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 ABSTRACT 

 This paper addresses the influence of boundary conditions and small-scale 

effect on the free vibration of nano-plates using molecular dynamics (MD) 

and nonlocal elasticity theory. Based on the MD simulations, Large-scale 

Atomic/Molecular Massively Parallel Simulator (LAMMPS) is used to 

obtain fundamental frequencies of single layered graphene sheets (SLGSs) 

which modeled in this paper as the most common nano-plates. On the other 

hand, governing equations are derived using nonlocal elasticity and the first-

order shear deformation theory (FSDT). Afterwards, these equations solved 

using generalized differential quadrature method (GDQ). The small-scale 

effect is applied in the governing equations of motion by nonlocal parameter. 

The effects of different side lengths, boundary conditions, and nonlocal 

parameter are inspected for the aforementioned methods. The results 

obtained from the MD simulations are compared with those of nonlocal 

elasticity theory to calculate appropriate values for the nonlocal parameter. 

As a result, for the first time, the nonlocal parameter values are suggested for 

graphene sheets with various boundary conditions. Furthermore, it is shown 

that nonlocal elasticity approach using classical plate theory (CLPT) 

assumptions overestimates the natural frequencies. 

                                                 © 2018 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 FTER the synthesis and characterization of carbon nanotubes by Iijima in 1991 experimental and theoretical 

studies in the fields of microstructures and nanostructures increased substantially [1]. Eventually with the 

development of these fields, nano-plates, including graphene sheets, drew attentions to themselves, because of their 

unique mechanical, electrical, and electronic properties. Nowadays, graphene sheets are widely used in nano-

sensors, nano-oscillators, electrical batteries, nanocomposites and nano-electromechanical resonators [2-4]. As a 

result, investigating the mechanical characteristics of nano-plates, especially graphene sheets, is inevitable.  

Since the applicability of classical field theories is correlated with length scales, for accurate prediction of the 

mechanical behavior of nanomaterials the small scale effect must be taken into account. Therefore, local continuum 

modeling can successfully explain and predict physical phenomena at the macro-scale level; nevertheless, its 
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application in nano-scale remains questionable. As a result, usually, the nonlocal elasticity theory is used in 

modeling structures at nano-scale instead of classical elasticity theory [4]. 

Among various mechanical characteristics of nano-plates, their vibrational behavior is of great importance. Due 

to difficulties in conducting experiments to determine the mechanical properties of nano-plates, generally analytical 

methods, numerical modelings, and molecular dynamics simulations are used to determine their vibrational 

characteristics. Up until now, several studies have been done on the vibration of nanostructures and specifically 

nano-plates. Murmu and Pradhan [2] employed an analytical method using the separation of variables to investigate 

the effect of nonlocal parameter on the vibration of graphene sheets. Pradhan and Phadikar [5] calculated natural 

frequencies of graphene sheets analytically by modifying classical laminated plate theory (CLPT) and first shear 

deformation theory (FSDT) using nonlocal elasticity theory. Hosseini-Hashemi et al. [6] used Mindlin theory and 

introduced some potential and auxiliary functions to study the free vibration of graphene sheets. Zhang et al. [7] 

implemented an element-free kp-Ritz to investigate the free vibrational behavior of a single-layered graphene sheet. 

Moreover, Zhang et al. [8] used nonlocal elasticity theory and CLPT to study the vibrational behavior of bilayer 

graphene sheets (BLGSs) in a magnetic field. 

 Ansari et al. [9] implemented the finite element method (FEM) to analyze the free vibration of multi-layered 

graphene sheets. Ansari et al. [10] investigated the vibration of single-layered graphene sheets (SLGSs) using a 

nonlocal continuum plate model and then validated the calculated results with ones obtained by the molecular 

dynamics simulations. They calculated nonlocal parameters by comparing results obtained from two aforementioned 

methods. The MD simulations are performed using NanoHive, a MD simulator, but unfortunately NanoHive 

currently is not available and no longer supported by its creators. Hence, utilizing other programs is seemed 

necessary. Pradhan and Kumar [11] studied the small-scale effect on the vibration analysis of orthotropic SLGSs. 

