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 ABSTRACT 

 Vibrations of plate and plate type structures made up of composite materials have a 

significant role in various industrial mechanical structures, aerospace industries and other 

engineering applications. The main aim of the present paper is to study the two 

dimensional thermal effect on the vibration of non-homogeneous square plate of variable 

thickness having clamped boundary. It is assumed that temperature varies bi-parabolic i.e. 

parabolic in x-direction & parabolic in y-direction and thickness is considered to vary 

exponentially in x direction. Also, density is taken as the function of “x” due to non-

homogeneity present in the plate’s material.  Rayleigh Ritz technique is used to calculate 

the natural frequency for both the modes of vibration for the various values of taper 

parameter, non-homogeneity constant and thermal gradient. All the calculations are carried 

out for an alloy of Aluminum, Duralumin, by using mathematica. 

                                               © 2015 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 IBRATION phenomenon is commonly used in science and engineering applications. Vibration is profitably 

used in musical instruments, testing equipments etc. but undesirable in many cases such as machine tools, 

resonance etc. With the development of technology, especially in space technology, composite materials now 

became the necessity to reduce or optimize the effects of vibration. In these days, plates made up of composite 

materials with various geometrical shapes are commonly used as primary component in many structural and 

machinery applications. Plates of different shape and size with variable thickness are extensively used in various 

engineering structures and machines in aerospace industry, marine industry, automotive manufacturing industry, 

earth-quake resistant structures, defence etc. These plates have considerably greater capability for vibration as 

compared to the plates of uniform thickness. 

Since most of the machines and mechanical structures operate under the influence of high temperature, the effect 

of elevated temperature cannot be neglected. Also, non-homogeneity develops in material due to variation in 

temperature. Therefore, scientists and researchers are interested to know about the effects of variation in temperature 

on these plates. 

Practicing engineers and scientists from different industries are always try to get the knowledge about first few 

modes of vibration before finalizing any design of machine or structure. But sometimes, they have neither the 
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analytical capability of solving the problem nor the money and time needed for experimental program. Therefore, 

they are forced to drop their project/problems at this point. Hence, it becomes the need of the hour to study the effect 

of temperature variations on the vibrational behavior of plates and to provide a wide range of numerical data within 

the realm of them (practicing engineers, researchers, scientists etc.) for the fulfillment of their requirement. In 

available literature, a lot of work has been carried out to examine the effect of one dimensional temperature variation 

on the vibration of plates whose thickness varies in one or two directions. But, almost negligible work is done in two 

dimensional temperature variations for non-homogeneous plate. 

A.K. Gupta & A. Khanna [1] discussed the vibration of visco elastic rectangular plate with linearly thickness 

variations in both directions having four sided clamped boundary conditions. A.K. Gupta & P. Singhal [2] studied 

the thermal effect on free vibration of non-homogeneous orthotropic visco–elastic rectangular plate with parabolic 

thickness variation. A. Khanna & A.K. Sharma [3] considered the mechanical vibration of homogeneous square 

plate with linearly thickness variation. They considered the parabolic temperature variation in two directions. A. 

Khanna & M. Bhatia [4] studied the free vibration of square plate of variable thickness with thermal effect. They 

considered bi-parabolic variation in thickness under the influence of bi-directional variation in temperature i.e. 

linearly in x-direction and parabolic in y-direction. Leissa [5] provided an excellent data on vibration of plates in his 

monograph. Huang & Leissa [6] discussed the vibration analysis of rectangular plates with side cracks via the Ritz 

method. B. Singh & V. Saxena [7] investigated the transverse vibration of rectangular plate with bi-directional 

thickness variation. G. Fauconneau & R.D. Marangoni [8] evaluated the effect of a thermal gradient on the natural 

frequencies of a rectangular plate. Free vibration analysis of rectangular plates with internal columns and uniform 

elastic edge supports is given by Wu & Lu [9]. H.P. Lee, S.P. Lim & T. Chow [10] worked on free vibration of 

composite rectangular plates with rectangular cutouts. They worked on simply-supported rectangular plates having 

central rectangular cutouts and double square cutouts. J.R. Kuttler & V.G. Sigillit [11] discussed the vibrational 

frequencies of clamped plates of variable thickness. M. Daleh & A.D. Keer [12] worked on the natural vibration 

analysis of clamped rectangular orthotropic plate. R.K. Jain & S.R. Soni [13] discussed the free vibration of 

rectangular plates with parabolic varying thickness at two parallel simply supported edges boundary condition. R. 

