Fig.1 

Cylindrical shell model and its variables in microtubule. 

 

 

The cylindrical shell model (Fig. 1) is fully compatible with the microtubule structure and investigates more 

details. Besides, experiments have revealed that microtubules are structures with considerable rigidity along length 

and can be readily categorized as orthotropic structures [32]. 

In the orthotropic case, 9 independent material parameters (including 3 Young moduli, 3 shear moduli and three 

Poisson’s coefficients) are required to define the mechanical properties in three main directions. In this research, 
assumptions of plate stress and thin shell reduced the 9 parameters to 4 independent parameters (Ex, Eθ, Gxθ and υxθ). 

In different studies, different values have been offered for mechanical properties of microtubules in isotropic and 

orthotropic cases. Table 1. displays the amount of common properties used. 

 
Table 1  

Orthotropic material constants for microtubules [17]. 

Values  Parameters 

0.5~2 GPa Ex Longitudinal modulus [32,33,34] 

1~4 MPa Eθ Circumferential modulus [32] 

1kPa ~1MPa Gxθ Shear modulus of microtubules [32,33] 
0.3 υxθ Poisson’s ratio in axial direction [32,34] 

0.0003 υθx Poisson’s ratio in circumferential direction [17] 

2.7 nm h Equivalent thickness [33,34] 

1.6 nm h0 Effective thickness for bending [33] 

12.8 nm R Medium radius of microtubule [17] 

1470 kg/m3 ρ Mass density per unit volume [34]
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2.2 Stress and strain gradient elasticity theory 

Stress and strain gradient elasticity theory is a combination of Eringen’s stress gradient theory and strain gradient 

theory. This theory includes two size parameters, and strain and structural equations are written as [35]: 

 

1

2
ij ijU d 


            

   (1) 

 
2 2 2 2(1 ) (1 )d ij ijkl s kll C l                   (2) 

 

where ls is the size parameter for the static case and ld is the size parameter for the dynamic case. Also, ij and 

kl represent the components of stress and strain respectively, ijklC
 
represents elements of material stiffness matrix, 

and 2 represents the Laplace operator. In general, the size parameters mentioned are not equal; rather, their values 

depend on the size of the representative volume element (RVE) in static and dynamic cases [36,37]. If ld=0, this 

theory is reduced to a special form of Mindlin’s strain gradient theory, and if ls=0, it is reduced to Eringen’s stress 

gradient theory. Moreover, by setting both size parameters to zero, this theory converts into the classical theory. In 

this study, given the fact that the orthotropic shell model is considered, and by considering the assumption of plane 

stress, ,kl ijklC  and 2 are defined as follows:  
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(5) 

 

The key issue for successful application of the higher order continuum mechanics models to MTs is to determine 

the magnitude of the small scale parameter. Due to the stress and strain gradient elasticity theory used in this article 

which is the combination of high-order continuum models, determining the magnitude of the small scale parameter 

in nonlocal, strain gradient and couple stress theories is explained here. 

In nonlocal theory, in most studies, small scale parameter is usually taken to be 0.39, as proposed by Eringen 

[12]. For a single walled carbon nanotube, the small scale parameter is found to be less than 2.0 nm [38]. However, 

there are no experiments conducted to determine the value of the small scale parameter for MTs. Small scale effect 

on the linear vibration of MTs was carried out analytically by assuming a range of its value since its actual value is 

not known [39,40]. It has been shown [41,42] that the small scale parameter is different for different physical 

problems investigated. However, atomistic approach and experimental can be used to determine the small scale 

parameter in the nonlocal theory. 

For strain gradient and couple stress theories, a simple practical and physical interpretation of the length scale 

parameter can be obtained in term of elastic rigidity of cantilever nanobeam in bending test. Based on modified 

couple stress theory and considering Euler beam model, the material length scale parameter can be directly related to 

the difference between the elastic modulus of material [43]. The material length scale parameters also might be 

determined via molecular dynamic simulation or experiments. Previous researchers used atomistic simulations and 

molecular dynamics to determine the size effect parameters [44-46]. Maranganti and Sharma [44] used an atomistic 
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approach to determine strain gradient elasticity constants of structures. They present mathematical derivations that 

relate the strain-gradient material constants to atomic displacement correlations in a molecular dynamics 

computational ensemble. Moreover, these parameters can also be determined using mechanical tests [44]. Lam et al. 

[24] have conducted bending test to determine the strain gradient elastic size parameter of epoxy polymer. Potential 

experimental errors were determined to be small relative to the observed increase in material rigidity. As mentioned 

above, several methods such as elastic rigidity of cantilever nanobeam, atomistic approach and experimental were 

used to determine the microscale parameters in strain gradient and couple stress theories. 