They employed the differential quadrature method (DQM) to solve governing equations derived using the nonlocal 

elasticity theory. Xing and Liu [12] found exact solutions for the free vibration of thin orthotropic rectangular plates. 

This problem solved for various boundary conditions and validated with results obtained by FEM. Setoodeh et al. 

[13] investigated the free vibration analysis of orthotropic SLGSs using nonlocal Mindlin plate theory and 

employing DQM. Shahidi et al. [14] investigated the vibration of orthotropic triangular nano-plates using nonlocal 

elasticity theory and Galerkin Method. Finally, Zhang et al. [15] modeled the nonlinear vibrational behavior of 

graphene sheets using CLPT and nonlocal elasticity theory.  

Although the results which calculated by the nonlocal elasticity theory change significantly by the nonlocal 

parameter, only little data provided for the correct values of this parameter in the literature. Most papers 

concentrated on the impact of changing the nonlocal parameter on natural frequencies rather than calculating the 

accurate values of them. 

Hence, the free vibrations of SLGSs, therefore, are investigated in present work using nonlocal elasticity theory 

and the MD simulation approach. Although SLGSs have an orthotropic nature, their mechanical properties in the 

FSDT equations are considered isotropic. However, this assumption may cause a slight error in the final results 

obtained by nonlocal elasticity theory. A nonlocal FSDT applied in which the effects of rotary inertia and transverse 

shear are included. Natural frequencies are obtained for various boundary conditions. The LAMMPS program is 

utilized to conduct the MD simulations for investigating the vibrational behavior of SLGSs. Results obtained from 

these two methods are compared with each other to find proper values for nonlocal parameters. Finally, for the first 

time, the appropriate values of nonlocal parameters are proposed for the vibration of SLGSs with various boundary 

conditions.   

2    NONLOCAL PLATE GOVERNING EQUATIONS 

As mentioned in previous section in this paper, the nonlocal elasticity theory is commonly used in modeling the 

nanostructures rather than classical elasticity theory. Based on nonlocal elasticity theory, stress at any point in a 

continuum is a function of strain at all points of the continuum [16]. Accordingly, the constitutive relation in the 

small scales is written as follows [5]: 

 
2(1 ) t        (1) 

 

where  is nonlocal stress tensor, t is local stress tensor, and   denotes the nonlocal parameter. Using (1) and 

based on FSDT, one can obtain a relation between the nonlocal stresses and strains for an isotropic plate [17]: 
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(3) 

 

where E,G and   are the young modulus, the shear modulus, and the poisson's ratio, respectively. Furthermore, 

FSDT is used in order to establish governing equations. In this theory, both shear deformations and rotational inertia 

are taken into account. As a result, despite CLPT, transverse normals (i.e., straight lines perpendicular to the mid-

surface) do not remain perpendicular to the mid-surface after deformation [18]. Fig. 1 shows the coordinate system 

for the SLGS. As shown in the figure, 0z   plane is the middle plane of the SLGS. Considering FSDT, 

displacement field for the plate can be expressed as [18]: 

 

( , , , ) ( , , ) ( , , )x xu x y z t u x y t z x y t     (4) 

 

( , , , ) ( , , ) ( , , )y yu x y z t v x y t z x y t     (5) 

 

( , , , ) ( , , )zu x y z t w x y t    (6) 

 

where ,  , and x y zu u u  are displacements of an arbitrary point on 0z   plane in ,  ,  and x y z directions and 

,  ,  and u v w are displacements of an arbitrary point ( , , )x y z  in ,  ,  and x y z directions, respectively. Additionally, 

 and x y  are rotations about  and x y axis, respectively.  

Using (4)-(6) the strains are obtained as follows [18]: 
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(8) 

 

,  ,  and xx yy zz   and ,  ,  and xy xz yz    denote normal and shear strain tensor components, respectively. It 

should be noted that =0,zz  because it was assumed that the transverse normals are inextensible. 

