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 ABSTRACT 

 In this paper, the free vibration analysis of moderately thick rectangular plates 

axially moving with constant velocity and subjected to uniform in-plane loads 

is investigated by the spectral finite element method. Two parallel edges of the 

plate are assumed to be simply supported and the remaining edges have any 

arbitrary boundary conditions. Using Hamilton’s principle, three equations of 

motion for the plate are developed based on first-order shear deformation 

theory. The equations are transformed from the time domain into the frequency 

domain by assuming harmonic solutions. Then, the frequency-dependent 

dynamic shape functions obtained from the exact solution of the governing 

differential equations is used to develop the spectral stiffness matrix. By 

solving a non-standard eigenvalue problem, the natural frequencies and the 

critical speeds of the moving plates are obtained. The exactness and validity of 

the results are verified by comparing them with the results in previous studies. 

By the developed method some examples for vibration of stationary and 

moving moderately thick plates with different boundary conditions are 

presented. The effects of some parameters such as the axially speed of plate 

motion, the in-plane forces, aspect ratio and length to thickness ratio on the 

natural frequencies and the critical speeds of the moving plate are investigated. 

These results can be used as a benchmark for comparing the accuracy and 

precision of the other analytical and numerical methods.                                       
                   © 2017 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

XIALLY moving plates are widely used in industry for variety applications. The bandsaw blades, the steel 

strip in a thin steel sheet production line, the belt and chain in power transmission, the high-speed magnetic or 

paper tape, the moving wide bands and belts, and the conveyor belts are some examples of axially moving plates. 

The axially speed may significantly affect the dynamic behavior of these structures. Therefore, investigating 

dynamic characteristics of moving plates is necessary for the analysis and design of these structures. 
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In general, methods for solving dynamic problems of plates are divided into two categories, namely approximate 

or numerical methods and exact or analytical methods. The finite element method (FEM), finite strip method (FSM) 

and Rayleigh-Ritz method are some of the approximate methods. Ulsoy and Mote [1] developed transverse vibration 

analysis of wide bandsaw blades by Rayleigh-Ritz method. Lengoc and Mccallion [2] studied cutting conditions on 

the dynamic response of wide bandsaw blades using of Galerkin method. Based on Mindlin-Reissner plate theory, 

Wang [3] developed a FEM for a moving orthotropic thin plate. Luo and Hutton [4] presented formulation of the 

moving triangular plate element. The free vibration and stability analysis of axially moving viscoelastic thin plate 

were studied using of the differential quadrature method by Zhou and Wang [5]. Tang and Chen [6] investigated 

nonlinear free transverse vibration of the axially moving plates by multiple scales method. An and Su [7] obtained 

the dynamic response of axially moving orthotropic plates using the generalized integral transform technique. 

Eftekharia and Jafari [8] proposed dynamic analysis of the axially moving orthotropic rectangular plates subjected to 

linearly varying in-plane stress by high order accurate mixed finite element-differential quadrature method. 

On the other hand, in the recent decade analytical methods have been used to extract the exact values for 

dynamic characteristics of the axially moving plates. The closed-form solution (CFS), exact finite strip method 

(EFSM) and dynamic stiffness method (DSM) are the exact analytical methods that considered by many researchers. 

Lin [9] investigated the stability and the vibration of axially moving plate subjected to uniform in-plane tension in 

transport direction using of the closed form solution. Equilibrium, membrane forces and buckling stability for thin 

plate axially traveling with high-speed are studied by Luo and Hamidzadeh [10]. The free vibration of the axially 

moving Levy-type viscoelastic thin plate was investigated by Marynowski [11]. Hatami et al. developed an exact 

finite strip method for axially moving isotropic plates [12], orthotropic plates on elastic foundation [13], laminated 

composite plates [14] and viscoelastic plates [15] subjected to in-plane forces, based on classical plate theory (CPT). 

By presenting a set of numerical examples, the effect of speed of plate motion and internal supports on the free 

vibration frequencies of the axially moving plates were studied [12-15]. The divergence velocities of axially moving 

orthotropic thin plates are investigated analytically via methods of complex analysis by Saksa and Jeronen [16]. 

Spectral Finite Element Method (SFEM) is a combination of dynamic stiffness method, spectral analysis method 

and finite element method. The SFEM provides dynamic responses in frequency domain due to the use of dynamic 

shape functions. The first step in SFEM is transforming the governing differential equations from time domain into 

frequency domain by assuming harmonic solutions. Then, the frequency-dependent dynamic shape functions 

obtained from the exact solution of the governing differential equations is used to develop the spectral stiffness 

matrix. The SFEM was developed for one-dimensional structures including the axially moving Bernouli-Euler beam 

by Oh et al. [17], the axially moving Timoshenko beam by Lee et al. [18] and the axially moving viscoelastic beam 

subjected to axial tension by Lee and Oh [19]. The SFEM also, was formulated for axially moving thin plates with 

constant speed subjected to uniform in-plane axial tension by Kim et al. [20] and axially moving beam-plates 

subjected to sudden external thermal loads by Kwon and Lee [21] based on CPT. According to the knowledge of the 

authors, the dynamic responses of moderately thick rectangular plates with axially moving speed using exact 

analytical methods have not been considered by any researcher, so far. 

