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 ABSTRACT 

 In this paper dynamic analysis of multi-directional functionally graded panel is 

studied using a semi-analytical numerical method entitled the state-space based 

differential method (SSDQM) and comparative behavior modeling by artificial neural 

network (ANN) for different parameters. A semi-analytical approach which makes 

use the three-dimensional elastic theory and assuming the material properties having 

an exponent-law variation along the axial, radial direction or both directions, the 

frequency equations of free vibration of multi-directional functionally graded panels 

are derived. Numerical results are given to demonstrate the convergency and accuracy 

of the present method. Once the semi-analytical method is validated, an optimal ANN 

is selected, trained and tested by the obtained numerical results. In addition to the 

quantitative input parameters is considered as a qualitative input in NN modeling. The 

results of SSDQM and ANN are compared and the influence of longitude of the panel, 

material property graded index and circumferential wave number on the non-

dimensional natural frequency of functionally graded material (FGM) panels are 

investigated.                                           © 2016 IAU, Arak Branch.All rights reserved. 

 Keywords : Panel;  Multi-directional functionally graded; Artificial neural network;  

Differential quadrature method;  State-space method; Dynamic analysis. 

1    INTRODUCTION 

 UNCTIONALLY graded material is a new kind of heterogeneous composite and it possesses continuously 

varying microstructure and mechanical properties. The advantage of this new kind of material is that no internal 

boundaries exist and the interfacial stress concentrations can be avoided. 

Many studies have been performed to analyze the dynamic behavior of functionally graded structures. Reddy and 

Cheng[1] presented further development of the linking relationships between vibration frequencies predicted by 

different theories, and they were extended from a flat plate to a spherical shallow shell. Efraim and Eisenberger [2] 

presented an exact vibration analysis of variable thickness thick annular isotropic and FGM plates based on the first-

order shear deformation theory using finite element method. Nie and Zhong [3] used state-space based differential 

quadrature to present a semi-analytical solution for three-dimensional vibration of functionally graded circular 

plates. Dong [4] developed three-dimensional free vibration analysis of functionally graded annular plates using the 

Chebyshev–Ritz method. Malekzadeh et al. [5] used DQM to study three-dimensional free vibration of thick 

functionally graded annular plates in thermal environment. Zahedinejad et al.[6] presented A semi-analytical method 

for three-dimensional free vibration to analysis of functionally graded curved panels. Using the meshless method 

Free vibration of functionally graded conical shell panels were analyzed by Zhao and Liew [7]. 
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In the above mentioned papers, the material properties are assumed having a smooth variation usually in the 

axial direction only. However, there are practical occasions which require the materials graded in two or three 

directions. So, it is necessary to develop appropriate methods to investigate the mechanical responses of multi-

directional functionally graded structures. Nemat-Alla [8] investigated reduction of thermal stresses by developing 

2D-FGM plate. Nie and Zhong [9] presented dynamic analysis of multi-directional functionally graded annular 

plates by a semi-analytical numerical method. By using the first-order shear deformation theory and Rayleigh–Ritz 

procedure, Zhu Su et al. [10] presented a unified solution method for free vibration analysis of functionally graded 

cylindrical, conical shells and annular plates with general boundary conditions. In this paper, we use a semi-

analytical numerical method entitled the state space-based differential quadrature method to study the dynamic 

behavior of multi-directional functionally graded panels. 

On the other hand, the concept of neural networks has been introduced to different branches of engineering 

[11,12], structural optimization problems [13,14] and functionally graded materials [15,16]. For example Jodaei et 

al. [17] analyzed free vibration of functionally graded annular plates by semi-analytical numerical method and 

comparative modeling by ANN. In other paper they [18] studied the free vibration analysis of functionally graded 

piezoelectric (FGP) annular plates with different boundary conditions by a state-space based differential quadrature 

method (SSDQM) and compared behavior modeling by an artificial neural network (ANN). Further, it is well 

known that neural network can be constructed with comparatively simplified procedure for numerical calculations, 

and the optimum calculation can be carried out without nonlinear and complicated programming methods.  

