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ABSTRACT
The present investigation analysis a problem of reflection and transmission at
an interface of two micropolar orthotropic piezothermoelastic media. The
basic equations and constitutive relations for micropolar orthotropic
piezothermoelastic media for G-L theory are derived. The expressions for
amplitude ratios corresponding to reflected and transmitted waves are
derived analytically. The effect of angle of incidence, frequency,
micropolarity, thermopiezoelectric interactions on the reflected and
transmitted waves are studied numerically for a specific model. Some special
cases of interest one are also deduced.
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1 INTRODUCTION

M ICROPOLAR elasticity theory which takes into consideration the granular character of the medium,
describes deformation by a microrotation and a microdisplacement. Eringen first showed that the classical
elasticity theory [4] and the coupled stress theory [1] are two special cases of micropolar elasticity. The linear theory
of micropolar thermoelasticity was developed by extending the theory of micropolar continua to include thermal
effects by Nowacki [29] and Eringen [2]. A comprehensive review on the micropolar theromoelasticity is given by
Eringen [3]. In most of the engineering problems, including the response of soils, geological materials and
composites, some significant features of the continuum response may not take into account by the assumptions of
isotropic behavior. The formulation and solution of anisotropic problems is far more difficult and cumbersome than
their isotropic counterparts. Number of researchers paid attention to the elastodynamic response of an anisotropic
continuum in the last few years. In particular, transversely isotropic and orthotropic materials which may not be
distinguished from each other in plane strain and plane stress cases, have been more regularly studied. The static
problems of plane micropolar strain of a homogeneous and orthotropic elastic solid, torsion problems of
homogeneous and orthotropic cylinders in the linear theory of micropolar elasticity and bending of orthotropic
micropolar elastic beams by terminals couple were studied by Iesan [11-12-13]. Finite element method for
orthotropic micropolar elasticity was developed by Nakamura et al. [28]. Kumar & Choudhary [23-24-25] and [26-
27] have studied various problems in orthotropic micropolar continua.
Piezoelectric ceramics and composites find applications in many engineering applications e.g. sensors, actuators,
intelligent structures, rocket propelled grenades, ultrasonic imaging, when thermal effects are not considered.
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Piezoelectric ceramics and piezoelectric polymers are pyroelectric media, which are used in small structure and
intelligent system. The thermo-piezoelectric material response entails an interaction of three major fields, namely,
mechanical, thermal and electric in the macro-physical world. The thermopiezoelectric material has one important
application to detect the responses of a structure by measurment of the electric charge, sensing or to reduce
excessive responses by applying additional electric forces or thermal forces, actuating. Intelligent structure can be
designed by integrating sensing and actuating. The thermopiezoelectric materials are also often used as resonators
whose frequencies need to be precisely controlled. It is important to quantify the effect of heat dissipation on the
propagation of wave at low and high frequencies, due to the coupling between the thermoelastic and pyroelectric
effects. The theory of thermo-piezoelectricity was first developed by Mindlin [22]. The physical laws for the
thermo-piezoelectric materials have been explored by Nowacki [30-31-32]. Chandrasekharaiah [14-15] has
generalized Mindlin’s theory of thermo-piezoelectricity to account for the finite speed of propagation of thermal
disturbances. Chen [34] derived the general solution for transversely isotropic piezothermoelastic media. Hou et
al.[21] constructed Green’s function for a point heat source on the surface of a semi-infinite transversely isotropic
pyroelectric media. Abd-Alla et al. [8] investigated reflection and refraction of plane quasilongitudinal waves at an
interface of two piezoelectric media under initial stresses. Pang et al. [36] discussed the reflection and refraction of
plane waves at the interface between two transversely isotropic piezoelectric and piezomagnetic media. Different
researchers have studied the problems of reflection in piezoelectric media notable among them are Sharma et al.
[18], Abdalla and Alshaikh [8-9], Kuang and Yuan[37]), Abdalla et al. [10]), Alshaikh [16-17], Abd-Alla, Hamdan,
Giorgio and Vescovo [6], Guo and Wei [35], Othman [19], Othman, Atwa, Hasona and Ahmed [20], Abd-Alla,
Giorgio, Galantucci, Hamdan and Vescovo [7].

In the present paper, the reflection and transmission phenomenon of plane waves at an interface of two
orthotropic micropolar piezothermoelastic media has been discussed. It is found that there exist five plane waves in
micropolar orthotropic piezothermoelastic medium namely quasi longitudinal displacement wave, quasi thermal
wave, quasi coupled transverse displacement and quasi microrotational waves and one wave mode corresponding to
electric potential wave. When a plane quasi wave is incident at an interface, the amplitude ratios of various reflected
and transmitted waves are computed numerically and are plotted graphically with angle of incidence.