In the present paper, the free vibration analysis of moderately thick rectangular plates axially moving with 

constant velocity and subjected to uniform in-plane loads is investigated by the spectral finite element method. Two 

parallel edges of the plate are assumed to be simply supported and the remaining edges have any arbitrary boundary 

conditions (simply supported, clamped). The natural frequencies and critical speeds of axially moving plates are 

presented for three combinations of classical boundary conditions, namely CC, CS and SS. The mode shapes are 

presented for the transverse displacement of the plate. The effects of some parameters such as the in-plane forces, 

aspect ratio and length to thickness ratio on the natural frequencies and the critical speeds of the moving plate are 

investigated. The obtained dynamic responses are compared with available analytical or numerical solutions to 

confirm the validity and exactness of the results. 

2    GOVERNING EQUATIONS OF AXIALLY MOVING FSDT PLATE 

Consider a moderately thick rectangular plate moving with constant velocity c in the x-direction subjected to in-

plane forces. The plate has the length Lx, width Ly and uniform thickness h, as shown in Fig. 1. The displacement 

fields of plate in x, y and z-direction are represented by u(x,y,z,t), v(x,y,z,t) and w(x,y,z,t), respectively. Based on the 

first-order shear deformation theory (FSDT), the displacement fields for moderately thick rectangular plates, may be 

expressed as: 
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where
x and 

y  are the rotational displacements about the y and x axes at the middle surface of the plate, 

respectively, w0 is the transverse displacement and t is the time variable. The strain-displacement relations for a 

moderately thick rectangular plate based on Eqs. (1) are defined as follows [22]. 
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Fig.1 

Displacement field, and internal forces and moments for an axially moving moderately thick plate. 

 

The differential equations of motion and the boundary conditions of the plate are derived by Hamilton’s 

principle, which is expressed in Eq. (3): 
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where δU is the virtual strain energy and is defined as follows. 
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Substituting Eqs. (2) into Eq. (4), the virtual strain energy can be expressed as follows. 
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where the moments and transverse forces resulting from internal stress according to sign conventions shown in Fig. 

1 are defined as follows. 
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(6) 

 

where k is the shear correction factor, which is obtained by Reissner as 5/6 [23]. We integrate by parts Eq. (5) to 

relieve the virtual generalized displacements ( 0 , ,x yw   ) in Ω of any differentiation. Then the virtual strain 

energy is given by: 
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(7) 

 

where the comma followed by x or y parameter denotes differentiation with respect to the x or y, respectively. Also 

nx and ny are the components of the unit vector normal to the corresponding edge in x and y directions, respectively. 
The virtual work done by external forces δV1 is given as follows: 
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where ˆ ˆ ˆ ˆ, , ,x y xx yyQ Q M M and ˆ
xyM  are transverse shear forces and rotational moments per unit length imposed on 

the boundaries x=0, Lx and y=0, Ly. In the absence of Nyy and Nxy, the work done by the constant in-plane normal 

force Nxx (positive when tensile) acting in the x-direction is given as: 
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The virtual work due to Eq. (9) is rewritten as follows: 
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The kinetic energy of the axially moving moderately thick plate is expressed as: 
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(12) 

 
where I0 = ρh and I2 = ρh

3
/12 and ρ is the mass density of plate material. The virtual kinetic energy due to Eq. (12) is 

obtained as follows. 
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In continuation, with respect to initial conditions and then integrating by parts to relieve the virtual generalized 

displacements ( 0 , ,x yw   ) in t of any differentiation 
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Finally, substituting the virtual strain energy δU, virtual work δV and virtual kinetic energy δK given by Eqs. (7), 

(8 and 10) and (14), respectively, into the Hamilton’s principle in Eq. (3) and collecting the coefficients
0 , xw   

and 
y , the governing differential equations of motion are obtained as: 
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and the natural boundary conditions on edges as: 
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Based on Hook’s law, the relations between stress-strain are defined as follows [22]: 
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where G=E/2(1+ν) is the shear modulus, E is the Young’s modulus, and ν is the Poisson’s ratio of the plate. Now, 

substituting Eqs. (2) and (17) into Eqs. (6), the resultant transverse shear forces Qx, Qy, bending moments Mxx, Myy, 

and twisting moment Mxy, can be written with respect to the transverse displacement w0, and rotational 

displacements about the y and x axes 
x  and 

y , as follows. 