Lal [14] studied the transverse vibration of orthotropic non-uniform rectangular plates with continuously varying 

density. S.K. Malhotra, N. Ganesan & M.A. Veluswami [15] discussed the vibration of orthotropic square plates 

having variable thickness (linear variation) with the help of Rayleigh-Ritz method for various boundary conditions. 

Recently, Alijani &  Amabili [16] analyzed nonlinear vibrations of imperfect rectangular plates with free edges. T. 

Johri & I. Johri [17] studied exponential thermal effect on vibration of non-homogeneous orthotropic rectangular 

plate having bi-linear variation in thickness. T. Sakata & K. Hosokawa [18] studied the vibration of clamped 

orthotropic rectangular plates with C-C-C-C boundary conditions. Recently, free vibration analysis of thick 

trapezoidal and triangular laminated plates resting on elastic supports is presented by Quintana & Nallim [19]. T. 

Sakiyama & M. Huang [20] investigated the free vibration analysis of rectangular plates with variable thickness. 

Y.F. Xing & B. Liu [21] gave new exact solutions for free vibration of thin orthotropic rectangular plates with all 

combinations of simply supported and clamped boundary conditions.  

The objective of the present study is twofold. First is to find the magnitude of frequency for both the modes of 

vibration at different values of varying parameters i.e. thermal gradient, non-homogeneity constant and taper 

constant and second is to analyze how these variations affect the frequency. Rayleigh Ritz technique has been 

applied to find both the modes of frequency. Numeric values of frequency are given in tabular form and variation in 

frequency with respect to varying parameters is shown in graphical manner. 

2    DIFFERENTIAL EQUATION OF MOTION AND ITS SOLUTION 

Differential equation of motion for square plate of variable thickness is [1] 

 

[ ( 2 ) 2 ( ) 2 ( ), , , , , , ,1 1, 1,

2( ) ( ) 2(1 ) ] 0, , , , ,1, 1, 1,

D W W W D W W D W Wxxxx xxyy yyyy xxx xyy yyy yxxx y

D W W D W W D W gp Wxx yy yy xx xyxx yy xy   

     

       
           

 

   (1) 

 

A comma followed by a suffix denotes partial differentiation with respect to that variable. Here, D1 is the 

flexural rigidity of plate i.e. 
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3 2/12(1 )1D Eg              (2) 

 

The thickness of the plate is assumed to vary exponentially in x- direction i.e. 

 

0

x
ag g e



          

 

(3) 

 

where  is taper constant in x-direction and 0g g at 0x y  . 

To make easy and convenient calculation, first six terms are considered in the expansion of  exp x a . Now 

Eq. (3) can be written as:  

 

2 3 4 5( / ) ( / ) ( / ) ( / ) ( / )
[1 ]0 1! 2! 3! 4! 5!

x a x a x a x a x a
g g

    
                 

        

(4) 

 

Due to non-homogeneity present in the plate’s material, it is considered that density of the plate’s material varies 

parabolic in one direction i.e. 

 

2 2(1 / )0 1x a               
        

(5) 

 

where, 1


 
i.e. (0 1)1  , is the non-homogeneity constant.  

Also, it is assumed that square plate of engineering material has a steady two dimensional i.e. bi-parabolic 

temperature variations as: 

 

2 2(1 ( ) )(1 ( ) )0
yx

a a                       

(6) 

 

where,  denotes the temperature excess above the reference temperature at any point on the plate and 0  denotes 

the temperature at any point on the boundary of plate. The temperature dependence of the modulus of elasticity for 

most of engineering materials can be expressed as: 

 

(1 )0E E                (7)  
  

 

where, 0E  is the value of the young modulus at reference temperature i.e. 0  and    is the slope of the variation 

of E with  . On using Eq. (6) in Eq. (7), one gets: 

2 2
0{1 (1 ( ) )(1 ( ) )}yx

a aE E                      (8) 

 

where, , (0 1)0     is thermal gradient. 

