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 ABSTRACT 

 The present study is concerned with the propagation of Lamb waves in a homogeneous 

isotropic thermoelastic micropolar solid with two temperatures bordered with layers or 

half spaces of inviscid liquid subjected to stress free boundary conditions. The 

generalized theory of thermoelasticity developed by Lord and Shulman has been used 

to investigate the problem. The secular equations for symmetric and skew- symmetric 

leaky and nonleaky Lamb wave modes of propagation are derived. The phase velocity 

and attenuation coefficient are computed numerically and depicted graphically. The 

amplitudes of stress, microrotation vector and temperature distribution for the 

symmetric and skew-symmetric wave modes are computed analytically and presented 

graphically. Results of some earlier workers have been deduced as particular cases. 

                                       © 2016 IAU, Arak Branch.All rights reserved. 

 Keywords : Micropolar; Thermoelastic; Secular equations; Phase velocity; Attenuation 

coefficient; Symmetric and Skew-symmetric amplitudes.  

1    INTRODUCTION 

 RINGEN [1] developed the theory of micropolar elasticity which has aroused much interest in recent years 

because of its possible utility in investigating the deformation properties of solids for which the classical theory 

is inadequate. 

Lord and Shulman [2] considered a wave type heat equation by postulating a new law of heat conduction(the 

Maxwell Cattaneo equation) to replace the classical Fourier law. The heat equation of this theory is of wave type, 

therefore  it automatically ensures finite speeds of propagation for heat and elastic waves. The remaining governing 

equations for this theory, namely, the equations of motions and constitutive relations remain the same as those for 

the coupled and uncoupled theories. 

The linear theory of micropolar thermoelasticity was developed by extending the theory of micropolar continua 

to include thermal effect. The comprehensive review on the subject was given by Eringen [3, 4] and Nowacki [5]. 

Touchert et al [6] also derived the basic equations of the linear theory of micropolar coupled thermoelasticity. The 

generalized thermoelasticity was presented by Dost and Taborrok [7] by using Green and Lindsay theory. 

Chandrasekharaiah [8] developed a heat flux dependent micropolar thermoelsticity. Boschi and Iesan [9] extended 
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the generalized theory of micropolar thermoelasticity that permits the transmission of heat as thermal waves at finite 

speed.  

Thermoelasticity with two temperatures is one of the non-classical theories of thermoelasticity of elastic solids. 

The thermal dependence is the main difference of this theory with respect to the classical one. Chen et al [10,11] 

have formulated a theory of heat conduction in deformable bodies, which depend on two distinct temperatures, the 

conductive temperature   and thermodynamic temperature T. For time independent situations, the difference 

between these two temperatures is proportional to the heat supply. For time dependent problems and for wave 

propagation problem in particular, the two temperatures are in general different, regardless of the presence of heat 

supply. Warren and Chen [12] investigated the wave propagation in the two temperature theory of thermoelasticity. 

For non-destructive evaluation of solid structures, the study of the interaction of elastic waves with fluid loaded 

solids has been recognized as a viable means. The reflected acoustic field from a fluid solid interface has great 

information, which reveals details of many characteristics of solids. 

Theoretical and experimental verifications of these phenomenon have been conducted for a wide variety of 

solids extending from the simple isotropic semi-space to the much more complicated systems of multilayered 

anisotropic media. Nayfeh [13] has presented a detailed review of the available literature on this subject. The 

influence of viscous fluid loading on the propagation of leaky Rayleigh wave in the presence of heat conduction 

effects was studied by Qi [14]. Subsequently, Wu and Zhu [15] suggested an alternative approach to the treatment of 

Qi [14]. They presented solutions for the dispersion relations of leaky Rayleigh waves, when heat conduction is 

neglected. The same method was adopted by Zhu and Wu [16] for Lamb waves in submerged and fluid coated 

plates. 

Nayfeh and Nagy [17] derived the exact characteristic equations for leaky waves propagating along the 

interfaces of several systems involving isotropic elastic solids loaded with viscous fluids, including semi- spaces and 

finite thickness fluid layers. The technique adopted by Nayfeh and Nagy [17] removed certain inconsistencies that 

unnecessarily reduce the accuracy and range of validity of the Zhu and Wu [16] results.    

Youssef [18] presented a new theory of generalized thermoelasticity by taking into account the theory of heat 

conduction in deformable bodies, which depends on distinct conductive and thermodynamics temperatures. He also 

established a uniqueness theorem for the equation of two temperature generalized linear thermoelasticity for a 

homogeneous and isotropic body. Various authors studied the problems of thermoelastic medium with two 

temperatures notable among them are Puri and Jordan [19], Youssef and Al-Lehaibi [20], Youssef and Al-Harby 

[21], Magana and Quintanilla [22], Mukhopadhyay and Kumar [23], Roushan and Santwana [24], Kaushal et al 

[25,26].  