2 BASIC EQUATIONS

Following Green-Lindsay [5], the basic equations of homogeneous orthotropic micropolar piezothermoelastic solid
with two relaxation times in the absence of body forces, body couples, electric charge density and heat sources are
given by

(a) Constitutive relations

ty =Cu&y +Auw g —guE, — B, T +VI), (1)
m;, =D, w,, +A4,,& —e;E,, 2)
D, =€, E, +g, &, +4 T +VT), 3)
q, =—T0b,T tkye,, 4)

The deformation and wryness tensor are defined as following:
& =U e W, W =W, ®))
(b) Balance laws

Lak = Py (6)

My et Sy

= phi,, (7)

mn
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D, =0, ®)
q:; = _TO‘S;a ©)

where S =be, +B,&, + LE, +pc’ (T +vT)
where ¢,,, m,, are the stress tensor, couple stress tensor; D, is the electric displacement vector, £, is the electric
field vector, ¢, is the heat flux vector; S is the entropy; T is the thermodynamic temperature; 7, is the absolute
temperature; ¢~ is the specific heat at constant strain; v and v, are thermal relaxation times; p is the bulk mass
density; J is the microinertia; u, and w, are the components of displacement vector and microrotation vector,
respectively; €, is dielectric moduli; 4, is pyroelectric moduli; &

i

is thermal conductivity tensor; b, are the

;
coefficients characterizing the lack of a centre of symmetry, ¢, are the components of micro-strain tensor, €, is

G, .D

ijkl > ijkl > ijkl

ijk

the permutation tensor, f3,, is the thermal elastic coupling tensor; C are the characteristic constants of

material; g, is the electro-elastic coupling moduli where C,,,,D,,, g, satisfy the symmetric relations

Cyut =Cis> Dyt =Dyy» L = Luy- (10)

ijkl kiij > Hijkt

In a centrosymmetric bodies, all components of 4., vanish.

ijkl

3 FORMULATION OF THE PROBLEM

By using the transformations following Slaughter [33] on the set of Egs. (1) to (9), the equations for micropolar
orthotropic piezothermoelastic medium are derived.

We consider an interface of two homogeneous centrosymmetric, orthotropic micropolar piezothermoelastic
media initially in an undeformed state and at uniform temperature 7, , namely medium M, and medium M ,. We

take the origin of coordinate system on the plane interface and x , —axis pointing vertically into the medium M, is
taken which is designated as x, > 0. Plane waves are considered such that all the particles on a line parallel to

x, —axis are equally displaced, so that all the partial derivatives with respect to the variable x, will be zero.

Therefore, we take U= (ul,O,u3),v; = (O,w2,0),f =(E,,0,E,),E, :—§—¢,¢ is the electric potential and ai =0, so
X, X,
that the field equations and constitutive relations reduce to the following:
o'u ou, o’u o) o) 0 : o’u
C,—+C—+(Cy+C +(C,,-C + - = L
"o} P ox? Cot ) ar, )clax3 € 73) Oox T8 Ox 0x & 0Ox ,0x , ﬂl@xl o’ an
o’u ou, o’u ¢ ¢ o : o’u
C,,—2+Cyy—=+(C, +C +(C,,-C —+gy——-f—T +vl)= 2
3 ox? ﬁx Cyu+Co)—— x18x3 €y 33) xl &1 ox 8o ox? B 8x3( )=p Py (12)
ow, ow 0¢ ow,
Dy ——+Dy——5+(Cy C33) +(C77 Cw) P +(Cry=Cyy =20 W, +(g3 —g) =P — 5 (13)
Ox, ox; . Ox, ot
o’ ¢ ou, ou, ou,
—€, —5— + + + + A4, — (T +vT)=0,
1 o €53 6)632 (&n+ g13)5x18x3 &s1 ox & ox? A x3( )= (14)
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kl%m%—na%(ﬂ%%ﬁ%”j)—na%(ﬂg% - ST, (15)
ly =C9127“1+C9327”2—g%%—ﬁ30 +vT), (16)
15 =C7327”’i+c7727”?—g7]%’5], (17)
my, =Dy, ‘2:“ : (18)

where f =C, o, +C;, B, =Cqa,+Cypa;, o, a, are the coefficients of linear thermal expansion. We have
used the notations 11—1,12—>2,13—3, 21 >4, 225, 23 —>6, 31—>7,32—>8,33—>9 for the material

constants.
For convenient we introduce the following dimensionless quantities

* * *

. oX, . oX, ) .o . Cy ; 1 ; , c
X, =———- X, = —— u, =—u u, =—1u W, =—Ww L =—0., M. = m..

