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 ABSTRACT 

 In this paper the radial deformation and the corresponding stresses in a 

functionally graded orthotropic hollow cylinder with the variation in 

thickness and density according to power law and rotating about its axis 

under pressure is investigated by using Seth's transition theory. The 

material of the cylinder is assumed to be non-homogeneous and 

orthotropic. This theory helps to achieve better agreement between 

experimental and theoretical results. Results has been mentioned 

analytically and numerically. From the analysis, it has been concluded that 

cylinder made up of orthotropic material whose thickness increases 

radially and density decreases radially is on the safer side of the design as 

circumferential stresses are high for cylinder made up of isotropic material 

as compared to orthotropic material. This paper is based on elastic-plastic 
behavior which plays important role in practical design of structures for 

safety factor.                       © 2018 IAU, Arak Branch. All rights reserved. 

 Keywords: Elastic-plastic; Orthotropic; Pressure; Functionally graded 

material; Cylinder.  

1    INTRODUCTION 

 RTHOTROPIC structures are very common in present day engineering. Orthotropic cylinder has gained 

widespread use and acceptance, and has already earned worldwide popularity in almost all kinds of 

applications, housing, marine, highway bridge deck, aerospace and for strengthening of structures. In recent years, 

the problem of elastic-plastic deformation in composite cylinders made up of functionally graded materials (FGMs) 

operating at high pressure and temperature has attracted the interest of the many researchers. For an improved usage 

of the material, it is necessary to allow variation of the effective material properties in one direction of cylinders. 

The analysis of rotating functionally graded orthotropic cylinders has been reported rarely in the literature. Author 

A.F. Bower [1] has mentioned the behavior of orthotropic cylinders and E.J. Hearn [2] discussed the anisotropic 

behavior of materials. G.H. Kim et al. [3] investigated the several fracture problems using new interaction integral 

formulation and compared the result with analytic solutions. A.M. Zenkour [4] determined the analytic solutions for 

the rotating orthotropic cylinders of variable and uniform thickness and concluded that varying thickness in 

cylinders shows excellent result. S. Dag [5] gave a new computational technique based on the equivalent domain 

integral (EDI) for fracture analysis of orthotropic functionally graded materials subjected to thermal stresses and 
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concluded that among the three principal thermal expansion coefficient components, the in-plane component 

perpendicular to the crack axis has the foremost vital influence on the  stress intensity factor. M. Paschero et al. [6] 

analyzed the buckling of an axially-loaded orthotropic circular cylinder by defining orthotropic material properties 

in terms of associated geometric mean. H.M. Wang [7] has obtained closed form solutions for pressurized 

orthotropic cylinders using the Lame’s equations and result obtained shows good agreement with numerical 

simulation results using finite element analysis. G.J. Nie et al. [8] determined analytically static plane-strain 

deformations of functionally graded orthotropic cylinders with elliptic inner and circular outer surfaces. Authors 

solved the problem by employing Fourier and the Frobenius series using the assumption that four relevant elastic 

moduli are with same variation in the radial direction. S. Sharma et al. [9] determined thermal creep stresses and 

strain rates in a functionally graded stainless steel composite cylinder using finite difference method and concluded 

that material anisotropy may have beneficial effect on stresses. The result obtained using small strain theory is found 

to be on unsafe side when compared to those obtained using finite strain theory. Seth’s transition theory act as a 

bench mark in dealing with the problems of elastic-plastic and creep deformation i.e. applied by various authors i.e. 

S.K. Gupta et al. [10] determined the stresses for orthotropic rotating cylinder. B.N Borah [11] investigated the 

stresses in tubes and mentioned the transition points. A.K. Aggarwal et.al. [12] concluded that by introducing a 

suitably chosen temperature gradient, non-homogeneous compressible circular cylinder with internal and external 

pressure for non-linear measure is on the safer aspect of the design as compared to the cylinder without temperature. 