3    GOVERNING EQUATIONS OF MICROTUBULE    

Fig. 1 displays a schematic form of the cylindrical shell model, where displacement vectors u, v, and w are 
respectively along orthogonal axes x, θ, and z, which represent length, circumference and radius (perpendicular to 

the middle plate, and outward). Values of displacement of a given node in the cylindrical shell can be expressed 

based on Love’s thin-shell theory as: 
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where 0 0(x, , t), ( , , )u v x t  and 0 ( , , )w x t represent displacements of the middle plate of the shell.  

Considering Eq. (3) and the definitions of displacement vectors and coordinate axes, classical strains are 

determined as follows:  
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By substituting Eq. (6) into Eq. (7) and considering the assumption of Love’s thin shell (1 ) 1
z
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strain components are determined as: 
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By substituting the strains obtained into Eq. (1), and multiplying its two sides by 2 2(1 )dl  the following is 

resulted: 
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Now, by defining classical force and torques (see Appendix A for more details), 
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Strain energy of cylindrical thin shell in Eq. (9) is determined as: 
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which is 2 2
1A (1 )dl    in Eq. (12)

 
and kinetic energy, in general, is expressed as: 
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Now, by substituting the components of displacement from Eq. (6) into (13), the kinetic energy of cylindrical 

shell is expressed as: 
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The work of external forces acting on the cylindrical shell is expressed as: 
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Now, by considering Hamilton’s principle as follows, one can derive the governing equations of the microtubule. 
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By multiplying 2 2(1 )dl  by Eq. (16) and then performing substitution and variation for Eqs. (12), (14) and 

(15), and finally integrating and setting coefficients 0 , ou v  and 0w to zero (see Appendix A for more details), 
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equations of motion and boundary conditions of the orthotropic cylindrical shell are derived based on the stress-

strain gradient elasticity theory as: 
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Boundary conditions for the edge with constant x coefficient are as follows: 
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Boundary conditions for the edge with constant θ coefficient are as follows:  
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(27) 
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4    FORMULATING AND SOLVING EQUATIONS FOR THE SPECIAL CASE   

In this section, to evaluate the new equations of motion derived from the theory and model used, the circular 

cylindrical shell with simply supported boundary conditions is generalized. For the simple support at the two edges 

of the cylindrical shell, boundary conditions in Eqs. (24) and (27) are existent due to the variability of  . Therefore, 

boundary conditions in Eqs. (20)-(23) must be satisfied. For this purpose, the main boundary conditions in the 

simple support are as follows: 

 

0 0,

0 0,

0

0

x L

x L

v

w








 

 

(28) 

 

Besides, by rewriting natural boundary conditions resulting from the freedom of the two ends of the nanoshell 

from bending moment, the final natural boundary conditions for the simply supported circular cylindrical shell are as 

follows: 

 

0 0
2 1 2 0 0,A 0x L

u v
a a w d

x





    
    

   
  

 

(29) 
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  
  

   
  

 

(30) 

 

Now, to solve the free vibration of the protein microtubule, one must solve Eqs. (17)-(19) as well as boundary 

conditions in Eqs. (28)-(30). In so doing, and to solve equations of motion and boundary conditions, displacements 

are used with the aid of the Navier method as follows: 
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(31) 

 

where Umn, Vmn and Wmn represent amplitude of vibration along length, circumference and radius. Also, m and n are 
axial wave number and circumferential wave number, respectively. 

Considering the displacements assumed in Eq. (31), it is clear that all boundary conditions in Eqs. (28)-(30) are 

satisfied. Now, to solve the free vibration of the microtubule, one must simply solve equations of motion (17)-(19). 

In so doing, displacements are substituted from Eq. (31) into Eqs. (17)-(19) and rewritten in the matrix form as 

follows (See Appendix B for more details):  

 

 2
0 0K M d  

 
 (32) 

 

where    0

T

mn mn mnd U V W and   represent natural frequency. To derive non-trivial solutions from Eq. 

(32), the determinant of the coefficients matrix must be zero.  
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5   RESULTS AND INVESTIGATIONS 

In this section, by assigning values to variables and parameters existing in equations derived in the last section and 

final solution of equations, the solutions are displayed numerically and graphically. Besides, the effect of different 

factors such as size parameter, geometrical parameters and mechanical properties on microtubule vibration is 

investigated. Table 1. displays the values of mechanical properties of the microtubule, and the dimensionless natural 

frequency is defined as (1 )x x xR E       . 