 

 

 

 

 

 

Fig.1 

Coordinate system for SLGS. 
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On the other hand, the principle of virtual work can be applied to derive the equilibrium equations of the SLGS 

[5]. Following governing equations are obtained, using the principle of virtual work [5]: 
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(13) 

 

where ,  ,  ,  ,  ,  , , and xx xy yy xx xy yy xx yyN N N M M M Q Q denote stress resultants, which are defined as follows:  
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Furthermore, 
1 3 and I I are mass moments of inertia and defined as: 
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Subsequently, (2), (3), (7), (8), and (14) -(16) can be used to express stress resultants in terms of the 

displacements: 
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In these relations 5 / 6k   is the shear correction factor. Finally, using (18)-(22), (11)-(13) expressed in the 

terms of displacements: 
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It should be mentioned that (9), (10) and the terms including ,  ,  , and xx xy yyq N N N were eliminated, because it 

was assumed that the plate is free from any in-plane or transverse loading [5].  

3    DIFFERENTIAL QUADRATURE METHOD  

Generalized differential quadrature method is a numerical solution technique for solving initial and boundary 

condition problems of various engineering applications. It can be used as a convenient alternative to the finite 

difference and finite element methods due to its great accuracy and capability in solving complicated ordinary and 

partial differential equations [19]. In summary, in this method  and x yN N grid points are chosen in 

 and x y directions, then partial derivative of a function with respect to a coordinate (x or y) at a grid point is 

estimated by weighted linear sum of values of that function in all grid points along that direction. Therefore, rth 

derivative of function ( , )x y at point 
ix x and in direction 

jy y  can be obtained using the following relation: 

 

 

1

x

i

Nr
r

ik kjr
kx x

A
x










  

 

  (26) 

 

Similarly, one can write:  

 

 

1

y

i

Ns
s

jm ims
ly y

B
y










  

 

  (27) 

 



S.F. Asbaghian Namin and R. Pilafkan                         494 

© 2018 IAU, Arak Branch 

where 
   

 and 
r s

ik jmA B are weighting coefficients and  , .ij i jx y   The weighting coefficients of the first 

derivatives are obtained from: 
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Furthermore, the weighting coefficients of higher-order derivatives are determined by: 
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To solve (23) -(25) using GDQ technique, these equations should be rewritten in GDQ form. Since 

,  , and x yw   were assumed as the periodic functions, one can write: 
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In order to solve equation, applying the appropriate boundary conditions is necessary. For the all edges clamped 

(CCCC) boundary conditions, in which (C) refers to the clamped boundary conditions one can write: 
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The GDQ form of boundary conditions: 
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For the all edges simply supported (SSSS) boundary conditions, in which (S) refers to the simply supported 
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Accordingly, GDQ form of SCSC boundary conditions can be obtained by using clamped boundary conditions at 

0,x a  and simply supported boundary conditions at 0, .y b  

Assembling (32)-(38) into an eigenvalue problem is the final step in the GDQ solution procedure. This 

eigenvalue problem can be written as following matrix form: 
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where        ,  ,  , and dd db bd bbS S S S are the coefficient matrices of the left hand side of (32)-(34) in which the 

subscript  and b d refer to the boundary and domain, respectively.  ddM is the coefficient matrix of the right hand 

side of (32)-(34).    and d b  are the displacement vectors corresponding to the domain and boundary grid points. 