Various authors investigated the problem of wave propagation in thermoelastic plates e.g. Nowacki and Nowacki 

[27], Kumar and Gogna [28], Tomar [29,30], Kumar and Pratap [31,32,33,34,35,36], Sharma et.al. [37], Sharma and 

Kumar [38]. 

In this paper, we study the propagation of wave in an infinite homogeneous micropolar thermoelastic plate with 

two temperatures bordered with layers or half-space of inviscid liquid. The secular equations for different conditions 

of solutions have been deduced from the present one. The phase velocity and attenuation coefficient are computed 

numerically and depicted graphically. The amplitudes of stress, microrotation vector and temperature distribution for 

the symmetric and skew-symmetric wave modes are computed analytically and presented graphically for LS-theory. 

2    BASIC EQUATIONS    

Following Eringen [1] and Ezzat and Awad [39], the field equations in an isotropic, homogeneous, micropolar 

elastic medium in the context of generalized theory of thermoelasticity with two temperatures, without body forces, 

body couples and heat sources, are given by 
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and the constitutive relations are  

 

   , , , ,= ,ij r r ij i j j i j i ijr r ijt u u u K u T                      (4) 

 

, , ,= , , , = 1, 2, 3ij r r ij i j j im i j r                (5) 

 

where 
2 is the Laplacian operator,   and   are Lame's constants. , ,K   and   are micropolar constants. 

ijt are 

the components of the stress tensor and
ijm are the components of couple stress tensor. u and  are the displacement 

and microrotation vectors,   is the density, ĵ  is the microinertia, 
*K  is the thermal conductivity, *c is the specific 

heat at constant strain, T is the thermodynamic temperature,   is the conductive temperature, 
0T is the reference 

temperature,  = 3 2 ,
T

K      where 
T  is the coefficient of linear thermal expansion , ij  is the Kronecker 

delta, 
ijr  is the alternating symbol. T and are connected by the relation 

2(1 )T a     .  

Following Achenbach [40], the field equations can be expressed in terms of velocity potential for inviscid fluid 

as: 
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where 2 L

L

L

c



  is the velocity of acoustic fluid, 

L  is the bulk modulus, 
L  is the density of the fluid, 

Lp is the 

acoustic pressure in the fluid, 
L is the velocity potential of the fluid, 

Lu is the velocity vector,  is gradient 

operator,

 

2  is the Laplacian operator. 

3    FORMULATION OF THE PROBLEM    

We consider an infinite homogeneous isotropic, thermally conducting micropolar thermoelastic plate of thickness 

2d  initially undisturbed and at uniform temperature 0T . The plate is bordered with infinitely large homogeneous 

inviscid liquid half spaces or layers of thickness h on both sides as illustrated in Figs. 1(a) and 1(b). We take origin 

of the co-ordinate system 1 2 3( , , x )x x on the middle surface of the plate and 1x -axis is taken normal to the solid 

plate.  

For two dimensional problem, we take 

 

       1 1 3 3 1 3 2 1 3= , , 0, , , = 0 , , , 0u u x x u x x x x             (8) 

 

For inviscid fluid, we take  

 

    1 3 1 3= , , 0, ,L L

Lu u x x w x x          

 

For convenience, the following non-dimensional quantities are introduced  
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,

* is the characteristic frequency of the medium, 
Lc is the velocity of sound 

in the liquid, 
L is the density of the liquid and 

L is the bulk modulus. 

The expressions relating the displacement components
1u and 

3u to the potential functions ,   in dimensionless 

form after suppressing the primes are taken as: 

 

1 3

1 3 3 1

= , = ,u u
x x x x

      
 

   
           

 

(10) 

 

In the liquid layers, we have  
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where 
iL  are the scalar velocity potential components for the top liquid layer ( 1i  ) and for the bottom liquid 

layer ( 2i  ). 
L

iu and ( 1,2)L

iw i   are the 
1x  and 

3x components of the particle velocity for the top liquid layer and 

the bottom liquid layer respectively. 

Making use of Eqs. (8)-(11) in Eqs. (1)-(7) and after suppressing the primes, we obtain  
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We consider the propagation of plane waves in the 
1 3x x  plane with a wavefront parallel to the 

2x -axis, 

therfore, 
12, , , , L    and 

2L are independent of 
2x -coordinates. We assume the solutions of Eqs. (12)-(16) of the 

form 
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where c



  is the non-dimensional phase velocity,   is the frequency and  is the wave number. 