5.1 Comparing results with the references 

Considering the fact that the formulation presented in this paper is being used for the microtubule for the first time, 

the results could not be investigated except in special cases. In order to evaluate the results, considering that the 

results exist in the classical case, one can compare the results in the classic case with other studies. As mentioned in 

previous sections, by setting both size parameters to zero, the stress-strain gradient theory is reduced to the classical 

theory. Different papers have offered different values for the mechanical properties of the microtubule. In the results 

of other studies mentioned in Table 2. , except the common values R=10.7nm, h=1.6nm, =0.3, material properties 
are assumed to be Ex=129 MPa, Eθ=1.02MPa and Gxθ=1.4MPa in Shen [19]; Ex=1GPa, Eθ=1MPa, and 

Gxθ=0.01MPa in Shi et al. [47]; Ex=1.32GPa, Eθ=4MPa and Gxθ=0.01MPa in Tuszynski et al. [32]; and isotropic 

material properties are assumed to be E=0.8GPa and 2(1 )G E   in de Pablo et al. [33]. To draw a better 

comparison, results of this study are in turn solved with each of the values in the above references. Table 2. displays 

the existing results and the results of each reference.  

We know that the theory used in this article can be converted on the particular mode to the nonlocal theory. 

Therefore, in Table 2. , the comparison between the results of this work and reference [19] has been completed. It 

should be noted that, in this paper, ls=0 is considered and also in reference [19] the nonlocal theory is used. By 

comparing the results of Table 2. , it can be understood that although the theory used in both articles is equal, the 

results are different. This difference is due to Reddy’s higher order shear deformation shell theory and the Kármán-

Donnell-type nonlinear motion used in reference [19], but thin shell model with linear motion is used in this paper. 

 
Table 2  

Comparing the frequency (GHz) of microtubule modeled with classical and nonclassical cylindrical shell to other works 

L/R Source 

500 300 100  
0.1063 0.1063 - Shen [19] (ld=e0a=0) 
0.0752 0.0757 0.1007 Present work(ls=ld=0) 
0.1      0.1      - Shen [19] (ld=e0a=3.85 nm) 
0.0751 0.0751 - Present work(ls=0, ld=3.85 nm) 
0.0952 0.0952 0.0955 Shi et al. [47] 
0.0744 0.0745 0.0758 Present work 
0.1533 0.1533 0.1535 Tuszynski et al. [32] 
0.1487 0.1488 0.1496 Present work 
3.1095 3.1097 3.1131 de Pablo et al. [33] 

 

By comparing the results, it becomes clear that the isotropic case predicts the frequency to be higher than the 

orthotropic case, and this difference is partially due to the dependence of shear modulus and lateral elasticity 

modulus on longitudinal elasticity modulus, and, as a result, their results are much higher than the real amount in the 

isotropic case for the microtubule. It is also demonstrated that the results of the present study predict the frequency 

to be slightly lower than the references do, one reason of which could be the assumption of thin shell. Another point 

worth noting is the decrease in frequency due to increase in microtubule length (the effect of which decreases in 

greater lengths). Of course, it should be noted that the theory used in Shen [19] is the nonlocal theory and hence the 

difference in results. In Shi et al. [47], the beam model is used and therefore, difference could still be seen. 

However, with a geometrically similar model, the results of this study have appropriate consistency with Tuszynski 

et al. [32]. Finally, in de Pablo et al. [33], because of the use of isotropic behavior, the difference in the results is 

high.  



                                                                                                                                      F. Mokhtari  and Y. Tadi Beni                   520 

 

© 2016 IAU, Arak Branch 

5.2 Effect of mechanical properties of microtubule on frequency 

As displayed in Table 1. , some of microtubule mechanical properties such as Ex, Eθ, and Gxθ lack a fixed value, and 

values assigned to them are sometimes in a broad range. In this section, by separately investigating each of these 

properties and keeping other parameters constant, their effect on the first natural frequency is graphically modeled.  

It should be noted that, except for the three investigated parameters, values displayed in Table 1. as well as L=1e-

6m, n=2, ld=3nm, ls=10nm and k m L are taken into consideration in this section.  

It is predicted that in vibration systems, natural frequency has a direct relationship to system stiffness, and this 

can be seen in Figs. 2 and 3. 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Effect of Ex variation on natural frequency of microtubule 
(Eθ=1MPa, Gxθ=0.1MPa). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Effect of Ex variation on natural frequency of microtubule 
(Eθ=1MPa, Gxθ=0.1MPa). 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 

Effect of Gxθ  variation on dimensionless frequency of  

microtubule (Ex=1Gpa, Eθ=2MPa). 