As an alternative and simple modeling technique, ANN was also employed to model the multi-directional FG 

panels and prediction of different parameters effects on natural frequency of the panels. With this respect, an optimal 

ANN was selected, trained by training data sets obtained from semi-analytical method with different parameters and 

also tested by testing data sets. There results obtained were in good agreement with semi-analytical numerical 

method ones, while keeping the analysis time to a minimum. Finally the results of two methods are illustrated and 

compared. 

2    BASIC EQUATIONS 

2.1 Governing equations 

Consider a FGM panel in a cylindrical coordinate system  , ,r z , as shown in Fig. 1. where ,r   and z are in the 

radial, circumferential and  axial  directions  of  the  panel.  

The equations of elastic equilibrium under the cylindrical coordinate system, in the absence of body forces, are: 
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where , ,r z   are axial stress componets, rz , are shear stress componets, , , zru u u  are displacement componets, 

 denotes material and t is time.  

 

   

 

 

 

 

 

 

 

Fig.1 

A multi-directional functionally graded panel. 

 

The displacement components are related to the strain components through the following relations: 
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The mechanical constitutive relations, which relate the stresses to the strains are as follows: 

 

11 12 13 12 22 23    13 23 33

44 55 66

r r z r z r z

z z rz rz r

r

r

c c c c c c c c c

c c c

   

   

           

     

        

  
           

 

   (3) 

 

where 
ijc are elastic stiffness components. 

It is assumed that the material properties have an exponent-law distributions along the axial and radial direction 

of the panel. 
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where  0 0,0 and  0 0,0ijc denotes the values of material properties at the center point of the bottom panel, 
1 and 

2 denote the material property graded indexes in the axial and radial direction, respectively that they can 

determined by 

 

   0 0

1 2 ln ,   0,0 lnc ( , ) ln (0,0)ij ija h ln a h c                      (5) 

 

Considering Eq. (4), the governing equations represented by displacements can be obtained from Eqs. (1)-(3).  

 
. 0E                 (6) 

 

where ,
T

r z
u u u      the expression of the matrix E is given in Appendix A.1. 

2.2 Boundary conditions 

The following simply supported conditions are imposed at the edges of the cylindrical panel: 

 

0,    0,    0                  0,r rzu                      (7) 

 

For free vibration problems, boundary conditions at the top and bottom surfaces are assumed as the following. 

 

  0 : 0,   0,   0rz z zat z and h                     (8) 

3    SEMI-ANALYTICAL SOLUTION 

State-space based differential quadrature method is a combination of the state-space method and differential 

quadrature method. The analytical solution in the axial direction can be acquired using the state-space method and 

approximate solution in the radial direction can be obtained using differential quadrature method. 

The following assumed solutions satisfy the simply supported opposite edges at 0,  : 
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(9) 

 

where 1i   , “m” is the circumferential wave numbers and  is the natural angular frequency of the vibration. 

using the following non-dimensional parameters,  
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By combining Eq. (6) and employing Eqs. (9) and (10) and using state-space: 
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 I is the unity matrix of 3 3 matrices  1M R  and  2M R  

are the functions of the variable R and the expressions in Appendix (A.2). 

A semi-analytical procedure with the aid of DQM technique was recently developed by Chen and Bian [19]. In 

this method the nth order partial derivative of a continuous function ( , )f r z  with respect to r at a given point 
ir  can 

be approximated as a linear sum of weighted function values at all of the discrete points in the domain of r, i.e. 
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where N is the number of sampling points, and 
 n

ikw are the 
ir dependent weight coefficients [19,20]. In order to 

determine the weighting coefficients 
 n

ikw , the Lagrange interpolation basic functions are used, as the test functions 

and explicit formulas for computing these weighting coefficients can be obtained as [21]: 
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For first-order derivative, i.e. 1n  , and for higher-order derivatives, one can use the following relations 

iteratively: 
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A simple and natural choice of the grid distribution is the uniform grid spacing rule. However, it was found that 

non- uniform grid spacing yields results with better accuracy [22]. Hence, in this work, the Chebyshev–Gauss–