Eigenvalues (i.e. natural frequencies, ) and eigenvectors of (39) are calculated using the condensation technique as 

follows [10]: 

 

          1 1 2( ) 0dd dd db bb bd d dM S S S S I                

(40) 

4    MOLECULAR DYNAMICS SIMULATION 

Molecular dynamic (MD) is a commonly used computational tool for simulating the properties of liquids and solids 

that has wide applications in analysis of nanostructures [20]. The essence of molecular dynamics is solving N-body 

problem numerically using classical mechanics (i.e. Newton's Laws of Motion) [21]. Each of bodies (e.g. particles, 

molecules and etc.) in the simulation is treated as a point mass and Newton’s equations are integrated to compute 

their motion. From the motion of the ensemble of atoms a variety of useful microscopic and macroscopic 

information can be extracted including but not limited to structural properties. The physics of the model is contained 

in a potential energy function for the system, from which individual force equations for each atom are derived [20]. 
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Since MD simulations are related to interatomic and intermolecular interactions, they can be employed to investigate 

larger systems and can give accurate results through the use of suitable and accurate potential functions [10]. 

Among Several free and non-free programs that are available for the molecular dynamics simulations, LAMMPS 

was chosen for this work. It is a classical molecular dynamics code that models an ensemble of particles in a liquid, 

solid, or gaseous state. Although it was designed for parallel computers, it runs efficiently on single-processor 

desktop or laptop machines [22].   

As mentioned earlier in this section the potential function plays an important role in obtaining accurate and 

reliable results. Before the simulation, a suitable potential function should be selected among various choices. In this 

paper, Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential function was chosen that is 

used widely in simulation of hydrocarbon molecules and gives more accurate results than the Tersoff potential 

function [23]. In order to perform MD simulation, the SLGS should be modeled in the first place. All simulations 

performed for the zigzag graphene sheets. Different kinds of graphene sheets conformation are shown in Fig. 2. One 

or four layers of atoms at edges were fixed to apply the simply supported or clamped boundary conditions, 

respectively. Also, the NVT ensemble was chosen as a thermostat to maintain the temperature of system. 

After initial settings, the SLGS was simulated to obtain the fundamental frequency. To achieve this goal 

midpoint of graphene sheet was dragged vertically and then released to initiate the first mode of the free vibrations 

for 2000000 time steps of 1 fs. The displacement-time curve of midpoint was obtained from LAMMPS outputs. 

Finally, the fundamental frequency was calculated using fast Fourier transform (FFT) algorithm. It takes 

displacements over time and eliminates possible noise frequencies to obtain the fundamental frequencies of the free 

vibration. The FFTs output is a curve, with several peaks. The frequencies corresponded to the first, second and ... 

peaks represent the first, second and ... natural frequencies [24]. 

 

 

 

 

 

Fig.2 

Chirality and geometrical parameters of single-layered 

graphene sheets. [25] 

5    RESULTS AND DISCUSSION 

The mechanical properties of graphene sheets used in this work are presented in Table 1. for isotropic graphene 

sheets. Also, the thickness of each plate and the density of graphene are assumed 0.34 ( )h nm  

and 32300 ( / )kg m  . The convergence study for the GDQ technique is conducted first. To achieve this goal, the 

fundamental frequency is calculated for a square SLGS with side length of 10 nm and SSSS boundary conditions for 

both local ( 0)   and nonlocal 2( 1 ( ) )nm   assumptions. Table 2. shows the fundamental frequencies for 

various number of grid points chosen along each axis. It can be noted from Table 2. that after employing 11 grid 

points results converge and there is no need for further increasing in the number of grid points.   

Subsequently, the natural frequencies obtained in present work using the GDQ method for both local and 

nonlocal plate are listed in Table 3. and compared with exact solutions [5]. They are acquired for a square isotropic 

SLGS with 10 nm side length and all edges simply supported boundary conditions. From this table, one could find 

that present results are in good agreement with those of the exact solution [5]. 
 

 

Table 1 

Mechanical properties of isotropic graphene sheets. 

 ( )E Tpa     ( )G Tpa  

1.02 0.3 0.392 
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Table 2 

Convergence study of fundamental frequencies (THz) for the GDQ method. 

