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ABSTRACT
The basic governing equations in anisotropic elastic material under the effect of
porous piezothermoelastic are presented. Biot [1], Lord & Shulman [4] and Sherief et
al. [5] theories are used to develop the basic equations for porous piezothermoelastic
with mass diffusion material. The variational principle, uniqueness theorem and
theorem of reciprocity in this model are established under the assumption of positive
definiteness of elastic, porousthermal, chemical potential and electric field.

© 2016 IAU, Arak Branch.All rights reserved.

Keywords : Piezothermoelastic; Porous; Variational principle; Uniqueness ;
Reciprocity.

1 INTRODUCTION

R ECENT years have seen an ever-growing interest in the investigation of models of an elastic medium that

take into account the influence of various physical fields such as thermal, electric and other fields. An impetus
for such studies was the creation of many new materials possessing properties that are not characteristic of usual
elastic bodies. Among these materials are piezoelectric bodies that form the core of modern structures and
instruments. A stressed state of a piezoelectric body is produced mainly by its deformation, as well as by thermal
and electric fields present in the body. Therefore a mathematical model piezothermoelasticity quite adequately
reflects the properties of such bodies.

The theory of thermopiezoelectric material was first proposed by Mindlin [6] and derived governing equations of
a thermopiezoelectric plate. The physical laws for the thermopiezoelectric material have been explored by Nowacki
[7-8]. Chandrasekharaiah [9] used generalised Mindlin’s theory of thermopiezoelectricity to account for the finite
speed of propagation of thermal disturbances.

Rao and Sunar [10] pointed out the temperature variation in the piezoelectric media. Majhi [11] studied the
transient thermal response of the semi-infinite piezoelectric rod subjected to the heat source. Chen et al. [12] derived
the general solution for transversely isotropic piezothermoelastic media. In this general solution, all components of
the coupled field are expressed by four harmonic functions. Sharma & Kumar [15] discussed the plane harmonic
waves in piezothermoelastic material. Sharma et al. [16] studied the propagation characteristics of Rayliegh waves
in transversely isotropic piezothermoelastic materials. Sharma & Walia [17] investigated Rayliegh waves in
transversely isotropic piezothermoelastic materials. Sharma [18] discussed the propagation of inhomogeneous waves
in anisotropic piezothermoelastic media. Alshaikh [19] presented the mathematical model for studying the influence
of the initial stresses and relaxation waves in piezothermoelastic half-space.
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The dynamic behaviour of porous medium is important in the field of seismic exploration. The porosity and
permeability are the basic and economic parameters for the field of oil production. Reservoir rocks also possess
anisotropic behaviour in permeability of pores as a reservoir is a fluid-saturated porous solid medium pervaded by
aligned cracks. Porosity is the geometrical property of the solid to hold the fluid.

Biot [13] developed the full dynamic theory for wave propagation in fluid-saturated porous media. Biot used
Lagrange’s equations to derive a set of coupled differential equations that govern the motions of solid and fluid
phases. Biot [13] extended the acoustic propagation theory in the wider context of the mechanics of porous media.
Biot [14] developed new features of the extended theory in more detail.

Sharma and Gogna [20] discussed wave propagation in porous solid with a viscoelastic frame filled with a
viscous fluid. Sharma [21] used Biot’s [2-3] theory to study the phase velocities and attenuations of quasi-waves in a
general anisotropic porous solid with anisotropic permeability controlling the flow of viscous fluid in its pores.
Sharma [22] studied velocities and polarisation in anisotropic porous solid saturated with non-viscous fluid. It is
notified that several authors [21-22-] used Biot’s theories to study the porous media. Sharma [23] studied the
polarisations of quasi-waves in a general anisotropic porous solid saturated with viscous fluid. Sharma [24]
investigated the wave propagation in thermoelastic saturated porous medium. The boundary conditions for porous
solids saturated with viscous fluid are described by Sharma [25].

Porous piezoelectric materials are studied due to their applications such as low-frequency hydrophones,
underwater sensing and actuation application [26-27]. It is high hydrostatic figures of merit and low sound velocity
of these materials due to which the reduction of acoustic impedance and enhancement of coupling with water is
possible. Some experimental studies [28-29] have been made for the characterization of properties of porous
piezoelectric materials. A number of authors [30-31] developed theoretical models to study the effect of porosity on
the elastic, piezoelectric and dielectric properties of porous piezoelectric materials. Vashishth and Gupta [32]
described the vibrations of porous piezoelectric ceramic plates.