Lobatto quadrature points are used, i.e. [21]: 
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Using DQM: 
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The solution to Eq. (17) can be written as [23]: 
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where,  .iexp B Z  is the matrix exponential function.      , , 0i i iZ Z    and  0i  are the values of the state 

variables at arbitrary plane Z and the bottom plane 0Z  , respectively. From Eq. (18), we get: 
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where  1i and  1i are the values of the state variables at the top plane 1Z  . By applying boundary conditions 

of bottom and top surfaces of the panel the following equations can be found: 
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where D is the  6 6N N matrix and its expression is omitted. Then, substituting Eq. (21) into Eq. (20) and 

eliminating the first derivatives of the displacements  0i  and  1i , we get: 
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where B denotes the  6 6N N matrix. The boundary conditions on the circumferential edges, shown in Eq. (7), 

can also be written as the discretized forms. And substituting the circumferential boundary conditions into Eq. (24), 

we get a non-trivial solution by setting. 

 

det 0B             (23) 

  

The above equation is solved to obtain a set of frequencies of multi-dimensional functionally graded panels. The                         
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corresponding mode shape can be determined from Eq. (22). 
 

Table 1 

Convergence results of the first three non-dimensional frequencies for FG panel ( 1 , 0.2 , 0.1 , 2a m b m h m      ). 

Graded indexes Frequencies Number of points along the radial direction while using DQM   Ref. [10] 

        5 7 9 10     

λ1 = 1  Ω1  0.0776 0.0796 0.0805 0.0807  0.0807 
λ2 = 0  Ω2  0.0811 0.0815 0.0816 0.0817  0.0837 

  Ω3  0.0967 0.0958 0.0965 0.095  0.0961 
λ1 = 0  Ω1  0.0825 0.082 0.0816 0.0817  0.0835 
λ2 = 1  Ω2  0.0876 0.0869 0.0868 0.0866  0.087 

  Ω3  0.1041 0.1025 0.1016 0.1011  0.1006 
λ1 = 1  Ω1  0.0829 0.0825 0.0824 0.0822  0.0817 
λ2 = 1  Ω2  0.0877 0.087 0.0867 0.0868  0.0851 

    Ω3   0.1047 0.1037 0.1037 0.1032   0.0985 

 
Table 2 

Analysis results of the lowest three non-dimensional frequencies  for different angle and circumferential wave  number 

(
1 21 , 0.8 , 0.1 , 1a m b m h m       ). 

Angle of FG panel m=1  m=2  m=3 

 Ω1 Ω2 Ω3  Ω1 Ω2 Ω3  Ω1 Ω2 Ω3 

π /6 0.3928 0.3975 0.4064  0.7903 0.7998 0.818  1.1844 1.1988 1.2265 

π  /4 0.2537 0.2565 0.2617  0.5262 0.5325 0.5445  0.7903 0.7998 0.818 

π  /3 0.1695 0.1707 0.173  0.3928 0.3975 0.4064  0.5924 0.5995 0.6131 

π  /2 0.1679 0.1699 0.1737  0.2537 0.2565 0.2617  0.3928 0.3975 0.4064 

2 π  /3 0.1329 0.1346 0.1377  0.1695 0.1707 0.173  0.29 0.2933 0.2995 

π  0.1036 0.1049 0.1075  0.1679 0.1699 0.1733  0.1695 0.1707 0.173 

4 π  /3 0.0916 0.0928 0.0951  0.134 0.1346 0.1377  0.1876 0.1897 0.1938 

3 π  /2 0.0882 0.0893 0.0915  0.1225 0.124 0.127  0.1679 0.1699 0.1737 

 
Table 3 

Analysis results of the lowest three non-dimensional frequencies  for different parameters and ratio of material property graded 

indexes  ( 0.1, 1, 2 3h a m     ). 

b/a λ2/ λ1= 1 λ2/ λ1= 1.5 λ2/ λ1= 2 λ2/ λ1= 2.5 

  Ω1 Ω2 Ω3 Ω1 Ω2 Ω3 Ω1 Ω2 Ω3 Ω1 Ω2 Ω3 

 0.8 0.1329 0.1346 0.1377 0.1288 0.1305 0.1338 0.1229 0.1247 0.1281 0.1136 0.1158 0.1197 