S. Sharma et al. [13] investigated stresses in transversely isotropic cylinder under pressure and concluded that 

transversely isotropic cylinder is on safer side as compared to isotropic cylinder. Safety analysis has been done for 

the torsion of a functionally graded thick-walled circular cylinder under internal and external pressure subjected to 

thermal loading by S. Sharma et al. [14] and concluded that in creep torsion cylinder made up of less functionally 

graded material under pressure is better choice for designing point of view as compared to homogeneous cylinder.  

2    OBJECTIVE OF THE STUDY 

In order to clarify the transition from elastic to plastic state, firstly, we need to recognize  transition state  as an 

asymptotic one and in this present study, it is our main aim to eliminate the necessity of yield condition, elastic-

plastic, jump conditions and semi-empirical laws etc. The objective of this paper is to calculate stresses for thick-

walled functionally graded rotating orthotropic cylinder under internal and external pressure using the concept of 

transition theory which will act as a benchmark and helpful in practical design of orthotropic cylinder. 

3    MATHEMATICAL FORMULATION 

Consider a thick-walled orthotropic cylinder made up of functionally graded material with internal and external radii 

a and b respectively, subjected to internal and external pressure
1

p and 
2

p respectively. The non-homogeneity in the 

cylinder is due to variation of thickness, density and compressibility C. In cylindrical polar co-ordinates, the 

components of displacements are given as: 

 

(1 ), 0 and ,u r v w dz   
      

         (1) 

 

where   is a function of r only and d is a constant. 

Seth has defined the generalized principal strain measure iie  by taking the integral of the weighted function as: 
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where n is the measure and A
iie are the principal finite components of strain.  

Using (2a) the generalized components of strain are, 
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where n is the non-linear measure and
d

dr


   .  

The component of stress for orthotropic material is given as: 
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where ,
rr    and 

zz
  are the radial, circumferential and axial stresses respectively. 

Taking non-homogeneity in orthotropic material [7] as: 
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where  a r b,k 0    is non-homogeneity parameter and 
011 012 013 021 022 023 031 032 033

, , , , , , , ,C C C C C C C C C are material 

constants. 

Using Eq. (4) in Eq. (3) we get, 
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0
r z zr      , where , jij ie  are stress and strain tensors respectively.  

Equations of equilibrium [10] is given as,  

 

  2 2 0,rr

d
hr h h r

dr
    

      
 (6) 

 

where 
0

t
r

h h
b



 
  

 
 is the wall thickness of the rotating cylinder,

0

q
r

b
 



 
  

 
is the density of the rotating 

cylinder,  is the angular speed of the rotating cylinder. 

4    IDENTIFICATION OF TRANSITION POINT 

When a deformable solid is subjected to internal and external loading, it has been observed that the solid first 

deforms elastically. If the loading is sustained, plastic flow might set in. So, there exists an intermediate state in 

between elastic and plastic state that is known as transition state. Thus, differential system defining the elastic state 
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should reach a critical value in the transition state. The nonlinear differential equation at transition state is obtained 

by substituting, Eq. (5) in Eq. (6), as: 
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where r P   . 

The transition points of k in Eq. (5) are 0, 1P P   and P  . 

The boundary conditions are 

 

1 2
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 (8) 

 

The resultant force normal to plane Z = constant must vanish, i.e. 

 

0.

b
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a

r dr        
 (9) 

5    TRANSITIONAL AND PLASTIC STRESSES 

As elastic state can go to plastic state under internal and external loading through a transition state, thus it has been 

shown [10-13] that the asymptotic solution through principal stress leads from elastic state to plastic state at 

transition point P  . To determine the plastic stresses at the transition point P  , we define the transition 

function TR in terms of rr as: 
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Using the value of rr  from Eq. (3) in Eq. (10) 
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Taking the logarithmic differentiation of Eq. (11), one gets 
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Substituting the value of 
dP

d
 in Eq. (12) from Eq. (7), we get 
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Taking asymptotic value of   as P   in Eq. (13) as, 
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Integrating Eq. (14) we get 
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where
0

A is the constant of integration.         