 

 

Figs. 2 and 3 demonstrate that increase in Ex , and consequently increase in microtubule stiffness leads to 

increase in natural frequency. Yet, because of the dominance of the effect of L, in both cases of great axial 
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wavelengths ( 0.3)R k  and small axial wave lengths ( 2.5)R k  , the effect of variation Ex is infinitesimal. In 

fact, the greatest effect is in the 0.1 0.8mR L  interval. Also, in addition to the increase in frequency induced by 

decrease in axial wavelengths (decrease in L or increase in m in m R L equation), comparison of Figs. 2 and 3 

reveals that increase in n increases frequency too.  
Considering that components of matrix K are dependent on the values of Eθ and Gxθ, increase in these two 

moduli, too, increases natural frequency of microtubule. Figs. 4 and 5 display these changes. However, the 

noteworthy point is that, unlike Ex, the diagrams are not convergent in small axial wavelengths for these two moduli. 

By having another look at the elements of variation matrix in Appendix B, one can see some exponents of m L  

and n as coefficients for elasticity moduli Ex, Eθ, and Gxθ. Another important point is the dependence of Ex on the 

size of axial wavelength considering the presence of a non-zero exponent of m L along with Ex besides its 

presence in other elements, while this dependency does not exist for Eθ and Gxθ.  

 

 

 

 

 

 

 

 

 

 

Fig.5 

Effect of Eθ variation on dimensionless natural frequency of 

microtubule (Ex=1Gpa, Gxθ=0.1MPa). 

5.3 Effect of size parameters on frequency 

As mentioned in Section 2, size parameters ls and ld are dependent on the dimensions of the element under 

investigation in this study. Considering the variation of length, and, to some extent, radius of the microtubule, the 

value of size parameters is variable too. Table 3. and Table 4. display the effect of these parameters in different 

lengths on the natural frequency of microtubule.   

The results of these tables could be divided into four sections based on the values of ls and ld for each 

microtubule length. The results of the first section are related to the classical frequency and include the first three 

rows of the first column in each microtubule length  0s dl l  . The second section includes the frequencies of the 

first column except its first three rows, and is related to a special form of stress gradient theory ( 0sl  ). The third 

section includes the frequencies of the first three rows except the first column, and is related to stress gradient theory 

( 0sl  ). The fourth section includes the results relating to the intended theory in this study and frequencies obtained 

for non-zero values of ls and ld.  

Comparison of the results of decrease in frequency values induced by increase in ld and increase in frequency 

values induced by increase in ls makes it clear that the results are inclined toward the prediction of results by the 

nonlocal theory in the first case and the strain gradient theory in the second. And according to the results predicted 

in the references, it is for the effect of softening in the nonlocal theory and the effect of stiffening in the strain 

gradient theory. In other words, the stress-strain gradient theory used in this paper is capable of combining the 

advantages of the two nonlocal and strain gradient theories and can eliminate the drawbacks of these two theories. 

Hence it is a more comprehensive theory.  

Increase in microtubule length, besides having a general effect on frequency, leads to different intensity 

decreases for each frequency modes. For the first frequency, the intensity of frequency decrease in the nano scale 

undergoes a considerable decrease. In the micro scale, however, this intensity is mild and approaches stability.  The 

slope of decrease for the second frequency is average and almost steady. The intensity of increase of the third 

frequency is high in the beginning, and then becomes average, and in the end it becomes very mild. It should be 

noted that Ex=1GPa ،Eθ=1MPa ،Gxθ=0.1MPa ،n=2 and m=4 are assumed.  
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Table 3  

Effect of size parameters on microtubule natural frequency. 

 

 
Table 4 

Effect of size parameters on microtubule natural frequency. 

6    CONCLUSIONS 

In this study, by considering size parameters in stress - strain gradient elasticity theory and using orthotropic 

cylindrical shell model and the assumption of thin shell, a new formulation was developed for investigating the 

vibration of protein microtubule, and the analytical solution of equations for the simply supported case was 

obtained. By setting both size parameters to zero, the results in the classic case were compared with other results and 

the formulation was verified. Afterwards, the effect of different mechanical properties was investigated, 
demonstrating that increase in elasticity moduli Ex, Eθ and Gxθ and decrease in axial wavelength lead to increase in 

the natural frequency of microtubule. In the end, the effect of different values of size parameters on the natural 

frequency of microtubule was investigated, yielding the conclusion that frequencies decrease with the increase in ld 

and increase with the increase in ls. 

ld(nm) 
L=1 µm L=100 nm natural frequency ls 

6 3 1 0 6 3 1 0 (GHz) (nm) 