0.82 0.1329 0.1344 0.1372 0.1288 0.1303 0.1332 0.1228 0.1244 0.1275 0.1136 0.1155 0.1191 

0.84 0.1329 0.1342 0.1367 0.1288 0.1301 0.1327 0.1228 0.1242 0.127 0.1135 0.1152 0.1184 

0.86 0.1328 0.134 0.1361 0.1287 0.1299 0.1321 0.1227 0.124 0.1264 0.1135 0.115 0.1177 

0.88 0.1328 0.1338 0.1356 0.1287 0.1297 0.1316 0.1227 0.1238 0.1258 0.1134 0.1147 0.1171 

0.9 0.1328 0.1336 0.1351 0.1287 0.1295 0.1311 0.1227 0.1236 0.1252 0.1134 0.1144 0.1164 

0.92 0.1327 0.1334 0.1346 0.1286 0.1293 0.1305 0.1226 0.1233 0.1247 0.1134 0.1142 0.1157 

0.94 0.1327 0.1332 0.1341 0.1286 0.1291 0.13 0.1226 0.1231 0.1241 0.1133 0.1139 0.1151 

4    NEURAL NETWORK MODELING 

 

 

 

 

 

 

 

 

 

Fig.2 

Schematic diagram of ANN model. 
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4.1 Overview of NNs 

Artificial Neural Networks (NNs) are computer models that mimic the biological nervous system. An NN can be 

defined as a massively parallel distribute processor that has a natural propensity for storing experiential knowledge 

and making it available for use [24]. The main component of this model is the structure of its information processing 

unit. A biological neuron is made up of four main parts: dendrites, synapses, axon and the cell body. The basic 

element of an NN is the artificial neuron which consists of three main components namely as weights, bias, and an 

activation function. Each neuron receives inputs 
1 2: : ... : nx x x , attached with a weight 

iw which shows the 

connection strength for that input for each connection. Each input is then multiplied by the corresponding weight of 

the neuron connection. A bias 
ib  can be defined as a type of connection weight with a constant nonzero value added 

to the summation of inputs and corresponding weights u, given by: 

 

1
j

N

i i j i

i

u w x b


             
 

(24) 

 

The summation 
iu is transformed using a scalar-to-scalar function called an ‘‘activation or transfer function,’’ 

 if u  yielding a value called the unit’s ‘‘activation,’’ given by: 

 

 i iY f u            (25) 

 

Activation functions serve to introduce nonlinearity into NNs which makes NNs so powerful. NNs are 

commonly classified by their network topology (i.e. feed back, feed forward) and learning or training algorithms 

(i.e. supervised, unsupervised). For example, a multilayer feed forward NN with back propagation indicates the 

architecture and learning algorithm of the NN. 

4.2 Optimal NN model selection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Flowchart of optimal NN selection. 
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Fig.4 

Errors of NN architectures with different neurons in hidden 

layers. 

 

 

The performance of an NN model mainly depends on the network architecture and parameter settings. The 

neuron model and the architecture of a neural network describe how a network transforms its input into an output. 

This transformation can be viewed as a computation. One of the most difficult tasks in NN studies is to find this 

optimal network architecture. There are many heuristic techniques described in the neural network literature to 

perform various tasks within the supervised learning paradigm, such as optimizing training, selecting an 

appropriately sized network, and predicting how much data will be required to achieve a particular generalization 

performance. In this study Matlab NN toolbox is used for NN applications. Matlab NN toolbox randomly assigns the 

initial weights for each run each time which considerably changes the performance of the trained NN even all 

parameters and NN architecture are kept constant. This leads to extra difficulties in the selection of optimal network 

architecture and parameter settings. 

To overcome this difficulty a program has been developed in Matlab which handles the trial and error process 

automatically. The program tries various number of layers and neurons (less than20) in the hidden layers both for 

first and second hidden layers for a constant validation check for several times and record the mean of MAE (mean 

absolute %error) or MSE (mean squared error) of the testing set, as the training of the testing set is more critical. All 

of the errors for different networks are stored and compared to select the best network. This process is repeated N 

times, where N denotes the number of hidden nodes for the first hidden layer. This whole process is repeated for 

changing number of nodes in the second hidden layer. 