Using Eq. (17) in Eqs. (12)-(16), we get 
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Eliminating 
4 3( )f x from Eqs. (18) and (19) and eliminating

3 3( )f x  from Eqs. (20) and (21), we obtain 
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The roots of Eqs. (23) and (24) are given as 
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appropriate potentials
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2L will be obtained as: 
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4    BOUNDARY CONDITIONS   

The boundary conditions at the solid-liquid interfaces 3x d  are given by: 

(i) The magnitude of the normal component of the stress tensor 33( )st of the plate should be equal to the pressure 

of the liquid .Lp  

  

33( )s Lt p   (31) 

        

(ii) The tangential component of the stress tensor should be zero. 

 

31( ) 0st   (32) 

 

(iii) The tangential component of the couple stress tensor should be zero. 

 

32( ) 0sm   (33) 

 

(iv)The normal velocity component of the solid should be equal to that of the liquid. 

 

3( ) ( )L

su w  (34) 

           

(v) The thermal boundary conditions is given by 



501                     Response of Two Temperatures on Wave Propagation in Micropolar …. 

© 2016 IAU, Arak Branch 

3

0,H
x


  


 

 

(35) 

 

where H is the surface heat transfer coefficient. Here 0H   corresponds to thermal insulated boundaries and 

H   refers to isothermal one. 

4.1 Leaky lamb waves 

The complete solutions for solid media of finite thickness 2d sandwiched between two liquid half spaces is given by 

Eqs. (25)-(28) and 
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4.2 Nonleaky lamb waves 

The corresponding solutions for a solid media of finite thickness 2d sandwiched between two finite liquid layers of 

thickness h is given by Eqs. (25)-(28) and 
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Nonleaky and leaky lamb waves are distinguished by selecting the functions 
1L and 

2L in such a way that the 

acoustical pressure is zero at 3 ( )x d h  . This shows that 
1L and 

2L are solutions of standing wave and 

travelling wave for nonleaky lamb waves and leaky lamb waves respectively. 

5    DERIVATION OF THE DISPERSION EQUATIONS   

We apply the already shown formal solutions in this section to study the specific situations with inviscid fluid.  

5.1 Leaky lamb waves 

We consider an isotropic thermoelastic micropolar plate with two temperatures completely immersed in a inviscid 

liquid as shown in Fig. 1(a). The thickness of the plate is 2d and thus the lower and upper portions of the fluid 

extend from 3x d to  and 3x d  to   respectively. In this case, the partial waves are in both the plate and 

the fluid. The appropriate formal solutions for the plate and fluids are those given by Eqs. (25)-(28), (36) and (37). 

By applying the boundary conditions (31)-(35) at 3x d  and subsequently requiring nontrivial values of the 

partial wave amplitudes kE and kF , ( k=1, 2, 3, 4); 5 6,E F and 0,L  we arrive at the characteristic dispersion 

equations as: 
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where 
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For stress free thermally insulated boundaries ( 0H  ) of the plate and 
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For stress free isothermal boundaries ( H  ) of the plate. 

5.2 Nonleaky lamb waves 

We consider an isotropic thermoelastic micropolar plate with two temperatures bordered with layers of inviscid 

liquid on both sides as shown in Fig. 1(b). 

The appropriate formal solutions for the plate and fluids are given by Eqs. (25)-(28), (38) and (39). By applying 

the boundary conditions (31)-(35) at 3x d  and subsequently requiring nontrivial values of the partial wave 

amplitudes kE and kF , ( k=1, 2, 3, 4); 5 6,E F and 0,L  we arrive at the characteristic dispersion equations as: 
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For stress free thermally insulated boundaries ( 0H  ) of the plate. 
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For stress free isothermal boundaries ( H  ) of the plate. 
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Here the superscript +1 refers to skew-symmetric and -1 refers to symmetric modes. 

Eqs. (40) and (43) are the general dispersion relations involving wave number and phase velocity of various 

modes of propagation in a micropolar thermoelastic plate bordered with layers of inviscid liquid or half spaces on 

both sides. 
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(a) 

 
(b) 

Fig .1 

a) Geometry of leaky Lamb waves. (b) Geometry of nonleaky Lamb waves. 

6    SPECIAL CASES  

If the liquid layers or half spaces on both sides are removed, then we are left with the problem of wave propagation 

in micropolar thermoelastic solid with two temperatures. For this, we take 0L  in Eqs. (40) and (42), the secular 

equations for stress free thermally insulated boundaries ( 0H  ) for the said case reduce to 
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Subcase (i): In this case, if 0a   then we obtain the secular equations in micropolar generalized thermoelastic 

plate. 