 

0

0

1 0
1 0

1 0 ,
0 1

1
0 0

2

x

xx x
xy

yy

y
yxy

yx

wx
M

Q x
M D kGh

wQy
M

y

y x



 







 
  

                     
                                 

   
   

 

 

 

 

 

(18) 

 
where D=Eh

3
/12(1-ν

2
) is the plate stiffness. Finally, substituting Eqs. (18) into Eqs. (15), the governing differential 

equations of motion in terms of displacements 
0 , xw   and 

y  can be expressed as: 
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3    SPECTRAL FINITE ELEMENT METHOD 

3.1 Governing equations in the frequency domain 

Fig. 2 shows a Levy-type plate in which two opposite edges (y=0 and Ly) are simply supported and the remaining 
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edges (x=0 and Lx) of the plate can have any arbitrary boundary conditions. The plate behavior in the y-direction, 

according to exact analytical solution method, can be represented in the form of a Fourier series. It should be noted 

that these functions must satisfy the boundary conditions along two parallel edges at y=0 and Ly. From now on, we 

only need to formulate a 1-D problem (along x axis) in SFEM. To obtain frequency-dependent dynamic shape 

function, it is necessary first to transform governing partial differential equations of motion from the time domain 

into the frequency domain by discrete Fourier transform (DFT). Then the spectral stiffness matrix using dynamic 

shape function by the force-displacement relation method is achieved. Based on Levy-type solution assumption and 

DFT theory, displacements 
0 , xw   and 

y  are represented in spectral form as follows. 
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where kym=mπ /Ly and m is the number of half-wavelengths in direction y axis corresponding to terms of Fourier 

series and 1i    is the imaginary unit, N number of samples in the time domain and ωn=2πn/T is nth discrete 

frequency, where T is sampling time window. Wnm, Фynm and Фxnm are the spectral-modal components related to the 

displacements. By substituting Eqs. (20) into Eqs. (18), the resultant shear forces and moments can be rewritten in 

spectral forms as: 
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(21) 

 

where Mxxnm, Myynm, Mxynm, Qxnm and Qynm are the spectral-modal components given by: 
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(22) 

 

Substituting Eqs. (20) into Eqs. (19) yields a set of coupled ordinary differential equations in the frequency 

domain as: 
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Since ny=0 on edges x=0 and x=Lx, by substituting Eqs. (20) and (21) into Eqs. (16), the boundary values on 

these edges can be rewritten in spectral forms as: 

 
1

0 1

1

0 1

1

0 1

1ˆ ˆ( , , ) ( , , )sin( )
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n m

N
i t

xy xynm ym n ym

n m

Q x y t Q x k k y e
N

M x y t M x k k y e
N

M x y t M x k k y e
N













 

 

 

 
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 
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



 

 

 

 

(24) 

 

where ˆ ˆ,xnm xxnmQ M and ˆ
xynmM are the spectral components and the force-displacement relationships in the frequency 

domain can be expressed as follows. 
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(25) 

3.2 Spectral element equation 

3.2.1 General solution of spectral-modal displacements 

The dynamic (frequency-dependent) shape functions are obtained from general solution of the governing differential 

equations. Assume the general solutions of Eqs. (23) is as follows. 

 

, ,xnm xnm xnmk x k x k x

nm nm xnm nm ynm nmW b e b e b e       (26) 

 

where kxnm are wavenumbers in direction x axis and bnm the constant coefficient.  Substituting Eqs. (26) into Eqs. 

(23) an eigenvalue problem is obtained. 
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(27) 

 

where 
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(28) 

 

The algebraic Eq. (27) has a nontrivial solution, which is obtained by setting determinant of the coefficients 

matrix as zero. Hence, after simplification, it yields a six order polynomial in terms of wavenumbers. 

 
6 5 4 3 2

1 2 3 4 5 6 7 0xnm xnm xnm xnm xnm xnmm k m k m k m k m k m k m        (29) 
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where  
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(30) 

 

Eq. (29) is known as the dispersion relation or spectrum relation. There is no general formula for computing the 

latent roots of a polynomial of degree five or greater. Thus, from a practical point view, the approximate latent roots 
that are accurate enough for the desired precision will be as useful as the exact ones [24]. The coefficients α and β 

corresponding to each wavenumber obtained from Eqs. (27) are as follows. 
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Finally, the general solutions of Eqs. (23) is presented as follows. 