More over this selection process is performed for different back propagation training algorithms such as trainlm, 

trainscg and trainbfg, which the best one here selected as trainlm which is Levenberg–Marquardt algorithm. 

Levenberg–Marquardt (LM) algorithm randomly divides put vectors and target vectors into three sets including 

training, validation and testing. Changing the relative percentages of these three sets could slightly improve the 

generalization process. In this study, 60% of whole data is specified as the training data in which the network would 

be adjusted according to its error. Similarly 20% of database is considered as the validating data which is used to 

measure network generalization and to halt training when generalization stop improving. Finally the remaining 20% 

of whole data is specified as the testing data which has no effect on training and so provide san independent measure 

of network performance during and after training. In this program up to 20 neurons in each hidden layer is tested and 

the optimal network is selected based on the minimum MAE. The optimal NN architecture was obtained as 8-14-18-

3 (Fig. 2. Schematic diagram of 8-n-m-3 ANN model). 
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Fig.5 

Regressions of training, validation and test data simulated by NN . 

 

 
Table 4 

Comparison study of lowest three frequencies of functionally graded panel using SSDQM and ANN (
1 21 , 0.8 , 3, 1a m b m         ). 

h (m) Method m= 0  m= 1  m= 2 

    Ω1 Ω2 Ω3  Ω1 Ω2 Ω3  Ω1 Ω2 Ω3 

0.12 SSDQM 0.104 0.1056 0.1096  0.2213 0.2235 0.2277  0.474 0.4797 0.4905 

 ANN 0.1064 0.1222 0.1134  0.2213 0.2293 0.2347  0.4601 0.4772 0.4851 

0.14 SSDQM 0.1212 0.1232 0.1279  0.2679 0.2708 0.2764  0.5555 0.5622 0.575 

 ANN 0.1199 0.1333 0.1303  0.272 0.2803 0.2865  0.5525 0.5655 0.5767 

0.16 SSDQM 0.1383 0.141 0.1462  0.3128 0.3164 0.3233  0.6373 0.645 0.6597 

 ANN 0.1413 0.1477 0.1492  0.3211 0.32655 0.3322  0.6441 0.6531 0.6703 

0.18 SSDQM 0.1555 0.1588 0.1644  0.3574 0.3616 0.3698  0.7194 0.7281 0.7447 

 ANN 0.1645 0.1645 0.168  0.3661 0.3691 0.3748  0.728 0.7358 0.7598 

0.2 SSDQM 0.1728 0.1768 0.1827  0.402 0.4069 0.4162  0.8014 0.8111 0.8296 

 ANN 0.1824 0.1810 0.1850  0.4068 0.4104 0.4176  0.8062 0.8153 0.8437 

0.22 SSDQM 0.1857 0.1894 0.191  0.4468 0.4523 0.4627  0.8834 0.8941 0.9145 

 ANN 0.1946 0.1947 0.1993  0.4461 0.4527 0.4614  0.8852 0.8963 0.9250 

0.24 SSDQM 0.2 0.2066 0.2087  0.4918 0.4979 0.5095  0.9651 0.9768 0.9991 

 ANN 0.2043 0.2072 0.2122  0.4871 0.498 0.5067  0.9659 0.9800 1.0054 

0.26 SSDQM 0.2148 0.2236 0.2262  0.537 0.5436 0.5563  1.0466 1.0592 1.0835 

  ANN 0.2155 0.2229 0.2273   0.5313 0.5489 0.5553   1.045 1.0632 1.0822 

5   RESULTS AND DISCUSSION 

The material properties of the panel are assumed as the exponent-law variation in the axial and radial direction 

shown in Eq. (4). The Young’s modulus in 0r   and 0z   is 380E GPa  and Poisson’s ratio is chosen as 

constant, 0.3.   The material density at the center of the bottom plane is 33800 .kg m   The equally spaced 

discrete points are adopted while using the differential quadrature method. In the following we will verify the 

presented solutions and investigate the dynamic behavior of multi-directional functionally graded panel under 

different conditions. 