7    AMPLITUDES OF DILATATION , MICROROTATION AND TEMPERATURE DISTRIBUTION  

In this section the amplitudes of dilatation, microrotation and temperature distribution for symmetric and skew-

symmetric modes of waves have been computed for micropolar thermoelastic plate. Using Eqs. (18)-(25) and (28)-

(35), we obtain 
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8    NUMERICAL RESULTS AND DISCUSSION    

To illustrate theoretical results obtained in the preceeding sections and to compare these in the context of Lord and 

Shuman theory of thermoelasticity, we now present some numerical results. The material chosen for this purpose is 

Magnesium crystal (micropolar elastic solid), the physical data for which is given below: 

 (i) Micropolar parameters 
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(ii) Thermal parameters 
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For numerical calculations, water is taken as liquid and the speed of sound in water is given by 
3=1.5 10 / secLc m . 

In general, wave number and phase velocity of the waves are complex quantities, therfore, the waves are 

attenuated in space. If we write 

 
1 1 1 ,C V i Q     (50) 

 

Then ,R iQ     where R
V

 and Q are real numbers. This shows that V is the propagation speed and Q is 

the attenuation coefficient of waves. Using Eq. (50) in secular Eqs. (40) and (42), the value of propagation speed V 

and attenuation coefficient Q for different modes of propagation can be obtained. 

In Figs. 2 to 9,  LLS and LNLS refer to leaky and nonleaky symmetric waves in micropolar thermoelastic solid 

with two temperatures, LLSK and LNLSK refer to leaky and nonleaky skew-symmetric waves in micropolar 

thermoelastic solid with two temperatures, LALS and LANLS refer to leaky and nonleaky symmetric waves in 

micropolar thermoelastic solid, LALSK and LANLSK refer to leaky and nonleaky skew-symmetric waves in 

micropolar thermoelastic solid. In Figs. 10 to 15, GT represents the amplitude for micropolar thermoelatic solid with 

two temperatures and TS represents the amplitude for micropolar thermoelastic solid. 

8.1 Phase velocity 

It is evident from Figs. 2 and 4 that for symmetric leaky lamb wave modes of propagation, it is noticed that phase 

velocity for lowest symmetric mode for LALS remain more than the values for LLS for wave number 2,5,10d 
 

and in the remainning region, the behavior is reversed. For symmetric non-leaky lamb wave modes of propagation, 

the phase velocity for LALS and LLS coincide for wave number 5 10d  . There is slight difference in the phase 

velocity for LLS and LALS for (n=1) symmetric leaky lamb wave mode of propagation, the phase velocities for 

LLS remain more than the velocities for LALS for wave number 4 10d 
 
and for (n=1) symmetric nonleaky 

lamb wave mode of propagation, the velocities for LANLS remain more than the velocities for LNLS for wave 
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number 3 7d  . It is noticed that for (n=2) symmetric nonleaky lamb wave modes of propagation, the phase 

velocitiy for LNLS remain more than in case of LANLS for wave number 1,7,8,9d  and in the remaining range, 

the behavior is reversed. For symmetric leaky lamb wave mode of propagation (n=2), the phase velocities for LLS 

remain more than the velocities for LALS for wave number 3 6, 8.d d     

It is noticed from Fig. 3 that the phase velocities for lowest skew-symmetric leaky and nonleaky lamb wave 

mode of propagation coincide. For (n=1) skew-symmetric leaky lamb wave mode of propagation the phase 

velocities for LLSK and LALSK are similar. Fig. 5 depicts that for (n=1) skew-symmetric nonleaky lamb wave 

mode of propagation, there is slight difference in the velocities in the region 2d   and in further region the 

velocities coincide. It is observed that for (n=2) mode, the phase velocities for LLSK are greater than the values for 

LALSK for 2,3d   and for further increase in wave number, the phase velocities coincide. For (n=2) skew-

symmetric mode for nonleaky lamb waves, the phase velocities for LANLSK coincide with the values for LNLSK.  
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Fig .2 

Variation of phase velocity for symmetric leaky lamb waves. 
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Fig .3 

Variation of phase velocity for skew-symmetric leaky lamb 

waves. 
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Fig .4 

Variation of phase velocity for symmetric nonleaky lamb 

waves. 
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Fig .5 

Variation of phase velocity for skew-symmetric nonleaky lamb 

waves. 