Now, put the value of E and g from Eqs. (8) and (4) in Eq. (2), one obtains 
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3    SOLUTION OF DIFFERENTIAL EQUATION OF MOTION 

To find the solution of equation of motion, Rayleigh Ritz technique is applied. In this method, one requires 

maximum strain energy must be equal to the maximum kinetic energy. So it is necessary for the problem under 

consideration that 

( ) 0S K                  (10) 

 

The expression for kinetic energy (K) and strain energy (S) are [4] 

 

2 2

0 0

1

2

a a

K p gW dydx              
                       

(11) 
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(12) 

 

Since the plate is assumed to be clamped at all the four edges, the boundary conditions for square plate are  

 

,

,

0 0,

0 0,

x

y

W W at x a

W W at y a

  

  
           

                       

(13) 

 

To satisfy equation (13), the corresponding two term deflection function is taken as [3] 

 
2

1 2[( )( )(1 ( ))(1 ( ))] ( ( )( )(1 ( ))(1 ( ))]y y y yx x x x
a a a a a a a aW A A                 (14) 

 

Assuming the non-dimensional variable as: 

 

, , ,y gWx
a a a aX Y W g          

(15) 

 

On using Eqs. (4), (5), (9) & (15) in Eqs. (11) and (12), one obtains  
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where,  
3 3 2

0 0 /12(1 )L E g a    

On using Eqs. (16) & (17) in Eq. (10), one gets 

 
2( * *) 0S K        (18) 

 

where,  
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and 
2 2 2 2

0 0 012 (1 ) / ,p E g    is the frequency parameter. 

Eq. (18) consist two unknown constants i.e. &1 2A A  arising due to the substitution of W from Eq. (14). These 

two constants are to be determined as follows 

 
2( * *) / 0 1,2nS K A n          (19) 

 

On simplifying (19), one gets 

 

1 1 2 2 0, 1,2n nb A b A n        (20) 

 

where, 1 2& ( 1,2)n nb b n   involve varying parameters and the frequency parameter i.e. 2 . 

To obtain the non-trivial solution of Eq. (20), the determinant of the coefficients of Eq. (20) must be zero. So one 

gets,  

 
10 2

0 0

3 3

0

7.08*10 / , 0.01

2.80*10 / , 0.345

E N M g M

Kg M 

 

 
 

    

  (21) 

 

Eq. (21) is a quadratic equation in 2 from which one can obtain   at various values of varying parameters i.e. 

taper constant, non-homogeneity constant and thermal gradient. 

4    RESULTS AND DISCUSSION 

Computations have been made for the frequency parameter   of square plate for different values of taper constant 

(  ), non-homogeneity constant ( 1 ) and thermal gradient ( ) for the first two modes of vibration. The following 

material (for duralumin) parameters are used in calculations: 

10 2 3 3

0 0 07.08*10 / , 0.01 2.80*10 / , 0.345E N M g M Kg M                          

 

All the numeric values of frequency for first two modes of vibration are tabulated. For better understanding, 

variation in both the modes of frequency with varying parameters is shown in graphs. 

Table1. includes numeric values of frequency for both the modes of vibration at different values of taper 

constant (  ) for the following combinations of thermal gradient ( ) & non-homogeneity constant ( 1 ) i.e. 

Case 1:    10.0 , 0.2    Case 2:  10.4 , 0.2    Case 3:   10.8 , 0.2   . 

It is observed that as taper constant ‘  ’ increases, frequency parameter ‘  ’ also increases for both the modes of 

vibration in case (1), (2) and (3). It is interesting to note that value of frequency for both the modes of vibration 

decreases as thermal gradient increases from case (1) to case (3). Variation in frequency for Mode1 and Mode2 in 

Table 1. is shown in Fig. 1(a) and Fig. 1(b) respectively for case (1), (2) and (3). 
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Table 1 

Variation of Frequency parameter (  ) for different values of Taper constant (  ) & Thermal gradient ( ) at fixed value of Non-

homogeneity constant ( 1 =0.2) 

       

 

 
(a) 

 
(b) 

Fig.1 

(a) Frequency (Mode1) Vs taper parameter (β). (b) Frequency (Mode2) Vs taper parameter (β). 