 
T T T( , , ) , ( , , ) , ( , , )nm nm ym n p nm xnm nm ym n nm ynm nm ym n p nmW E x k b E x k b E x k b          (33) 
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(34) 

 

and 

   1 2 3 6 1 2 3 66 6 6 6
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 
     (35) 

3.2.2 Spectral-modal nodal DOFs vector 

For a spectral finite element shown in Fig. 2(b), the geometric boundary conditions must be satisfied at the element 

nodes (x = x1 and x = x2). The geometric boundary conditions include the transverse displacement and rotational 

displacements about the y and x axes. The spectral-modal nodal degrees of freedom (DOFs) for the axially moving 

moderately thick rectangular plate element are specified in Fig. 2(b). The spectral-modal nodal DOFs vector dnm can 

be defined by applying the geometric boundary conditions, as follows. 
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Substituting Eqs. (33) into Eq. (36) yields the relationship as: 
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(38) 

 

 

 
      (a) dividing the plate to some elements                                                          (b) spectral finite element 

 
Fig.2 

Sign conventions spectral-modal nodal DOFs and forces. 
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3.2.3 Dynamic shape functions 

By eliminating the constant vector bnm from Eqs. (33) by using  Eq. (37), the general solutions of the governing 

ordinary differential equations of motion in the frequency domain (relations Eqs. (23)) in terms of the spectral-

modal nodal DOFs vector dnm are expressed as follows. 

 
T T T, ,nm Wnm nm xnm xnm nm ynm ynm nmW N d N d N d       (39) 

 

where T T,Wnm xnmN N 
and 

T

ynmN  are the dynamic (frequency-dependent) shape functions related to spectral-modal 

displacements Wnm, Фxnm and Фynm, respectively. They are obtained from the exact solution of the governing 

differential equations and are defined as follows. The dynamic shape functions are 1-by-6 matrices. 

 
T T 1 T T 1 T T 1( , , ) , ( , , ) , ( , , )Wnm ym n nm p nm xnm ym n nm nm ynm ym n nm p nmN x k E G N x k E G N x k E G      

     (40) 

3.2.4 Spectral-modal nodal forces vector 

Substituting Eqs. (33) into Eq .s  (22) and (25), the force-displacement relationships in the frequency domain can be 

rewritten as follows. 
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(41) 

 

For a spectral finite element shown in Fig. 2(b), the natural boundary conditions at the element nodes (x = x1 and 

x = x2) must be satisfied. The natural boundary conditions in the frequency domain include the spectral-modal 

transverse shear force ˆ
xnmQ , spectral-modal bending moment ˆ

xxnmM  and spectral-modal twisting moment ˆ
xynmM . 

The spectral-modal nodal force and moments for the moderately thick rectangular plate element are shown in Fig. 

2(b). The spectral-modal nodal forces vector fnm can be obtained by applying the natural boundary conditions, and 

given the sign conventions used in the theory of the plate (shown in Fig. 1), they are written as follows. 
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Substituting Eqs. (41) into Eq. (42) yields the relationship as: 
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(45) 

3.2.5 Spectral stiffness matrix 

Eliminating the constant coefficients vector bnm from Eq. (43) using Eq. (37) gives the relationship between the 

spectral-modal nodal forces vector fnm and the spectral-modal nodal DOFs vector dnm as follows. This relationship is 

known in the literature as spectral element equation. 

 

nm nm nmf S d  (46) 

 

where  

 
1( , )nm ym n nm nmS k R G   (47) 

 

The matrix Snm is known as exact dynamic (frequency-dependent) stiffness matrix. In the literature it is often 

called spectral element matrix or spectral stiffness matrix. Also the matrix Snm is a six-by-six and symmetric matrix. 

The present spectral stiffness matrix is formulated for the axially moving moderately thick rectangular plate element 

based on FSDT. 

4    FREE VIBRATION ANALYSIS 

To analyze the vibration of a plate by SFEM it is required to divide plate into some elements as shown in Fig. 2(a). 

Following that, the spectral-modal nodal DOFs and forces at each node of the spectral finite elements could be 

defined. The spectral element equation explained in Eq. (46) can be assembled by using a method similar to that 

used in the conventional finite element method. Finally, global system equation is given as follows. 

 

( , )gnm gnm ym n gnmf S k d  (48) 

 

where Sgnm is the global spectral stiffness matrix, dgnm is the global spectral-modal nodal DOFs vector and fgnm is the 

global spectral-modal nodal forces vector. The boundary conditions along the edges parallel to the y axis for simply 

supported and clamped cases can be expressed by Eqs. (49) and (50), respectively. 

Simply Supported (S) 

 
( , , ) 0 , ( , , ) 0 , ( , , ) 0

( , , ) 0 , ( , , ) 0 , ( , , ) 0

nm ym n xxnm ym n xnm ym n

xnm ym n ynm ym n xynm ym n

W x k M x k x k

Q x k x k M x k

  

  

   

   
  

(49) 

 

Clamped (C) 

 
( , , ) 0 , ( , , ) 0 , ( , , ) 0

( , , ) 0 , ( , , ) 0 , ( , , ) 0

nm ym n ynm ym n xnm ym n

xnm ym n xxnm ym n xynm ym n

W x k x k x k

Q x k M x k M x k

  

  

    

  
  

(50) 

 
Fig. 3 shows three different combinations of boundary conditions expressed in Eqs. (49) and (50), namely CC, 

CS, and SS. The boundary conditions of two parallel edges at y=0 and Ly that are simply supported are not written 

for brevity. 
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Fig.3 

Three combinations of boundary conditions for axially 

moving moderately thick rectangular plate. 