  0.1538   0.1910   0.2090   0.2110    2.249    3.015    3.450     3.520 1
 

0   3.3155   4.1180   4.4970   4.5520    3.523    4.723    5.400     5.510 2 

  7.6085   9.4520 10.319 10.445  66.260  88.826 101.64 103.66 3
 

  0.1954   0.2430   0.2650   0.2680    3.185    4.270    4.880     4.980 1 

5   4.2125   5.2330   5.7130   5.8730    4.989    6.690    7.650     7.800 2
 

  9.6670 12.009 13.111 13.271  93.826 125.78 143.92 146.78 3
 

  0.2860   0.3550   0.3880   0.3930    5.040    6.7600     7.730     7.880 1
 

10   6.1650   7.6580   8.3610   8.4630    7.890   10.580   12.110   12.350 2 

14.147 17.575 19.187 10.527 148.47 199.03 227.73 232.26 3
 

  0.5060   0.6290   0.6860   0.6950     9.300   12.460   14.260   14.540 1 

20 10.910 13.554 14.797 14.978   14.560   19.520   22.330   22.780 2 

25.037 31.104 33.957 34.327 273.86 367.12 420.06 428.43 3
 

  0.7390   0.9180   1.0030   1.0150   13.710   18.380   21.040   21.450 1 

30 15.940 19.802 21.619 21.883   21.480   28.800   32.950   33.610 2
 

36.580 45.443 49.612 50.217 404.05 541.66 619.77 632.10 3
 

ld(nm) 
L=10 µm L=4 µm natural frequency ls 

6 3 1 0 6 3 1 0 (GHz) (nm) 

  0.1469   0.1823   0.1989   0.2013   0.1471   0.1825   0.1992   0.2016 1
 

0   1.2065   1.4974   1.6340   1.6538   2.1109   2.6201   2.8591   2.8938 2 

  3.3201   4.1207   4.4965   4.5510   3.3200   4.1208   4.4966   4.5512 3
 

  0.1864   0.2313   0.2524   0.2555   0.1866   0.2316   0.2528   0.2558 1 

5   1.5310   1.9002   2.0735   2.0987   2.6789   3.3251   3.6284   3.6725 2
 

  4.2132   5.2293   5.7060   5.7753   4.2134   5.2297   5.7067   5.7759 3
 

  0.2724   0.3381   0.3690   0.3734   0.2728   0.3387   0.3695   0.3740 1
 

10   2.2382   2.7779   3.0312   3.0680   3.9165   4.8612   5.3046   5.3690 2 

  6.1592   7.6446   8.3416   8.4428   6.1598   7.6456   8.3429   8.4442 3
 

  0.4820   0.5980   0.6530   0.6610   0.4830   0.5990   0.6540   0.6620 1 

20   3.9590   4.9130   5.3610   5.4260   6.9270   8.5980   9.3830   9.4960 2 

10.894 13.521 14.754 14.933 10.895 13.523 14.757 14.936 3
 

  0.7040   0.8740   0.9530   0.9650   0.7050   0.8750   0.9550   0.9660 1 

30   5.7830   7.1770   7.8320   7.9270 10.119 12.560 13.706 13.872 2
 

15.914 19.751 21.552 21.814 15.916 19.755 21.556 21.818 3
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APPENDIX A 

By substituting Eqs. (8) and (5) into (2) and then substituting the result into Eqs. (10) and (11), the classical forces 

and torques are determined as: 

 

2 2 2 2 0 012
11 0(1 ) (1 )h C ( )d x s

u vC
l N l w

x R 

  
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(A.1) 
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(A.6) 

 

Strain energy variation from Eq. (1) is as follows: 
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Or, in the extended case, it can be expressed as: 
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(A.8) 

 

By substituting strains from Eq. (8) and multiplying 
2 2(1 )dl  by Eq. (8), one can write: 
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(A.9) 

 

The above equation, considering the definition of classical forces and torques can be written as follows: 
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(A.10) 

 

Now, by integrating by parts from Eq. (A.10), the following equations are derived: 
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By substituting Eqs. (A.1)-(A.6) into Eqs. (A.11)-(A.17), strain energy variation and boundary conditions can be 

written as follows: 
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Boundary conditions for the edge with constant x coefficient are as follows: 
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Boundary conditions for the edge with constant θ coefficient are as follows:  
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The constants used in the above equations are as follows: 
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Also, ,T W  are calculated as follows: 
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APPENDIX B 

By substituting Eq. (31) into (17)-(19), the following equations are obtained: 
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Components of the 3×3 matrix of coefficients 2
ijF K M       

are defined as follows: 
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