Number of grid points local ( 0)   nonlocal ( 1)   

7 0.0679 0.0620 

9 0.0678 0.0619 

11 0.0678 0.0619 

13 0.0678 0.0619 

15 0.0678 0.0619 

 
Table 3 

Comparison of natural frequencies (THz) using the GDQ method with the exact solution. 

 local nonlocal 

Mode 

number 
GDQ 

Exact 

(CLPT[5])1 Exact (FSDT[5]) GDQ 
Exact 

(CLPT[5])1 Exact (FSDT[5]) 

1 0.0678 0.0680 0.0678 0.0619 0.0621 0.0620 

2 0.1684 0.1698 0.1688 0.1375 0.1389 0.1381 

3 0.1684 0.1698 0.1688 0.1375 0.1389 0.1381 

4 0.2678 0.2712 0.2687 0.1996 0.2027 0.2009 

5 0.3334 0.3387 0.3349 0.2356 0.2403 0.2376 

6 0.3334 0.3387 0.3349 0.2356 0.2403 0.2376 

1
 

2 2 2 3 2 2 2 2

)

1
( [( ) ( ) ] / ( [( ) ( ) ])(1 [( ) ( ) ])

12
mn

m n m n m n
D h h

a b a b a b

     
           

Differences between these three solutions are indicated in Fig. 3 for the local plate. It is obvious that CLPT 

always overestimates the natural frequencies, as shown in the Fig. 3. Although the gap between the curves 

corresponding to CLPT and FSDT is significant for the side lengths smaller than 3 nm, this gap plunges evidently by 

increasing the side lengths. This is because CLPT is only accurate for thin plates. So when graphene sheet is not thin 

enough (i.e. / 50a h  ) results using this theory can induce significant error. 

The influence of the nonlocal parameter (  ) and the side length on the fundamental frequencies is investigated 

in Fig. 4 for the SSSS boundary conditions and Fig. 5 and Fig. 6 illustrate similar curves for the CCCC and SCSC 

boundary conditions, respectively. As shown in these figures, the fundamental frequency declines substantially with 

increase in the nonlocal parameter, for the side smaller than 30 nm because of the small-scale effect. However, for 

the larger SLGSs, nonlocal parameter has a negligible impact on the fundamental frequency, as expected. Therefore, 

the local forms of governing equations can be applied to the graphene sheets with larger sides without causing a 

noticeable error. Also, it can be observed that the lower fundamental frequency is obtained for the higher length of 

square. In addition, one can notice from these figures that increasing constraints results in higher natural frequencies. 

Thus, for the equal side lengths and nonlocal parameter values fundamental frequencies corresponding to CCCC 

boundaries are higher than those of SCSC boundaries and those of SCSC boundaries are higher than one's 

corresponding to the SSSS boundaries. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Comparison of reference [5] solutions with present work. 
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Fig.4 

Effect of nonlocal parameter on the fundamental frequency 

for the SSSS boundary conditions. 

  

 

 
 
 
 
 
 
 
 
 

Fig.5 

Effect of nonlocal parameter on the fundamental frequency 

for the CCCC boundary conditions. 

  

 

 

 

 

 

Fig.6 

Effect of nonlocal parameter on the fundamental frequency 

for the SCSC boundary conditions. 

 

 

As mentioned earlier, the nonlocal parameter plays an eminent role in the calculation of natural frequencies for a 

small graphene sheet (roughly, a 30 nm )based on nonlocal elasticity theory. Hence, in order to implement the 

nonlocal elasticity theory, accurate determination of this parameter is inevitable. In this paper, molecular dynamics 

simulations are performed and obtained results are compared with those of the nonlocal elasticity to calculate the 

fundamental frequencies and evaluate the nonlocal parameter. Using aforementioned method, SLGS was excited to 

vibrate freely with first mode shape. Fig. 7 visualizes the excitation of the first mode shape in a square graphene. 

The fundamental frequencies of SLGSs with different boundary conditions and side lengths obtained using the MD 

simulations, are listed in Table 4. 

Ansari et al. [10] proposed an optimization technique to determine the value of nonlocal parameter. In this 

method, the Euclidean norm of the difference between the fundamental frequencies, calculated by the nonlocal 

elasticity theory with the ones obtained from the MD simulations (i.e. norm of absolute error), is minimized.   is 

set as optimization variable for the nonlocal elasticity theory. It should be noted that in the present work, relative 

error is employed instead of absolute error to get more realistic results.
 