 

After applying the associated boundary conditions on the assembled set of equations, the final form of the global 

system equation is obtained. 

 

( , )gnm gnm ym n gnmf S k d  (51) 

 

By setting gnmf to zero, the eigenvalue problem for free vibration of the intended plate can be obtained. 

 

( , ) 0gnm ym n gnmS k d   (52) 

 

By setting the determinant of gnmS to zero, the natural frequencies, ωNAT, are determined. 

 

 det ( , ) 0gnm ym nS k    (53) 

 

Eq. (52) is a transcendental eigenvalue problem. Therefore, the traditional procedures for solving the linear 

eigenvalue problem are not applicable. In earlier publications, various methods including Wittrick-Williams 

algorithm and method of trial and error to obtain the natural frequencies of Eq. (53) were suggested. In the present 

paper an efficient numerical algorithm using drawing method described in Ref. [14] is used. In this procedure, the 

variation of stiffness matrix determinant det( )gnmS  in logarithmic scale versus discrete frequencies ωn is plotted for 

different values of half-wavelengths, m. The points on the horizontal axis in which the logarithmic function tends to 

negative infinity are natural frequencies. Substituting these natural frequencies into Eq. (52), corresponding mode 

shapes can be computed. 

5    NUMERICAL RESULTS AND DISCUSSION 

For programing the formulations of the present SFEM and extracting the free vibration frequencies, critical speeds 

and mode shapes mathematica software is used. Different in-plane normal forces, boundary conditions, aspect ratios, 

length to thickness ratio of plate and also different axial speed are considered in the results presented in this article. 

The dimensionless variables used in the results are introduced as: 

 
2 2

2 2
/ , / ,

2

y y x y

n x

L L N L
h D c h D k

D
    

 
    

 

(54) 

 

where   and ψ are dimensionless natural frequency and, traveling speed respectively, and kx is in-plane load 

parameter along x-direction. The parameter m in the results implies the number of half-wavelengths along the y-

direction and the parameter n is the root number in the characteristic function of Eq. (53). It should be mentioned 

that there is an infinite number of roots for this function.  

5.1 Validity 

The accuracy and excellent performance of the SFEM against the results available in the literature are investigated. 

At first, exact frequencies of free transverse vibration of Levy-type rectangular plates without axially speed (c=0) 
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are calculated based on FSDT with various boundary conditions. For this purpose, an isotropic square plate (Lx=Ly) 

with length to thickness ratio of 10 (Lx/h=10) is considered and the shear correction factor and Poisson’s ratio are 

assumed as 5/6 and 0.3, respectively. Also, plate not subjected any in-plane forces (Nxx=0). Fig. 4 shows the 

variation of Log (Abs (Det[ ( , )gnm ym nS k  ])) with respect to frequency parameter   for different values of half-

wavelengths along y-direction, m. As mentioned in Sec. 4, the points on the horizontal axis in which the logarithmic 

function tends to negative infinity are natural frequencies. As shown in the Fig. 4(a), for the case boundary 

condition, CC of  the first and the third frequency parameter corresponds to the first mode in direction y axis (m=1), 

the second and the fourth frequency parameter is associated with second mode (m=2) and fifth frequency parameter 

of the third mode (m=3). 

 

 

  
(a) CC (b) SS 

 

Fig.4 

Natural frequencies extraction of stationary Levy-type square plate for boundary conditions CC and SS. 

 
In Table 1. the first nine frequency parameters are compared with the results of exact closed form solution and 

dynamic stiffness method offered by Hosseini-Hashemi et al. [25], and Boscolo and Banerjee [26], respectively, 

based on FSDT for different boundary conditions (CC, CS and SS). In Table 1 frequency parameters are also 

compared with the results presented by Liew et al. [27] that obtained from a two dimensional Rayleigh-Ritz method. 

In this approach, the shear correction factor is 5/6 for free vibration analysis of the moderately thick plates. 

Maximum of two finite elements in x-direction are used to obtain the results of spectral finite element 

formulation. As it could be observed, proposed SFEM with a minimum number of finite elements produces exact 

results, compared with other exact analytical methods available and numerical methods. The dimensionless 

frequency parameter obtained from the SFEM and exact analytical methods are in excellent agreement. Therefore, 

this procedure could effectively be used for the purpose of modeling plate structures with more than one finite 

element (for example, multi-span plates, stepped thickness plates and plates with internal support). 