As a first, the convergence behavior and accuracy of the semi-analytical numerical method for the first three 

frequency parameters of FG panels of different material property graded indexes are studied in Table 1. The results 

are compared with those of the three-dimensional elasticity solutions of Nie and Zhong [9], which were obtained 

using the semi-analytical numerical method for multi-directional FG annular plates. The results for FG panels with 

different angles and circumferential wave numbers are presented in Table 2. and for different parameters and ratio of 

material property graded indexes FG panels are given in Table 3. In this table, it is observed that the non-

dimensional frequencies decreases through the decrease of thickness for 0.1a  , but with increase in the parameter 

b, this frequency decreases slowly. 

As another method (ANN), the database in this study included 190 data sets for different parameters obtained 

from SSDQM analysis. Again 52 data sets with different incremental values of input parameters are prepared so that 

the NN to be tested again with new sets of data. After the network memorizes the training set (at the expense of 
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generalizing more poorly), training is stopped. This technique automatically avoids the problem of over-fitting, 

which plagues many optimization and learning algorithms. The flowchart of the whole process is shown in Fig. 3 

and the errors are shown in Fig. 4. in which the minimum error point is highlighted. 

Fig. 5 shows the regression of network. If there were a perfect fit (outputs exactly equal to targets), the 

regression would be 1, and the y-intercept would be 0. In this study, the output tracks the targets very well for 

training, testing, and validation, and the R-value is over 0.95 for the total response. 

In order to investigate the influence of different parameters on non-dimensional frequency, the results of semi-

analytical solution and ANN model are comparatively illustrated in the following table and figures. You can see that 

the numbers are close in Table 4. for lowest three non-dimensional frequencies for different longitude and 

circumferential wave numbers. it is noted that increase of circumferential wave number leads to increase in the 

natural frequency. It also shows that increase frequencies with increase of longitude.  

The variations of lowest three natural frequencies for different longitude against ratio of material property 

gradient index are depicted in Figs. 6-8. It can be seen obviously that for both SSDQM and ANN results, the natural 

frequency increase with the increase of material property gradient index in radial direction.  
 

 

 

 

 

 

 

 

 

 

 

 

Fig.6 

Variation of the first non-dimensional frequency vs. ratio of 

gradient indexes at different longitude ( 1 , 0.8 , 1a m b m m   ). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 

Variation of the second non-dimensional frequency vs. ratio of 

gradient indexes at different longitude ( 1 , 0.8 , 1a m b m m   ). 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.8 

Variation of the third non-dimensional frequency vs. ratio of 

gradient indexes at different longitude ( 1 , 0.8 , 1a m b m m   ). 
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6    CONCLUSIONS 

Based on the three-dimensional elastic theory and assuming the mechanical properties having an exponent-law 

variation along the axial, radial direction or both directions, the dynamic behavior of multi-directional functionally 

graded panels is studied using a semi-analytical numerical method entitled the state space-based differential 

quadrature method. The convergence and accuracy of the present method is validated by comparing the obtained 

results with those published in the literature. Then, an optimal ANN is selected, trained and tested by the numerical 

results obtained by SSDQM.  

Finally a comparative parametric study of the results obtained by SSDQM and ANN are presented in which the 

influences of longitude of the panel, material property graded index and circumferential wave number on the non-

dimensional natural frequency of FGM panels. The results show that ANN can acceptably model the behavior of 

functionally graded panels with different parameters. The conclusions that can be made from the parametric study 

are as following: 

 An optimal ANN can be obtained to predict the natural frequencies rather precisely for different parameters 

without keeping the calculation time. 

 ANN model can acceptably predict and show all the trends which agree well with semi-analytical trends. 

 The non-dimensional natural frequencies of the functionally graded panels decrease slowly with the 

decrease of the thickness. 

 Increase of angle of panel leads to decrease in the natural frequency. 

 For both SSDQM and ANN results, the natural frequency increases with the increase of material property 

gradient index, longitude and circumferential wave number. 
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