Using Eq. (10) in Eq. (15), we get 
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Substituting Eq. (16) in Eq. (6), we have 
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Using Eq. (2) and third equation of Eq. (5), one get 
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The values of constants 
0

A and 
0

B are obtained by substituting boundary conditions from Eq. (8) in Eq. (16) as, 
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011
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Tresca specifies that yielding in any material occurs i.e. material will flow plastically when maximum shear 

stress is equals to yield stress of the material. This maximum shear stress is equals to half the difference of 

maximum principle stress and minimum principle stress. In the classical theory, assumptions are used by the authors 

for this yield criterion to join the two spectrums i.e. elastic region and plastic region while in the case of transition 

theory this yield criterion has been calculated from the constitutive equations in transition state. Thus, from Eqs. 

(16) and (17),  
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It can be seen from Eq. (20) that rr    is maximum at r a  which means yielding of the cylinder will 

takes place at the internal surface. Thus, Eq. (20) can be rewritten as: 
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For the material to become fully plastic, the change in volume must be zero under the set of applied forces i.e. 

volumetric strain = 0. For full plasticity [10], 
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Now we introduce the following non-dimensional component as: 
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Angular speed required for initial yielding can be rewritten from Eq. (21) in non-dimensional form as: 

 
2 2
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1 2
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p p
P P
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

 
  (23) 

 

Also, angular speed required for fully plasticity can be rewritten from Eq. (22) in non-dimensional form as: 
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2 2
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  (24) 

 

Transitional stresses are given as: 
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 (26) 

Stresses for full plasticity [10] 
11 13 12 21 23 22 31 32 33

, ,C C C C C C C C C       are given as: 
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The Eqs. (27) and (28) are fully plastic stresses for orthotropic cylinder made up of functionally graded material 

under internal and external pressure. 

If we substitute 
1 2

0, 0, 0, 0k t q P P      in Eq. (4), Eq. (6), we have 

 

0 0 0
, , .

ij ij
C C h h       (29) 

 

Using Eq. (29) in Eqs. (27-28), the radial, circumferential stresses of orthotropic cylinder becomes 
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  (31) 

 

The Eqs. (30) and (31) are same as obtained by Gupta [10] for orthotropic cylinder made up of homogeneous 

material. 

6    RESULTS AND NUMERICAL DISCUSSION 

The material properties of the cylinder made up of functionally graded orthotropic material (Barite and Topaz) and 

isotropic material (Mild Steel) are defined as:  
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Table 1 

Elastic constants ij
C  used (in units of 1110  N/m2). 

Materials 
11

C  12
C  13

C  21C  

Steel (Isotropic Material) 2.908 1.27 1.27 2.908 

Barite (Orthotropic Material) 0.907   0.273   0.275 0.273 

Topaz (Orthotropic Material) 2.813   1.258   0.846 1.258 

 

The inner and outer radii of the cylinder are taken as a = 1 and b = 2 respectively. To calculate the transitional 

and fully plastic stresses based on the above analysis Eq. (23) to Eq. (28) have been evaluated by the use of 

Mathematica. Curves have been made for angular speed required for initial yielding and fully plastic state with 

respect to radii ratio 
0

R
 
as shown in Figs. 1-4 for k= -5, -4, -3, -2 respectively under various internal and external 

pressure. 

It has been observed from Fig. 1 and Tables 2-4, that angular speed required for initial yielding in a rotating 

cylinder under internal and external pressure is maximum at the external surface. It has also been observed that high 

angular speed is required for initial yielding for the rotating cylinder made up of less non-homogeneous material as 

compared to rotating cylinder made up of highly non-homogeneous material. It has been noticed from Table 2, 

Table 3 and Table 4 that angular speed required for initial yielding is maximum for orthotropic material i.e. topaz as 

compared to orthotropic material i.e. barite and isotropic material i.e. mild steel. It has also been observed that with 

the decrease in non-homogeneity (k = -2 to k = -5) angular speed required for initial yielding increases significantly. 

It has been noticed from Fig. 2 that with the increase in internal and external pressure angular speed required for 

initial yielding increases significantly for rotating cylinder made up of orthotropic and isotropic materials. 