The dynamic stability of moving Levy-type rectangular plate subjected to uniform in-plane loads for different 
boundary conditions (CC, CS and SS) was studied. Table 2. shows the dimensionless critical speed ψcr of the 

moving Levy-type rectangular plate with different aspect ratios Ly/Lx and different uniform in-plane load parameter 

kx, obtained by the spectral finite element method based on FSDT. For confidence, these results are compared with 

the results reported in Ref. [12] according to CPT. Also, dimensionless fundamental frequencies 
1  of these plates 

for boundary conditions CC and SS is presented in Table 3. The dimensionless fundamental frequencies of Levy-

type rectangular plate subjected to uniform in-plane loads for two cases (stationary and moving situations) are 

investigated. The axially speed of the moving plate is considered half of their critical speeds which are listed in 

Table 2. The results are compared with those obtained in Ref [12] based on the classical plate theory. 
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Table 1 

Comparison of the dimensionless natural frequencies   a Levy-type square plate when Lx/h=10, ν=0.3, k =5/6, Nxx=0, c=0. 

B.C. Method Mode sequences 

  1 2 3 4 5 6 7 8 9 

CC Present SFEM 

(m,n) 

1.35103 

(1,1) 

2.48809 

(2,1) 

2.99962 

(1,2) 

3.99271 

(2,2) 

4.39957 

(3,1) 

5.13557 

(1,3) 

5.67694 

(3,2) 

6.02466 

(2,3) 

6.81867 

(4,1) 

CFS [25] 1.35103 2.48809 2.99962 3.99271 4.39957 5.13555 5.67694 6.02466 6.81867 

DSM [26] 1.35103 2.48809 2.99962 3.99271 4.39957 5.13551 5.67692 6.02466 6.81866 

Rayleigh-Ritz 

Method [27] 
1.35105 2.4881 2.9996 3.9927 4.39955 5.13555 5.6770 6.02465 6.81875 

CS Present SFEM 

(m,n) 

1.13422 

(1,1) 

2.38631 

(2,1) 

2.64193 

(1,2) 

3.75421 

(2,2) 

4.35052 

(3,1) 

4.72292 

(1,3) 

5.53516 

(3,2) 

5.71153 

(2,3) 

6.79281 

(4,1) 

CFS [25] 1.13422 2.38631 2.64193 3.75421 4.35052 4.72292 5.53515 5.71153 6.79281 

DSM [26] 1.13422 2.38631 2.64193 3.75421 4.35052 4.72292 5.53513 5.71153 6.79277 

Rayleigh-Ritz 

Method [27] 
1.1342 2.3863 2.64195 3.7542 4.35055 4.72295 5.53515 5.71155 6.79285 

SS Present SFEM 

(m,n) 

0.96584 

(1,1) 

2.30418 

(1,2) 

2.30418 

(2,1) 

3.53583 

(2,2) 

4.30808 

(1,3) 

4.30808 

(3,1) 

5.40465 

(2,3) 

5.40465 

(3,2) 

6.76933 

(1,4) 

CFS [25] 0.96584 2.30418 2.30418 3.53582 4.30808 4.30808 5.40465 5.40465 6.76933 

DSM [26] 0.96584 2.30418 2.30418 3.53583 4.30808 4.30808 5.40462 5.40462 6.76932 

Rayleigh-Ritz 

Method [27] 
0.96585 2.3042 2.3042 3.5358 4.3081 4.3081 5.40465 5.40465 6.76935 

 
 

Table 2 

Comparison of the dimensionless critical speed ψcr a traveling Levy-type rectangular plate subjected to uniform in-plane loads 

when Lx/h=500, ν=0.3, k =5/6. 

B.C. Ly/Lx kx=0  kx=4 

  Present SFEM, FSDT EFSM, CPT [12]  Present SFEM, FSDT EFSM, CPT [12] 

CC 10/3 6.8198 6.8200  7.1070 7.1072 

1 2.5967 2.5968  3.2776 3.2777 

3/10 2.0737 2.0741  2.8809 2.8813 

CS 10/3 4.9803 4.9803  5.3668 5.3669 

1 2.2016 2.2016  2.9744 2.9744 

3/10 2.0206 2.0209  2.8430 2.8432 

SS 10/3 3.6333 3.6333  4.1474 4.1474 

1 2.0000 2.0000  2.8284 2.8284 

3/10 2.0108 2.0111  2.83604 2.8363 

 
 

Table 3 

Comparison of the dimensionless fundamental frequencies 
1  a stationary and moving rectangular plate subjected to uniform in-

plane loads when Lx/h=500, ν=0.3, k =5/6. 