1 s 3 > 1 1> 3 3 2 2 ij i ij * i

cl c] cl cl C33 Cll @ D24
. 19)

. T N = . 1 . . , . . . C n C (

T =—, ¢=—¢ D, =—D,, t=0t, v=ov,v=0v, ¢="1, o’==2,
T, &3 813 P oJ

where ' is the characteristic frequency of the material and ¢, is the longitudinal wave velocity of the medium. By
using the dimensionless quantities in Egs. (11)-(15), we obtain the following equations

ou, ou, ou, ow, o’ 0 : o’u
+a +a +a —a,—T +vT)=a,—*,
o e e, o M aran, S, ) =45 (20)
ou, ou, ou, ) o’p o’p 0 : o’u
+a +a +a,—>+a,——a, — T +vT)=a,—,
o e T e, TS, Mg T g T gy ¢ )= 5 1)
%w %w o Oy 9 Fw,
6x12 14 6x32 15 ox, 16 o, 172 Ty o, 19752 0 (22)
o’p o’¢ ou, ou, Qu, . 0 :
—+a,,——a —a —a +a,,— T +vT)=0,
ox; 0 ox; 2 Ox 0x , ? ox; » ox 3 » Ox 4 ( ) (23)
o'T T, o ou, Ou, 0 ¢ 0 :
—+ay,—)——(ayy—+a,,—)——(ay, =) =a,,— T +v,T),
(axlz 246)632) at(zs ox, 26 o, at(275x3) 2sat( ) (24)
where
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_ C73 C19 +C77
a=—""2, a,= ,
11 Cll
_ Cy, _ Cy;+Cy,
a, =—=, a, = ,
37 Cy
2
_ P& _ Py
a13 - > al4 - > a15
C D
37 24

_ (g5 _g7l)Cllg13C12

a =
18 &)
CyDy € 0
Al ks
y; = > Gy = P
813 1

4 PLANE WAVE PROPAGATION

_ (€ —C)Cy _ (813 +8:1)81 a. = BT, a = pclz
3 > 4 > 5 > 6 )
(C11)2 C, & C C
_ (Cy;, —=C3,)Cs _ 83813 _ 89813 _ BT,
9 = s> G = > 4y = > dp = >
C,Cy, Cy & Cy & Cy
_ (C73 _Css)CuClz _ (C77 _C37)C11012 _ (C77 _C33 _2C37)C12 (25)
(C33D24)a)*2 T (C33D24)a)*2 CY Dz4a)*2 ’
_pJCIZ _ S a _8n*8s _8s _8o
19 = > Uy > 4y = > Uy = 23 = >
D,, €n 813 813 813
_ 012/81 _ cfﬂ} _ /13012g13 G = pC*Clz
- * > 26 * > 27 — * > 28 *
ok, ok, wk, €, ok,
We consider harmonic plane wave propagating in the x x; —plane at a given frequency o as:
(26)

where u,,u,,w,,4,T are functions of x, only, k is the wave number and ¢ =

sin

0

where c(= ﬁ) , v is the phase
@

velocity of wave propagating in x x, —plane along a direction making an angle 6, with x ; —axis.

Using Eq. (26) in Egs. (20)-(24), a system of five homogeneous equations is obtained in five unknowns

u,,us,w,,@,T , which for non-trivial solution yield

10 8
(Al d_m+A2 d_x+A3
dx , dx;

where

4, = a,a,a,,a,a,,,

*
4, = ay (haa, +hyaay + hya,, —heay )+ hyaya,, +a,a,0,0506,; +hgay,,

d6
6
3

—+4,

d4

—+A4;

4
3

2

2
X3

—+A6J:O,

27

A; =6, (haa, + hya,,a,) + hyayy —ayhe) +a,, (=6,k 2a1a7 +0,04811405 + Iy +ayhy —hk ? +he0; —ayh; +hy)

gy sy, b+ 8 (A g a0, ) + @ g8 a4 ay oy s By + 6y,
Ay = 8, (=0,k a0, +8,5,8,4an + by + @by =k by + 630y —ashy + o)+ a5, (hyg —ayhy —hok?
thy 8y +dghs =BGk +1,8,80) + Iy 8y + s = by +agyhyg —ashy, + 8,0 (@hyy + Sho, + by +
@, hyy + hyg0g) +a,, (B +ay, by, + Oghys + Oghyy +05hy3),
Ay =68, (=8,0k *hy + 8,0k, +ayhs —k *hy + 83k, —ayhg + ) +ay, (—hsk * + hySyy — 5,6,6,k *)+