It has been observed from Fig. 3, Table 2, Table 3, and Table 4 that angular speed required for fully plastic state 

is maximum at the internal surface for rotating cylinder made up of orthotropic and isotropic materials. It has also 

been observed that angular speed required for full plasticity is less for highly non-homogeneous rotating cylinder. It 

has also been observed that angular speed required for fully plasticity decreases with the increase in non-

homogeneity of rotating cylinder under internal and external pressure.  

It has been noticed from Tables 2-4, that percentage increase in angular velocity required for initial yielding to 

become fully plastic is high for isotropic material as compared to orthotropic materials at the internal surface. Also 

this percentage increase in angular velocity is maximum for less non-homogeneous rotating cylinder as compared to 

highly non-homogeneous rotating cylinder. Out of two orthotropic materials i.e. barite and topaz, angular speed 

required for initial yielding to become fully plastic is high for barite as compared to topaz. With the increase in 

pressure, this percentage increases significantly as can be seen from Tables 5-7. It has also been observed that 

angular speed required for full plasticity is high for orthotropic material barite as compared to orthotropic material 

topaz and isotropic material mild steel. It has been noticed from Fig. 2 that with the increase in internal and external 

pressure angular speed required for initial yielding increases significantly for rotating cylinder made up of 

orthotropic and isotropic materials. It can be seen from Fig. 4 that with the increase in pressure, angular speed 

required for full plasticity increases significantly for both orthotropic and isotropic materials.  
 

 
Table 2 

Percentage in angular speed required for initial yielding to become fully plastic state for the orthotropic cylinder made up of  

barite material under internal pressure = 2 and external pressure = 0.5. 
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.5
 -5 Initial Yielding   0.0196756   0.0782957 0.162032 96.064 84.132 61.844 

Full Plasticity 0.499902 0.493412 0.424652 

-4 Initial Yielding   0.0196068   0.0773809 0.149209 96.075 84.004 60.221 

Full Plasticity 0.499517 0.483754 0.375098 

-3 Initial Yielding   0.0194884   0.0752184 0.123576 96.084 83.655 57.863 

Full Plasticity 0.497633 0.460204 0.293273 

-2 Initial Yielding   0.0192104   0.0694246 0.065533 96.068 82.808 59.029 

Full Plasticity 0.488589 0.403819 0.15995   
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Table 3 
Percentage in angular speed required for initial yielding to become fully plastic state for the orthotropic cylinder made up of 

topaz material under internal pressure = 2 and external pressure = 0.5.  

 

Table 4 
Percentage in angular speed required for initial yielding to become fully plastic state for the cylinder made up of isotropic 

material under internal pressure = 2 and external pressure = 0.5.  

 

 
Table 5 
Percentage in angular speed required for initial yielding to become fully plastic state for the orthotropic cylinder made up of 

barite material under internal pressure = 3 and external pressure = 1.  

 

Table 6 

Percentage in angular speed required for initial yielding to become fully plastic state for the orthotropic cylinder made up of 

topaz material under internal pressure = 3 and external pressure =  1.  
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 -5 Initial Yielding   0.0211374   0.0841131 0.174897 95.771 82.855 57.466 

Full Plasticity 0.499804 0.490602 0.411193 

-4 Initial Yielding   0.0213603     0.0843304 0.164596 95.72 82.331 53.6349 

Full Plasticity 0.499054 0.477277 0.355      

-3 Initial Yielding   0.0216771   0.0838446 0.142756 95.625 81.2 46.1798 

Full Plasticity 0.495519 0.445974 0.265246 

-2 Initial Yielding   0.0221154   0.0808243 0.090883 95.389 78.499 29.0805 

Full Plasticity 0.479644 0.375913 0.12815   
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Full Plasticity 0.499884 0.492814 0.421544 

-4 Initial Yielding   0.0212381   0.0838462 0.163521 95.7475 82.6174 55.8530 

Full Plasticity 0.49943   0.482358 0.370401 

-3 Initial Yielding   0.0215246   0.0832431 0.141413 95.6711 81.7877 50.6532 

Full Plasticity 0.497232 0.457072 0.28657   

-2 Initial Yielding   0.0219131   0.0800279  0.0891004 95.4987 79.8623 41.3056 

Full Plasticity 0.486822 0.397403 0.151804  
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 -5 Initial Yielding   0.0373455 0.148935 0.319417 96.265 84.955 64.003 