Diffusion can be defined as the movement of particles from an area of high concentration to an area of lower
concentration until equilibrium is reached. It occurs as a result of second law of thermodynamic which states that the
entropy or disorder of any system must always increase with time. Diffusion is important in many life processes.
Now days, there is a great deal of interest in study of this phenomenon, due to its many application in geophysics
and industrial applications. Until recently, thermodiffusion in solids, especially in metals, was considered as a
quantity that is independent of body deformation. Practice however indicates that the process of thermodiffusion
could have a very considerable influence on the deformation of the body. Thermodiffusion in elastic solid is due to
the coupling of temperature, mass diffusion and strain in addition to the exchange of heat and mass with the
environment.

Nowacki [33] developed the theory of thermoelastic diffusion by using coupled thermoelastic model. Sherief et
al. [5] developed the theory of thermoelastic with mass diffusion by using Lord and Shulman [4] theory of
thermoelasticity with one relaxation time. This implies infinite speed of propagation of thermoealstic waves. Kunag
[37] discussed the variational principles for generalized thermodiffusion theory in pyroelectricity. Biot [1] discussed
thermoelasticity and irreversible thermodynamics. Kumar and Kansal [38] studied the propagation of Lamb waves
in transversely isotropic thermoelastic diffusion plate.

A comprehensive work has been done on uniqueness, reciprocity theorems and variational principle by different
authors in different media notable among them are, Ezzat & Karamany [39], Li [40], Othman [41] , Aoudi [42],
Vashishth and Gupta [43] and Karamany [39] ,Kumar and Tarun [44] and Kumar and Vandana [45].

Inspite of these studies not much work has been done in the elastic body under porous piezothermoelastic with
mass diffusion. The main focus of the present investigation is to study the variational problem, reciprocity theorem
and uniqueness of solutions in the considered model. These theorems will be helpful for the further investigation of
the various problems.

2 BASIC EQUATIONS

Following Biot [1], Lord & Shulman [4], Sherief, Hamza and Saleh [5] and Kuang [37], the governing equations in
a homogeneous, anisotropic elastic medium under the effect of porous piezothermoelastic with mass diffusion in the
absence of thermal sources, mass diffusive sources and independent of free charge densities are:

Constitutive relations:

_ _ _ *_ *_
Oy =Cijks €1 eijkEk aij6?+mij5 é’kijEk bij,u, (1)
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D; =& E; +ey & +7,0+8,¥+ A E *+b, p, 2)
E; =—¢,, G.j.k,1=1,23) (3)
o*=m; &; —G,E, —aijf¢9+Rg*—ei *E, *—bijfy, 4
D, *=ly ey +1 O+ A E; + & *E *+e, *e*+b/ (%)
E; *=—¢*,, G.,j.k,1=1,23) (6)
;= Ops, ™)
pS =a;&; +7,E; +r0+ay e*+r) E; *+au, (®)
/o :C’ ©)
C=b,&; +b,E; +bu+ad+b; e*+b/ E*, (10)
p=bC —b;&; —b,D; +aS —b;/ e*—b/ E,*, (11)

Equations of motion:
oy +PAF —pn b —pyp U *=0, (12)
¥ +pof i = P U — P U *=0, (13)

Equations of heat conduction:

0
-K; 0; :(”TO qui (14)

Equations of chemical potential:

0
_ 00
—a; —(”T atj”i (15)

Gauss equation:

D..=0 (16)

i,i

D.* =0 @i,j=1,2,3) (17)

i

In the Eqs. (1)-(17) , ¢y (¢ =Cjurs =Cyuc )»my; (=my; ) are the tensors of elastic constants. The elastic constant

R measures the pressure to be exerted on fluid, p;;is the density for solids, p,, is the density for fluids, p;,is the
mass coupling parameter and o, =, + P, = P + P and p=p, + p,, which is the density of combine

phase,q; and 7, are the components of heat and mass diffusion flux vectors g and 7 respectively, F; and f; are
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components of the external forces per unit mass for the solid and fluid phases, u; and u; * are the components of

displacement vectors u andu*, o, (=0 )and o *are the components of the stress tensors for the solid and fluid

phases, &; = (ul jtu;;)ande*=u; *; are the components of the strain tensors for the solid and fluid phases,

K,;(=K;), 05,] *=a a; *) are respectively, the components of thermal conductivity and diffusion tensors, S, u are
entropy and chemlcal potential per unit mass respectively, E; , E; *are the electric field intensities, D; ,D; * are the
electric displacements, ¢, * are the electric potentials for the solid and fluid phases , 8 is the absolute temperature
of the medium, T, is the reference temperature of the body, C is the mass concentration of the diffusion material in

the elastic body, a, b, r are respectively, coefficients describing the measure of thermal and mass diffusion

effects, all,ayf,r: 3Ti €k > G » Ay Gy € ¥ 6585 * by,b ,b;/ ,b, are tensors of porous piezothermal and
diffusion moduli respectively, 7, is the thermal relaxation time, which will ensure that the heat conduction equation

will predict finite speeds of heat propagation speeds and 7° is the diffusion relaxation time, which will ensure that
the equation satisfied by the concentration will also predict finite speeds of propagation of matter from one medium
to other.