iy Sy + hog — sk * + by — by + 6, (a By, + Sghy + g )+, Shy, + 8,0, hys + iy (84, + 8405 ),
Ag= 517(_hsk ’ +h8§13 _6‘156é‘10k2)+h13513 _hmk ’ +510(§8h21 +56h24)’
hy =6,y —kay,, h,=a6,+a,6,-68,0;, hy, =(a,6, —a,8,)atk +(5,6, —a,8,)as, h, =—a,a.a,;,

hy =96,0.a4k, h,=0,0,a,+vaa,a;+aa,, h,=05,0,(a +06,)+0,(50,, —,a;; —6,a,) +a,a,,0, +a,,6, +a,5,
hy = 6,6,6,, + 6,05, hy = (6,0, +a,a,51k )6,a5, hyy = 6,0,,(=0,0; +a36¢) +a,56,, (ask 55 — 166,k ),
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hy ==0,0,50,0,5, Iy, = 0,0,,0,,a; +0,0,0,4a,5, h; =—06,,0,,0,0;, h, =a,a,50,0,5, h5=0a,0,,0,0,,tk —06,0,0,5a;;,
hyg ==0,0,0,,a,5tk , Iy, ==06,04(a,30,5 + 0,505 ) — 0,04 (0,050 — 0,505 ) + 0,04 (0,,0,5 + 0,403 ) + 0,05 (a0, + 0,483) +
8,01:(3:6,5 = 8,4a1,) + 8,6,,(6,4a, = 565),

Iy = 8,(6,8,5, +6.8,5k% —8,5.6,, + 8,5,k >) = 8,5,(8,5k > + 6,8, )+ 6,5 (8:5, —5,8,),

hyy = 8,0,a,, +@,0,50,5015, Ty = 8,0,0,, —8,(5,,8,5 + 0,4y, ) — 1,1k 5,55,

hy =8,600, hy ==0,0,05, +0,0,,0,013,  hyy = —=0,0,,0,; +6,(0,,8,5 — 6140y ) — 4381, 6,403,

By = 8,6k, oy = —a, 8,5, (5,8, + 1kt 8,0) + 5.0, (5,8, — 5,3,) + 4055, (5,55 + thatS,),

Doy =(8,0,0,, — 6,0,6,, (8,05 + 1k, ;0,6) +5,0,0,4(8,,6,5 +1ka, 3,y ), Iy = —0,a,(ay30, + 5,5 ),

o, =a,0 —k*, & =-aik, & =-a,k, J,=aik(l+ivw), 5 =-aik, &, =a,0" —k’,

8, =—ajik, & =-ayk’, 0,=-a,(l+vw), &,=a,0" +a,—k>, &, =ayk,

Oy =aytk, 6,=ayk’, 0,=a,(l+vw), &,=-akeo, 5 =-a0, O, =—a,l,

S,

i =~y (10— a’v,)~k’

The roots of the Eq. (27) give the velocities of five plane waves in the decreasing order of the velocities i.e quasi
longitudinal displacement wave (quasi LD wave), quasi thermal wave (quasi T wave), quasi CD-I, quasi CD-II wave
and electric potential wave (PE wave).

5 REFLECTION AND TRANSMISSION

We consider an interface of two homogeneous orthotropic micropolar piezothermoelastic media in contact with each
other. A plane wave quasi LD wave or quasi thermal wave is incident making an angle 6, with x, —axis at an

interface. Each incident wave results in five reflected wave modes in medium M| which is designated as x; >0 and
five transmitted wave modes in medium M, which is designated as x, <0. In medium M, and mediumM ,,

reflected and transmitted wave modes are represented by quasi LD wave, quasi thermal wave, quasi CD-I wave,
quasi CD-II wave and one other mode corresponding to electric potential wave mode i.e. PE wave mode. All the
quantities in medium M , are denoted by bar.