B.C. Ly/Lx ψ/ψcr kx=0  kx=4 

   Present SFEM, FSDT EFSM, CPT [12]  Present SFEM, FSDT EFSM, CPT [12] 

CC 10/3 0.0 12.8748 12.87525  13.3997 13.40013 

0.5 10.4133 10.41370  10.8054 10.80576 

1 0.0 1.4666 1.46667  1.8309 1.83092 

0.5 1.1588 1.15886  1.4266 1.42661 

3/10 0.0 0.55924 0.55929  0.64119 0.64125 

0.5 0.42002 0.42005  0.49836 0.49839 

SS 10/3 0.0 6.0555 6.05556  6.9123 6.91237 

0.5 5.0962 5.09621  5.7796 5.77970 

1 0.0 1.0000 1.00000  1.4142 1.41421 

0.5 0.8038 0.80387  1.1114 1.11137 

3/10 0.0 0.54495 0.54500  0.62207 0.62211 

0.5 0.41389 0.41393  0.48642 0.48723 
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5.2 Examples 

In Sec. 5.1, by the comparison of the natural frequencies of stationary plate obtained using the present method and 

the CFS, the accuracy of the dynamic stiffness matrix can be ensured. As well as, by the comparison of the natural 

frequencies and critical speed of moving plate obtained using the present method and EFSM, we can ensure the 

accuracy of the spectral finite element formulation to obtain the dynamic responses. As a result, the present method 

can be used to obtain the dynamic responses of the axially moving moderately thick rectangular plates. In this 

section several examples are represented to show the ability of the proposed SFEM for solving various problems of 

traveling FSDT plates. 

Consider an axially moving moderately thick square plate of Levy-type with boundary condition CC. The 
geometric and mechanical properties of the plate are Lx/h=5, ν=0.3, k =5/6. In this example, four values of 0, 2, 4 

and 6 for the non-dimensional uniform in-plane tension are selected. The non-dimensional fundamental frequency 

1  is present as a function of the non-dimensional axial speed ψ and the uniform in-plane load parameter kx in Fig. 

5. The two spectral finite elements in x-direction are used to obtain the exact results by the proposed spectral finite 

element formulation. As shown in the Fig. 5, the natural frequency decreases with increasing axial moving speed till 

the speed reach its critical value. The natural fundamental frequency in a constant speed, increases with increasing 

in-plane tension. In addition, Fig. 5 also indicates that when the uniform in-plane tension increases, the critical speed 

increases as well. 

 

 

 

 

 

 

 

 

Fig.5 

The effect of transport speed on the fundamental frequency 

of a moderately thick square plate subjected to uniform in-
plane load with boundary condition CC (Lx/h=5, ν=0.3, k 

=5/6). 

 

The first five dimensionless natural frequencies of the Levy-type square plate with boundary condition SS for 

stationary and moving situations are shown in Table 4. The one spectral finite elements in x-direction are used to 

obtain the exact results.  For assurance of the accuracy of the results, the exact results for the stationary plate (c=0) is 

compared with the results reported in Ref. [25]. As shown in the Table 4. ,the natural frequency increases when in-

plane tension increases. 

In another example, an isotropic rectangular plate with length to thickness ratio of 5 (Lx/h=5) is considered and 

the shear correction factor and Poisson’s ratio are assumed as 5/6 and 0.3, respectively. The results are extracted for 
three types of boundary conditions as CC, CS and SS. The dimensionless axial speed ψ and the dimensionless 

uniform in-plane tension kx are considered in the calculation as constant values 1 and 15, respectively. The variation 

of the dimensionless fundamental frequencies 
1  against aspect ratio Lx/Ly for an axially moving plate subjected 

uniform in-plane tension is given in Fig. 6. The larger aspect ratio leads to the smaller the natural frequencies for a 

fixed axial speed and the uniform in-plane tension.  

 

 

 

 

 

 

 

 

Fig.6 

Variation of the dimensionless fundamental frequency 

against the aspect ratio for a moving rectangular plate 
subjected to uniform in-plane load (Lx/h=5, ν=0.3, k =5/6, 

kx=15, ψ=1). 
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Table 4 

The effects of length to thickness ratio (Lx/h) on the dimensionless natural frequencies 
1  a Levy-type square plate with 

boundary condition SS and when ν=0.3, k =5/6. 

Dimensionless 
axial speed ψ 

Dimensionless 

axial tension kx 
Lx/h Method Dimensionless natural frequency 

    1  
2  

3  
4  

5  

0 0 

10 
Present SFEM 0.9658 2.3042 2.3042 3.5358 4.3081 

CFS [25] 0.9658 2.3042 2.3042 3.5358 4.3081 

5 
Present SFEM 0.8839 1.9328 1.9328 2.7939 3.3003 

CFS [25] 0.8839 1.9328 1.9328 2.7939 3.3003 

0 4 

15 

Present SFEM 

1.4007 2.6023 3.1183 4.2548 4.7500 

10 1.3850 2.5057 3.0307 4.0411 4.4171 

5 1.3184 2.1605 2.7307 3.3901 3.4370 

0.5 ψcr
* 

4 

15 

Present SFEM 

1.0952 2.3420 2.7258 3.8970 4.4865 

10 1.0770 2.2326 2.6055 3.6410 4.1268 

5 1.0040 1.8520 2.2097 2.8728 3.0787 
* Lx =15h: ψcr=2.8014, Lx =10h: ψcr=2.7700, Lx =5h: ψcr=2.6368 