 

In Table 2., numeric values of frequency for both the modes of vibration at different values of non-homogeneity 

constant ( 1 ) are given for the following combinations of taper constant   (  ) & thermal gradient ( ) i.e. 

Case 4: 0.2     Case 5:  0.4     Case 6: 0.8   . 

Here, author observed that as non-homogeneity constant 1  increases, frequency parameter ‘  ’ decreases for 

both the modes of vibration for case (4), (5) and (6). It is evident to note that the values of frequency for both the 

modes of vibration increase as the combined values of thermal gradient & taper constant increase from case (4) to 

case (6). Variation in frequency for Mode1 and Mode2 in Table 2. is shown in Fig. 2(a) and Fig. 2(b) respectively 

for case (4), (5) & (6). 

 

Table 2 

Variation of Frequency parameter (  ) for different values of Non-homogeneity constant ( 1 ), Thermal gradient ( and Taper 

constant (  ) 

1    =  = 0.2   =  = 0.4  =  =0.8 

Mode1 Mode2 Mode1 Mode2 Mode1 Mode2 

0.0 149.81 38.28 161.74 41.29 198.11 49.79 

0.2 145.42 37.26 156.86 40.18 191.75 48.41 

0.4 141.40 36.32 152.40 39.15 185.96 47.15 

0.6 137.70 35.45 148.30 38.19 180.68 45.98 

0.8 134.28 34.63 144.51 37.31 175.82 44.89 

 

    =0.0   = 0.4  = 0.8 

Mode1 Mode2 Mode1 Mode2 Mode1 Mode2 

0.0 136.88 35.06 123.72 31.68 108.99 27.86 

0.2 152.05 38.97 138.48 35.47 123.43 31.52 

0.4 170.93 43.85 156.86 40.18 141.42 36.04 

0.6 194.38 49.90 179.74 46.00 163.83 41.61 

0.8 223.51 57.35 208.21 53.15 191.75 48.41 

1.0 259.67 66.48 243.62 61.88 226.49 56.71 
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(a) 

 
(b) 

Fig.2 

(a) Frequency (Mode1) Vs non homogeneity constant ( 1 ). (b) Frequency (Mode2) Vs non homogeneity constant ( 1 ). 

 

Table 3. shows numeric values of frequency (  ) for both the modes of vibration at different values of thermal 

gradient ( ) for the following combinations of taper constant (  ) & non-homogeneity constant ( 1 ) i.e. 

Case 7: 1 0.2     Case 8: 1 0.4     Case 9: 1 0.8    

It is obvious from the Table 3. that as thermal gradient   increases, frequency parameter ‘  ’ decreases 

continuously for both the modes of vibration in case (7), (8) and (9). Also, it is clearly seen that the values of 

frequency for both the modes of vibration increase as the combined values of non-homogeneity constant and taper 

constant increase from case (7) to case (9). Further, variation of frequency for Mode1 and Mode2 in Table 3. is 

shown in Fig. 3(a) and Fig. 3(b) respectively for case (7), (8) and (9). 
 

Table 3 

Variation of Frequency parameter (  ) for different values of Thermal gradient ( ), Taper constant (  ) and Non-homogeneity 

constant ( 1 ) 

    = 1 = 0.2   = 1 =  0.4   = 1 = 0.8 

Mode1 Mode2 Mode1 Mode2 Mode1 Mode2 

0.0 152.05 38.97 166.07 42.72 205.04 53.15 

0.2 145.42 37.26 159.38 40.98 198.12 51.26 

0.4 138.48 35.47 152.40 39.15 190.97 49.26 

0.6 131.17 33.56 145.08 37.20 183.55 47.15 

0.8 123.43 31.52 137.39 35.12 175.82 44.89 

 

 

 
(a) 

 
(b) 

Fig.3 
(a) Frequency (Mode 1) Vs thermal gradient (α). (b) Frequency (Mode 2) Vs thermal gradient (α). 
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5    CONCLUSIONS 

Conclusion from the case study is that the variation in varying parameters of the plate strongly affects the frequency 

of the plate’s vibration. By choosing appropriate values of varying parameters, desired or required values of 

frequencies can be obtained. Therefore, authors suggest the industrial scientists and design engineers to go through 

the findings of the present paper in order to provide much better authentic structures and machines with more 

strength, durability and efficiency. 
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