The values of displacements, microrotation, electric potential and temperature distribution in medium M  are

given by

-2 — 2y iy g — ) A . y;
u(x;)=(Be ™ +Be ™ +Be ™ +Be " +Be " +B e’ +Be” +Be” + B’ +
B /15,‘(3) i(ot—kxy) (28)

10€ e ,
u,(xy)=(mBe ™ +m,B,e ™ +m,Be ™ +m,Be " +mBe " +mBe” +m,Be™ +mBe " +
m4BgeL‘X3 +mSBloei5x3 )e[((ut—kx,)’ (29)
w,(x;)= (nlBlef;“'“ ++nsze%” +n3B3€%‘3 -&—;'1434@’;““3 +n535e7%x3 -&—nlBée‘/l"‘3 +nzB7e%“3 +nSBge’A“” +
B B el (30)
px,)=(gBe " +g,Be ™ +g.Be ™ +g,Be " +gBe " +gBe" +g,Be” +g.Be’ +
3 815, 8,0 8305 84Dy 85D 81D 8,04 83Dy 3
haxs T 1
g4Bge}4 3 +gSBIOE% 3)e’(10f /ﬁ’fy), ( )
T(x;)=(lBye ™" +1,Be ™ +1,B.e ™ +1,Be ™" +1,Be ™" +1Be™ +1,B.e”™ +1,Be™" +
(32)

AyX 3 Asx 3 i(at—kx)
[,Bee™" +1B e )e v,
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and for medium M ,:

u,(ry) = (Bye ™ +Bpe 0 +Be ™ +Be 0 4B 0 !, (33)
”_3()‘73) = (m_lBlle%x3 +r723|2€72x} ""773313672){3 ""77431467/17)CS ""77531597@.3 )ei(wtikxl)s G4
W_z(x3) = (”_1311672” +Z312672X3 +n—3313€77ﬂ3 +n—4314eiz)(3 ""'1_531567@(3 )ei(u_kxl)a (33)
Bx,)=(g,B,e " +g,Be " +g,B e +g, B e " +g. Be ¥ e @, (36)
TT(x3) :(ZBne_ZX3 +1—23126_sz +ZBl3e_Zx} +1—43146_sz "'l_sBlse_Z:Xj )ei(atikx')s G7

where 4, 4,, 4, 4,, 4 are the velocities of reflected quasi LD wave, quasi T wave, quasi CD-I wave quasi CD-II

LD wave, quasi T wave, quasi CD-I, quasi CD-II wave and PE wave mode respectively in medium M, .

and
m, =ﬁ, n, =ﬁ, g, =£, l; =ﬁ, i =1,2,3,4,5
A A A A
a, A} + 3, 0, a, A’ + 6 Oy A,
Ac —a,.tk a A +6, o, 0
—4123/11‘2 +0,, 0 azo/if -k’ a; 1+ vw) 4,
51515 O 51611' 6124/’1’/2 + 517
54, o, a A+ 6, Oy,
A] — alSAi a14ﬂ’i2 +é‘10 fll , s O
oA, 0 ayld —k°  a(1+1vo)l,
614 0 é‘l6ﬂ’i a24ﬂ’i2 + 517
O A, aMI.Z +8,  a Al +3, Oy,
A, = a54; —a,gtk dy, . 0 (38)
04, —a23/1,.2 + 0, az()/l,.2 -k’ a,,(1+1vw) 4,
4 54; O64; ‘124/11'2 +6,
oA, a, A} + 3, o, Oy A,
A = alsﬂ’i _alblk a14/1i2 +510 0
S, —anAt 46, 0 a5y (1+ 1v) A,
514 51517 O a242’i2 + 617
054, a, Al +3, o, a A+ 6,
A = alsﬂv _alolk a14/1[2 +510 511
S A —an Al + 8, 0 ay Al —k?
6‘14 515/11' 0 51611'
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6 BOUNDARY CONDITIONS
The appropriate boundary conditions at an interface x, =0 are given by

i o
Ly =ty , b =ty, my=my, ky—=k;—, u,=u,, wu,=uy, w,=w,, T =T, E =E,, D,=D, 39)

Making use of Eqs. (28) to (37) in boundary conditions given by Eq. (39), we obtain a system of ten
homogeneous equations as:

15
Z;aﬁBj =0; (i =1,2, ,10) (40)
J=
where
a, =—djk —d,Am, +d; A g, —d,(1+wwv)l,, a;,=—dik +d,m, —dAg, —d,(1+wv)l,,

a, =dik +(d,m, —d,g )}, +d,(1+10v)l,,

ay =—ah +(deg; —dsm )ik, ay; =ad +(dg, —dsm, )ik, ay :‘ZZ+(‘Z’”_i_‘ngT)lka

ay =—d;An;, ay; =d;An;,  ay, :‘ZZZ> ay ==Al, a,; =41, a, :ds/TfZa

ag; =1, a;; =1, ay =-1, ag=m;, a; =0, ag :_m_i’ 40
ay =n;, a; =0, ay, __Z’ ag =1, ag; =0, agy :_Z’

a, =-tkg,, a,, =0, a, =tkg, a, =-d,Ag, —tkd,~d Am, +ay,(l+1vo),

a; =dyA;g; —tkd,, +d, m, +ay(1+1vw),  ay, :‘Z/Tig_i_lk‘Tm+‘TuZ’7i+‘T;(l+l;w)a
i=1,2,34,5 j=6,78910, k=1112,13,14,15