Full Plasticity 0.999849 0.989961 0.887354 

-4 Initial Yielding   0.0368102 0.146073 0.30047   96.316 85.02 62.999 

Full Plasticity 0.999251 0.975088 0.812056 

-3 Initial Yielding   0.0359897 0.140838 0.263744 96.388 84.991 61.542 

Full Plasticity 0.996298 0.938373 0.685791 

-2 Initial Yielding   0.0345259 0.129363 0.181622 96.484 84.754 61.68 

Full Plasticity 0.98185   0.84849   0.473966 
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 -5 Initial Yielding   0.0392945 0.156705 0.336841 96.069 84.101 61.1422 

Full Plasticity 0.999698 0.985639 0.866855 

-4 Initial Yielding   0.0391484 0.155372 0.32144   96.079 83.899 58.836 

Full Plasticity 0.998529 0.965009 0.780877 

-3 Initial Yielding   0.0389094 0.152419 0.290089 96.081 83.356 54.7177 

Full Plasticity 0.992944 0.915752 0.640624 

-2 Initial Yielding   0.0384054 0.144748 0.216741 96.029 81.947 47.9497 

Full Plasticity 0.967176 0.801784 0.416407 
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Table 7 
Percentage in angular speed required for initial yielding to become fully plastic state for the cylinder made up of isotropic 

material under internal pressure = 3 and external pressure =  1.  
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Fig.1 

Angular speed required for initial yielding for Barite, Topaz and 

Mild Steel respectively with
1 2

( 2and 0.5)P P  . 

  

K = -2, -3, -4, -5

0.1 0.2 0.3 0.4 0.5

0.05

0.10

0.15

0.20

R0

2

 

K = -2, -3, -4, -5

0.1 0.2 0.3 0.4 0.5

0.05

0.10

0.15

0.20

0.25

R0

2

 
  

K = -2, -3, -4, -5

0.1 0.2 0.3 0.4 0.5

0.05

0.10

0.15

0.20

R0

2

 

 
 
 
 
 

 

Fig.2 

Angular speed required for initial yielding for Barite, Topaz and 

Mild Steel respectively with
1 2( 3and 1)P P  . 
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 -5 Initial Yielding   0.0391587 0.156164 0.335625 96.0834 84.2106 61.9746 

Full Plasticity 0.999821 0.989043 0.882633 

-4 Initial Yielding   0.0389855 0.154724 0.319974 96.0980 84.0970 60.2418 

Full Plasticity 0.999117 0.972922 0.804801 

-3 Initial Yielding 0.038706 0.151612 0.288241 96.1125 83.7574 57.3038 

Full Plasticity 0.995664 0.933423 0.675097 

-2 Initial Yielding   0.0381351 0.143672 0.214268 96.1046 82.8536 53.3947 

Full Plasticity 0.97898   0.837914 0.45975    
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Fig.3 

Angular speed required for fully plastic state for Barite, Topaz 

and Mild Steel respectively with
1 2( 2and 0.5)P P  . 
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Fig.4 

Angular speed required for fully plastic state for Barite, Topaz 

and Mild Steel respectively with 
1 2( 3and 1).P P   

 

It has been observed from Table 8, that circumferential transitional stresses are maximum at the internal surface 

for rotating cylinder under internal and external pressure with angular speed 2 5  . From Fig. 5, it has also been 

noticed that circumferential transitional stresses are less for highly non-homogeneous rotating cylinder and these 

stresses increases with the decrease in non-homogeneity. Also, these circumferential transitional stresses are high for 

barite as compared to topaz and mild steel. From Fig. 6, it can be seen that with the increase in pressure, 

circumferential stresses decrease significantly which further decrease with the increase in pressure.  It has been 

observed from Table 9 that fully plastic circumferential stresses are maximum at the internal surface for isotropic 

rotating cylinder i.e. mild steel while these stresses are maximum at the centre of the cylinder for orthotropic 

rotating cylinder made up of barite and topaz. Also, from Fig. 7, it can be seen that these circumferential stresses are 

high for less non-homogeneous rotating cylinder as compared to highly non-homogeneous rotating cylinder. Also 

circumferential stresses are high for cylinder made up of isotropic material as compared to orthotropic material. It 
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has also been noticed from Table 9, Fig. 8 that with the increase in pressure these circumferential stresses decrease 

significantly. 
 