 

To draw mode shapes of the moderately thick plate, use is made of dynamic shape function (
T TN , NWnm xnm and 

TN ynm ) corresponding to spectral-modal displacements (Wnm, Фxnm and Фynm), as presented in Sec. 3.2.3. The mode 

shapes for the first mode (m=1, n=1) and the second mode (m=2, n=1) are plotted. In Fig. 7, mode shapes of the 

square plate for boundary condition CC are shown. Figs. 7(a)-7(c) show mode shapes for the transverse 
displacement of the stationary plate (kx=0, ψ=0), the stationary plate subjected uniform in-plane loads (kx=10, ψ=0) 

and the axially moving plate (kx=10, ψ=2), respectively. It should be noted that according to Eqs. (20), variation of 

Wnm and Фxnm along the y axis is in sine form and variation of Фynm is in cosine form. As shown in Figs. 7(c) the 

mode shapes for the moving plate are the complex values. 

The Levy-type rectangular plate with width Ly and thickness h equal to 1 and 0.1 m, respectively, are considered 

and the shear correction factor and Poisson’s ratio are assumed as 5/6 and 0.3, respectively. The uniform in-plane 

tension parameter kx are considered in the calculation as constant value 15. Table 5. shows the dimensionless critical 
speed ψcr of the axially moving Levy-type rectangular plate subjected uniform in-plane tension with different aspect 

ratios Lx/Ly and boundary conditions (CC, CS and SS), obtained by the spectral finite element method based on 

FSDT. The larger aspect ratio (Lx/Ly) leads to the smaller the critical speed for a fixed the uniform in-plane tension. 

It can also be seen that the plates with boundary conditions CC and SS have the highest and lowest critical speed, 

respectively. 

 
Table 5 

The first dimensionless critical speed ψcr a traveling Levy-type rectangular plate subjected to uniform in-plane loads when Ly=1 

m, h=0.1 m, ν=0.3, k =5/6, kx=15. 

B.C. Aspect ratio (Lx/Ly) 

0.1 0.2 0.3 0.4 0.5 1 1.5 2 2.5 3 

CC 6.52341 6.22272 5.71755 5.33551 5.06004 4.50560 4.42417 4.36577 4.34808 4.33199 

CS 6.45361 5.74579 5.23909 4.91102 4.70182 4.36577 4.34408 4.31901 4.31564 4.30926 

SS 6.21931 5.32636 4.84556 4.59270 4.45429 4.30261 4.31924 4.30261 4.30589 4.30261 

 

 

            
(a) stationary plate; kx=0, ψ=0 

mode 1 mode 2 



506                      Spectral Finite Element Method for Free Vibration of Axially …. 

© 2017 IAU, Arak Branch 

             
 

(b) stationary plate subjected uniform in-plane loads; kx=10, ψ=0 

 

 

                                            
       

 

                                          
(c) axially moving plate; kx=10, ψ=2 

 
Fig.7 

First two mode shapes of the stationary and moving Levy-type square plate with boundary conditions CC (Lx/h=10, h=0.1 m, 
ν=0.3, k =5/6). 

6    CONCLUSIONS 

The transverse free vibration of the Levy-type moderately thick rectangular plates axially moving with constant 

velocity and subjected to uniform in-plane loads was studied by the spectral finite element method based on first-

order shear deformation theory. The spectral stiffness matrix obtained in the present SFEM is a transcendental 

function of natural frequencies, axial speed, in-plane loads and half-wavelengths. Since the frequency-dependent 

dynamic shape functions in SFEM are obtained from the exact solution of the governing differential equations of 

motion of the plate, increasing the number of spectral element to achieve the exact answers is not required. The 

results obtained by the spectral finite element formulation need maximum of two finite elements in x-direction. As is 

noticeable, the proposed SFEM achieves exact results with minimal finite elements, compared with exact analytical 

methods and numerical methods. Therefore, it is possible to effectively use this procedure for the plate structures 

and other plates in which more than one finite element is needed for modeling purposes. 

Re [Wnm] 

mode 1 mode 2 

Im [Wnm] 

mode 1 mode 2 

Re [Wnm] Im [Wnm] 

mode 1 mode 2 
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The exactness and validity of the results is verified by comparing them with the results in the other studies. By 

the developed method some examples for vibration of stationary and moving moderately thick plates with different 

boundary conditions are presented. The effects of some parameters such as the axially speed of plate motion, the in-

plane forces, aspect ratio and length to thickness ratio on the natural frequencies and the critical speeds of the 

moving plate are investigated. 
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