where

C C T C

d == dZZC_%’ d3—g%cgl3, d4—ﬁ50, dszc_wy d6:g71§13:
1 1 énbn 1 1 &b
Dy C k,

d; = St d8:_37 d, 633’ dlo—&: dn_&
D,C,, ky S & 13

aTl:i, _2:&, Z_g%cgls’ d_4—ﬁéTo’ _SZC_W’ d_‘):gﬂgm,
1 1 enbn 1 1 el

DX, — = — 37— &

7= St dt)_i’ dw:J’ 11:i
D,C,, S 8 &

when quasi LD wave is incident: B, =B, =B, = B, =0. Dividing the set of equations throughout by B, , we obtain

a system of ten non-homogeneous equations in ten unknowns which can be solved by Crammer’s rule and we have

zZ :LS:% 1 =1,2,3,4,5,6,7,8,9,10

when quasi T wave is incident: B, = B, = B, = B, = 0. Dividing the set of equations throughout by B, , we obtain a
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system of ten non-homogeneous equations in ten unknowns which can be solved by Crammer’s rule and we have

I
Z, =—2=—L1_:i=123,45,6,7,8910
B, T
where I = |a“ +5| 1040° and T7( =1,2,3,........ 100 (p =1,2,3,........ ,10)can be obtained by replacing, respectively
the 1%, 2™,............ , 10" columns of T by [a,,,~a,,, @5, @, eeeeeeees ay, |-

7 PARTICULAR CASES

If we neglect piezoelectric effect in medium A/,, we obtain amplitude ratios at an interface of orthotropic

micropolar piezothermoelastic solid and orthotropic micropolar thermoelastic solid with the values of a; as:

a, =—dtk =d,Am, +d;A g, —d,(1+wv)l,, a, =—dik +d,Am, —d;Lg, —d,(1+i1wv)l,,
a,, =dk +(d,m, —d,g )2 +d,(1+1v)l,,

ay ==k +(deg; —dsm, )ik, ay; =ad +(deg; —dsm, )ik, ay =a_lZ+(d_5nT[_d_6g_i)lk’

ay, =—=d,An,, @, =d;An;, ay :‘ZZZ3 a,; =-A4l;, Ay =L, ay :dSZlT’

ag; =1, a;; =1, ay =-1, ag=m;, a; =0, ag :_m_m

ay, =n;, a,; =0, ay :_Za ag =1, a; =0, ay :_Za

a, =-dyA.g, —tkd,,—d, A m, +a,,(1+1ve), ay, =dyA, g, —tkd,,+d A,m, +a,(1+vw), a, =0,

i=1,234,5 j=6,78910, k=11121314

By neglecting the micropolarity effect in medium A/, , we obtain amplitude ratios at an interface of orthotropic

micropolar piezothermoelastic solid and orthotropic piezothermoelastic solid with the values of a; as:

a, =—dtk —d,Am, +d;Ag, —d,(1+wv)l,, a;=-dik+d,Am,-d.Ag, —d,(1+w0v),
ay =dyk +(d,m, —d,g ) +d,(1+wv)l;,

ay =—ak +(deg; —dsm, )ik, ay; =ak; +(dgg; —dsm, )ik, oy :a_lzi"'(d_snTi_d_tsg_i)lka
ay, =—d,An,, ay; =d;An;, ay =0, a,; =—A4l;, a,; =41, Ay :dSZl_i’

i T

a, =1, a,; =0, ay=-l, a,=-tkg,, a,;=0, ay =lkg_l.,

ay, =—d A, g, —tkd,,—d A m, +a,(1+1vo), ay, =dyA, g, —tkd,, +d, A;m, +ay, (1+ 1vo),
ay =d, A g, ~tkd,y +d, A m, +a,(1+wo),

i=123475 j=6728910, k=1112,1314

If we neglect piezoelectric and micropolarity effects in medium M  and M ,, our results tally with those obtained
for perfect bonding case.