8.2 Attenuation coefficients   

Fig. 6 depicts that for symmetric leaky Lamb wave mode (n=0), the magnitude of attenuation coefficient for LLS 

remain more than the value of attenuation coefficient for LALS in the region 1,4,6 10d d    . For (n=1) 

symmetric mode the values for LLS remain more than the values for LALS in the whole region, except for 

1 3, 5d d    and in the remaining region, the behavior is reversed. It is observed that for (n=2) symmetric 

mode the phase velocities for LLS remain more than the values for LALS in the whole region.  

Fig. 7 shows that the magnitude of attenuation for (n=0) mode for LLSK attain maximum value 0.000021 at 

1d  and LLSK remain more than the values for LALSK in the whole region except the region1 3d  . For 

(n=1) skew symmetric mode, the values for LLSK remain slightly more than the values for ALSK for wave number 

2 6d  and 8 10.d   It is noticed that for (n=2) mode, the magnitude of attenuation coefficient for LALSK 

remain more than in case of LLSK in the whole region, except at 1d  , where the values are similar.  

It is evident from Fig. 8 that for symmetric nonleaky lamb wave mode (n=0), the attenuation coefficient for for 

LNLS attain maximum value at 2d  and LANLS at 3d  . It is noticed that for (n=1), the magnitude of 

attenuation coefficient for LNLS and LANLS attain maximum value at 3d  . For (n=2) mode, the values for 

LANLS remain more than the values for LNLS in the region1 4, 9, 10.d d d       

It is noticed from Fig. 9 that for (n=0) skew symmetric nonleaky lamb wave mode of propagation, the magnitude 

of attenuation coefficient for LANLSK remain more than the values for LNLSK in the whole region except 7d  . 

It is observed that for (n=1), NLSK attains maximum value 0.00164 at 2d  . For (n=2) mode LNLSK and 

LANLSK attains maximum value 0.0007076 at 3d  . 
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Fig .6 

Variation of attenuation coefficient for symmetric leaky lamb 

waves. 
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Fig .7 

Variation of attenuation coefficient for skew-symmetric leaky 

lamb waves. 
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Fig .8 

Variation of attenuation coefficient for symmetric nonleaky 

lamb waves. 
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Fig .9 

Variation of attenuation coefficient for skew-symmetric 

nonleaky lamb waves. 

8.3 Amplitudes 

In Figs. 10 to 15, GT(a=0.5) represents the amplitude for micropolar thermoelatic solid with two temperatures and 

TS(a=0) represents the amplitude for micropolar thermoelastic solid. 

Figs. 10 to 11 shows the variations of symmetric and skew-symmetric amplitudes of dilatation for L-S theory for 

stress free thermally insulated boundary. The dilatation is minimum at the centre and maximum at the surfaces for 

symmetric and skew-symmetric modes. Also the dilatation for GT(a=0) remain more than the dilatation for 

TS(a=0.5) in the whole region.  

It is evident from Figs. 12 to 13 that the amplitude of symmetric microrotation is minimum at the centre and the 

surfaces and attain maximum value in the region between centre and surface. The amplitude of skew-symmetric 

microrotation is maximum at the surfaces. 
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The amplitude of symmetric and skew-symmetric temperature is minimum at the centre and maximum at the 

surfaces as shown in Figs. 14 and 15. Also the ampiltude of symmetric and skew-symmetric temperature for 

GT(a=0.5) is greater than the amplitude for TS(a=0). 
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Fig .10 

Amplitude of symmetric dilatation. 
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Fig .11 

Amplitude of skew-symmetric dilatation. 
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Fig .12 

Amplitude of symmetric microrotation. 
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Fig .13 

Amplitude of skew-symmetric microrotation. 
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Fig .14 

Amplitude of symmetric Temperature T. 
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Fig .15 

Amplitude of skew-symmetric Temperature T. 

9    CONCLUSIONS 

It is noticed that the variation of phase velocities of lowest symmetric and skew-symmetric mode for leaky and 

nonleaky Lamb waves shows slight variation in the intermediate range and then coincide with increase in wave 

number. Also the phase velocities for higher symmetric and skew-symmetric mode attain maximum value at 

vanishing wave number and as wave number increase the phase velocities decrease sharply. The values of 

attenuation coefficient for (n=2) symmetric leaky wave mode for LLS remain higher than in case of LALS. It is 

noticed that the values of attenuation coefficient for lowest symmetric and skew-symmetric mode for leaky and non 

leaky Lamb waves are very small as compared to the values for highest mode. The values of symmetric and skew-

symmetric dilatation in case of GT(a=0.5) are higher in comparison to TS(a=0) and the values of symmetric and 

skew-symmetric temperature in case of GT(a=0.5) are greater than in case of TS(a=0).  
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