Table 8 

Transitional circumferential stresses under internal and external pressure with angular speed ( 2 5  ) for barite, topaz and mild 

steel materials respectively. 

 

Table 9 

Fully plastic circumferential stresses under internal and external pressure with angular speed ( 2 5  ) for barite, topaz and mild 

steel materials respectively.  
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Fig.5 

Transitional circumferential stresses for Barite, Topaz and Mild 

Steel respectively with
1 2( 2and 0.5)P P  . 

  

  Barite Topaz Mild Steel 
Internal 

Pressure=2 

External 

Pressure=0.5 

k/R 0.5 0.75 1 0.5 0.75 1 0.5 0.75 1 

-5 28.9679 28.8954 26.7981 28.2242 28.8682 26.8219 22.634 28.476   26.759   

-3 20.5375 20.3739 18.3677 19.8325 20.335  18.4302   14.0501 19.4203 18.1751 

Internal 

Pressure=3 

External 
Pressure=1 

-5 25.2916 25.3611 23.2723 24.4713 25.3254 23.2926   18.3495 24.8967 23.2245 

-3 17.8209 17.7906 15.8016 17.0322 17.7314 15.8535   10.7013 16.7318 15.5763 

Internal 

Pressure=4 

External 

Pressure=1.5 

-5 21.6153 21.8267 19.7465 20.7184 21.7827 19.7633   14.065    21.3173 19.69     
-3 15.1043 15.2072 13.2355 14.2319 15.1278 13.2768     7.35249  14.0432 12.9775 

  Barite Topaz Mild Steel 
Internal 

Pressure=2 

External 
Pressure=0.5 

k/R 0.5 0.75 1 0.5 0.75 1 0.5 0.75 1 

-5 26.0228 28.7654 26.9035 23.583   28.6041 27.0159 30.7619 22.8       17         

-3 17.7572 20.1831 18.6379 15.4769 19.9358 18.9099 29.1994 21.2375 15.4375 

Internal 

Pressure=3 
External 

Pressure=1 

-5 22.0388 25.1914 23.3605 19.3334 12.1012    5.68568 27.2222 20.2      15.3333 

-3 14.6976 17.5033 16.0193 24.9815 17.1336   9.7448 25.6597 18.6375 13.7708 

Internal 

Pressure=4 
External 

Pressure=1.5 

-5 18.0549 21.6175 19.8175 15.0838 21.3589 19.8849 23.6825 17.6      13.6667 

-3 11.638 
  

14.8235 13.4006    8.72546 14.3313 13.5266 22.12    16.0375 12.1042 
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Fig.6 

Transitional circumferential stresses for Barite, Topaz and Mild 

Steel respectively with
1 2( 3and 1)P P  . 
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Fig.7 

Fully plastic circumferential stresses for Barite, Topaz and Mild 

Steel respectively with
1 2( 2and 0.5)P P  . 
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Fig.8 

Fully plastic circumferential stresses for Barite, Topaz and Mild 

Steel respectively with 
1 2( 3and 1).P P   

7    CONCLUSIONS 

On the basis of above discussion, it has been concluded that circular cylinder made up of highly functionally graded 

orthotropic material (Topaz)  under internal and external pressure is better choice for designing as compared to 

cylinder made up of functionally graded orthotropic material (Barite) and isotropic material (Mild Steel). It is 

because of the reason that circumferential stresses are less for Topaz as compared to Steel and Barite. Also, the 

cylinder whose thickness increases radially and density decreases radially is on the safer side of design. This leads to 

the idea of stress savings that minimizes the possibility of fracture of cylinder due to internal and external pressure.  
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