© 2017 IAU, Arak Branch



R.Kumar and M.Kaur 517

8 NUMERICAL RESULTS AND DISCUSSION

In order to determine the amplitude ratios, the method of crammer’s rule has been used and computer program in
Matlab 7.8 has been developed.
The physical data for medium M, is given by

C, =746x10°Nm>, C,=39x10°Nm™>, C,=137x10°Nm~, C, =839x10°Nm~,

Cy, =0.399x10°Nm =, C,, =0.0138x10°Nm ™, C,, =0.134x10°Nm~>, C,,=132x10°Nm >,
g, =-0.142x10"%em >, g, =-0.165x10"cm >, g, =0.351x10"cm ™, g, =-0.139x10"cm >,
£,=829x10"Nm? /K, &,=9.07x10"Nm>/K, A =7.6x10°cm™/K, v,=038s,
k,=9.5Wm K™, k,=97Wm K™, B =0670x10°C’N "'m>, B, =0.581x10°C°N "'m™,
v=026s, T,=298K, p=5504Kgm™>, c =2.64x10°NmKg 'K, J=0.02x10"m>,

D,, =0.134N, D, =0243N,

and for medium M, is given by

=0.141x10°Nm 2, C,,=0.786x10°Nm >, C,,=26.1x10°Nm=>, C,,=1.81x10°Nm,

a

11

=75.8x10°Nm™, C,,=269x10°Nm>, C,,=26.6x10°Nm™>, C.,=263x10°Nm~,

5 =0.013x10%em 2, g, =—0.061x10%cm %, g,, =0.00157x10%cm 2, g, =1.28x107cm 2,
£, =0.530x10"Nm? /K, &,=0708x10"Nm™>/K, A, =82x10"%cm™/K, v, =0.6s,

a

91

0Q

=1LWmTK?, ky=1.WmT'K™, B =0.526x10°C>N 'm, B, =0.355x10°C2N 'm?,

v=025s, T,=330K, p=7500Kgm>, c =350NmKg 'K, J=2.0x10"m">,

D,,=0.119N, D, =0.127N,

Figs. 1-20 show the variations of amplitude ratios with angle of incidence for incidence of plane waves at an
interface for GL-theory. In Figs. 1-20 MPT corresponds to amplitude ratios in orthotropic micropolar

piezothermoelastic solid, WPE corresponds to amplitude ratios in orthotropic micropolar thermoelastic solid, WMP
corresponds to amplitude ratios in orthotropic piezothermoelastic solid.

8.1 Quasi LD wave incidence

;1<i <10 with angle of incidence §, for incidence of

Figs. 1-10 represent the variations of amplitude ratios |Z .
quasi LD wave.

Fig. 1 shows that the values of amplitude ratio |Z 1| for MPT, WMP and WPE increase from normal incidence to
grazing incidence. It is noticed that the values of amplitude ratio for WMP are less than the values for WPE. It
shows that the micropolarity effect increases the magnitude of amplitude ratio. The values of amplitude ratio |Z 1| for
WMP are magnified by multiplying by 10

It is noticed clearly from Fig. 2 that the values of amplitude ratio |Z 2| for WPE start with minimum value at

normal incidence and then increase gradually to attain maximum value at the grazing incidence, while the values for
WMP decrease with increase in angle of incidence. The values of amplitude ratio for orthotropic piezothermoelastic
solid are greater than the values for orthotropic micropolar thermoelastic solid that reveals the micropolarity effect.

From Fig. 3 it is clearly revealed that the values of amplitude ratio |Z 3| for MPT increase in the whole range. It

is observed that the values of amplitude ratio for orthotropic micropolar piezothermoelastic solid are greater than the
values for orthotropic piezothermoelastic solid and orthotropic micropolar thermoelastic solid.
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Fig. 4 depicts the variation of amplitude ratio |Z 4| with angle of incidence. The values of amplitude ratio for

MPT and WPE increase, while WMP oscillate with increase in angle of incidence. The values of amplitude ratio for
WPE are greater than the values of amplitude ratio for WMP.

Fig. 5 shows that the values of amplitude ratio |Z 5| for MPT,WPE and WMP attain minimum value at normal
incidence and then the values increase sharply as 6, increases. The values for MPT are greater than the values for

WMP and WPE in the whole range.
Fig. 6 shows that the values of amplitude ratio |Z 6| for WPE increase with angle of incidence, while the values

for WMP decrease. In this case, the removal of micropolarity effect increases the magnitude of amplitude ratio. Fig.
7 depicts that the values of amplitude ratio |Z 7| for MPT and WMP increase as angle of incidence increases, while

the values for WPE decreases.
It is noticed from Fig. 8 that the values of amplitude ratio |Z 8| for MPT, WMP and WPE increase with increase

in angle of incidence. The values for WMP are greater than the values for MPT in the whole range.
Fig. 9 reveals that the values of amplitude ratio |Z 9| for WPE attain maximum value at normal incidence and

then decrease in the further range and are greater than the values for MPT in the whole range. It is depicted from
Fig. 10 that the values of amplitude ratio |Z | for MPT increase in the whole range. The values for MPT are less

than the values for WMP in the whole range.
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Fig.3
Variation of amplitude ratio |Z,| with angle of incidence.