Table 5. shows the values of   obtained in 

this paper using this nonlinear least square method for the SSSS, CCCC, and SCSC boundary conditions. Moreover, 

results compared with those suggested by Ansari et al. [10]. Appropriate value of   for SCSC Boundaries 
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proposed for the first time, in this paper. It can be noted that as expected value of   for SCSC graphene sheets lies 

between the ones corresponding to SSSS and CCCC. 

 

 

 

 

 

 

 

 

 

 

Fig.7 

Excitation of first mode shape in the SLGS ( 10 ).a nm  

 

 
Table 4 

Natural frequencies (THz) using MD simulations (LAMMPS). 

Side lengths (nm) SSSS CCCC SCSC 

5 0.190430 0.351563 0.283203 

10 0.061035 0.104980 0.090332 

15 0.026855 0.051270 0.043945 

20 0.017090 0.028076 0.023193 

25 0.009766 0.019531 0.015869 

30 0.007324 0.013428 0.012207 

 

 

Table 5  

The nonlocal parameter values for isotropic SLGS. 

Boundary conditions Isotropic (Present) Isotropic [10] 

SSSS 1.17 1.41 

CCCC 0.86 0.87 

SCSC 0.92 -* 

 

 

The first natural frequencies of SSSS, CCCC, and SCSC Single layered isotropic graphene sheets, which are 

obtained using the nonlocal elasticity for evaluated values of  , were compared in Fig. 8. It can be seen that for 

equal side lengths CCCC graphene sheets have higher natural frequency than SSSS graphene sheets. The natural 

frequency for SCSC graphene sheets is between those of SSSS and CCCC graphene sheets. Consequently, one can 

conclude that stronger constrains lead to higher natural frequency in graphene sheets. Lastly, Fig. 9, Fig. 10, and Fig. 

11 display results gathered for the SLGSs based on the nonlocal elasticity using the isotropic properties and MD 

simulations for SSSS, CCCC, and SCSC boundary conditions, respectively. As shown in these figures the 

fundamental frequencies calculated by the isotropic assumption are in good agreement with results obtained by MD 

simulations. As a result, suggested values for the nonlocal parameters corresponding to SLGSs with various 

boundary conditions can yield satisfactory results. 

 

 

 

 

 

 

 

 

 

Fig.8 

Comparison of the fundamental frequencies of SLGSs for 

various boundary conditions. 
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Fig.9 

Comparison of the fundamental frequencies of SLGSs with 

SSSS boundaries for different methods. 

  

 

 

 

 

 

 

Fig.10 

Comparison of the fundamental frequencies of SLGSs with 

CCCC boundaries for different methods. 

  

 

 

 

 

 

 

Fig.11 

Comparison of the fundamental frequencies of SLGSs with 

SCSC boundaries for different methods. 

6    CONCLUSIONS 

A free vibration analysis of single-layered graphene sheets is performed using the nonlocal elasticity theory and the 

molecular dynamics simulations. The fundamental frequencies obtained by nonlocal elasticity theory are in good 

agreement with those reported in the literature. As expected, it was noted that graphene sheets with more rigid 

boundaries have higher natural frequencies. Moreover, the impact of the nonlocal parameter on the fundamental 

frequencies was observed. It was shown that in small scales the nonlocal parameter has a key role in determining the 

frequencies based on nonlocal elasticity theory. However, the effect of this parameter decreases as the size of 

graphene sheet increases.  

Moreover, for the first time, the appropriate values of the nonlocal parameter were suggested in this work for 

isotropic graphene sheets with various boundary conditions including, CCCC, SSSS, and SCSC boundary 

conditions. It was shown that nonlocal elasticity theory can estimate the natural frequencies obtained by molecular 

dynamics simulation with good accuracy using these values. 
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