Fig.4
Variation of amplitude ratio ‘Z 4‘ with angle of incidence.

Fig.5
Variation of amplitude ratio |Z 5| with angle of incidence.

Fig.6
Variation of amplitude ratio |Z 6| with angle of incidence.
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Fig.7
Variation of amplitude ratio ‘Z 7‘ with angle of incidence.

Fig.8
Variation of amplitude ratio ‘Z 3‘ with angle of incidence.

Fig.9
Variation of amplitude ratio ‘Z 9‘ with angle of incidence.

Fig.10
Variation of amplitude ratio |Z 10| with angle of incidence.
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8.2 Quasi T wave incidence

Figs. 11-20 represent the variations of amplitude ratios |Z 1|;l <i <10 with angle of incidence 6, for incidence of

quasi T wave.

Fig. 11 shows that the values of amplitude ratio |Z 1| for WPE start with maximum value at normal incidence
and then the values decrease to attain minimum value at the grazing incidence. It is seen that the values for MPT
increase with angle of incidence.

Fig. 12 depicts the variation of amplitude ratio |Z 2| with angle of incidence. The values of amplitude ratio for
MPT decrease with angle of incidence to attain minimum value at the grazing incidence. In this case, the removal of
piezoelectric effect and the removal of micropolarity effect increases the magnitude of amplitude ratio.

It is noticed from Fig. 13 that the values of amplitude ratio |Z 3| for WPE get increased, while the values for
MPT get decreased with angle of incidence. It is seen that absence of micropolarity effect raises the magnitude of
amplitude. Fig. 14 shows that the values of amplitude ratio |Z 4| for WPE remain less than the values for MPT and
WMP in the whole range.

Fig. 15 depicts that the values of amplitude ratio |Z 5| for MPT decrease in the whole range, except the initial
range where the values of amplitude ratio get increased. The values of amplitude ratios for MPT are greater than the
values for WMP in the whole range.

Fig. 16 shows that the values of amplitude ratio |Z (,| for MPT, WPE and WMP are very small in magnitude and
oscillate from normal incidence to grazing incidence. The absence of micropolarity effect increases the magnitude of
amplitude ratio in this case. It is seen from Fig. 17 that the values of amplitude ratio |Z 7| for WPE get increased

with increase in @, . The values for MPT increase in the whole range, except the initial range, where the values

decrease.
It is depicted from Fig. 18 that the values of amplitude ratio |Z 8| for MPT start with minimum value at the normal

incidence and then increase to attain maximum value near the grazing incidence. The values for WPE decrease in
the whole range. The values of amplitude ratio in the absence of piezoelectric effect are smaller than the values in
the presence of piezoelectric effect.

Fig. 19 shows that the values of amplitude ratio |Z 9| for MPT and WPE attain maximum value at the normal

incidence and then decrease to attain minimum value at grazing incidence. Fig. 20 depicts that the values of
amplitude ratio |Z 10| for MPT increase sharply in the initial range and then decrease as long as 6, increases. In this

case, the micropolarity effect increases the magnitude of amplitude ratio in the whole range.
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Figs. 21-24 show the variations of wavefronts of displacement, microrotation and temperature with respect to
x, -axis for time instants =1 and ¢ =5 secs in orthotropic micropolar piezothermoelastic half-space.

Figs. 21 and 23 depict that the amplitude of horizontal displacement #, and microrotation w, decreases with
increase in the value ofx . The values for # =5 are greater than the values for ¢ =1, which shows that as the time

increases the amplitude increases.
Figs. 22 and 24 show the variation of vertical displacement u, and temperature 7 with respect to x, -axis. It is

observed that the values of vertical displacement u, and temperature T" first decrease and then increase.
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9 CONCLUSIONS

The reflection and transmission coefficients of various plane quasi waves on incidence of quasi LD wave and quasi
T wave at an interface of two orthotropic micropolar piezothermoelastic media are obtained in the present paper. It
is noticed that reflection and transmission coefficients are influenced by piezoelectric and micropolarity effect. It is
seen that when quasi LD wave is incident, the values of amplitude ratios of reflected quasi T wave in the absence of
micropolarity effect are greater that reveals the effect of micropolarity. When quasi T wave is incident, the
piezoelectric effect increases the magnitude of amplitude ratio of reflected quasi CD-II wave and transmitted quasi
CD-II wave modes. The problem investigated in this paper has wide applications in signal processing and wireless
communication in addition to improvement of SAW wave devices and defence equipment.
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