3 VARIATIONAL PRINCIPLE

The principle of virtual work with variation of displacements for the elastic deformable body can be written as:

j(plF} =Pl —ppu; )ou, dV +.f(p2fi =P U; —pypu; ¥)Su,; *dV +.[(hi5ui +h; *S6u; *)dA
v

(18)
+_[(c05¢+c0 * S*)dA =J.(0'ijnj5ui +o*n,Su,*)dA +I(Dini6¢+Di *n, SPFYA,

A A A

where h; =0, n; ,h; *=0*n; , co=D;n; and ¢, *=D, *n, . On the left hand side, we have the virtual work of body

gy
forces F} ,f; , internal forces p, Ui;, 0, U; * , surface forces i; ,h; *, whereas on the right hand side, we have the
virtual work of internal forces. We denote by n; orn; the outward normal of 0V cg,c, *are the electric charge

densities and ¢, ¢ * are the electric potentials for the solid and fluid phases.

Using the symmetry of the stress tensors, divergence theorem and the definition of the strain tensors, the Eq. (18)
can be written in the alternative form as:

J.(plF;' —Pnl; —ppu; M), dV +I(P2ft =P U; = pypu; M)Su; *dV +J.(hi5ui+hi *ou; *)dA

(19)
+I(c05¢+c0 * 5¢%)dA =I(Gy§ui’j oSk, )dV +j(Di6;éi D, *5p* )V
V

Substituting the value of 0; and o* from the relation (1) and (4) in the Eq. (19 ) and using Eq. (3) and (6), we

obtain
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[0F =i = pai, 90w,V + [ (pof, = Py = py iy )50, *aV + [(h, 8w+, *Su, *)dd
14 4 A

+[(codpreg*69)aa = [ (cyuy o4y —ey By —ay0-+my 6%~y Ey * by i,V ~[ (D, 6, +D, *6E, *MV

[y oy =GB~ 0+ Re%—e, *E, * b i) * dV =W —[eyy By 8eydV [ 005,V = [ ¢ By * 3, 4V
Vv 4 Vv 4

—jbyy&ey av —Ie,. *E, *e*dV —fg,.E,.ag*dV —ja,,jf 05e*dV —ID,. SE,dV —J'D,. *SE, *dV —Ib,/ e *dV
Vv Vv Vv Vv Vv Vv Vv
where

|
w =7 '[(Cg/kl ey TRE* e +2mye*e;)dV, S, ; =0¢; , Su,*, =0¢¥, 6, =—OE ; and 6¢* ; =—SE ; *
v

The Eq. (20) would be complete for the uncoupled problem of porous piezothermoelastic diffusion where the
temperature @, the electric potential ¢, ¢ * and the concentration C are known functions. In the case, when we take

into account the coupling of the deformation field with the temperature and concentration, there arises the necessity
of considering two additional relations characterizing the phenomenon of the thermal conductivityand mass
diffusion.

Following Biot [1] we define a vector J connected with the entropy through the relation

pS==J;,;. 21

Egs. (7), (8), (14) and (21) combined together yield

d d?
TyLy (Eﬁtfodt—zJJi +0; =0, (22)
—J i =y, +LE; +r9+al-jfg*+rl—fEl- *+ayu. (23)

where L; the resistivity matrix, is the inverse of the thermal conductivity K ; .

Multiplying both sides of the Eq. (22) by 6J; and integrating over the region of the body, gives

dJ,  d*J,
t
Vv
Now

[6,60,av = [(66s,) av ~[66s, ;v
V vV vV

(25)
Applying the divergence theorem defined by,
[(605,) av =[(667;)n,da. 26)
4 4

In the Eq. (25), yields
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[6,60,av =[(651,)n,da~[ 651, ,av .
V A vV

27
Substituting Eq. (27) in the Eq. (24), we obtain
daJ,  d*J,
[(687,)n a4~ [ 067, ,av +7, 1, [d_t”" - J&der/ ~0. (28)
4 4 4
Making use of Eq. (23) in the Eq. (28), yield the second variational equation
[067,n,04+ [, 052, + [ 0,68 ,av + [,/ So*0av + [/ 68, *0a + [absudv +5M +H) =0, 29)
4 v v v 4 v
where the function of thermal potential M is defined by
_I'[p2 -
M_2IQ av, oM =r [osoav , (30)
v v

and the function of thermal dissipation A is defined by

T, dJ, d*J, dJ, d>J.
H=—OIL.. i e Ll av, SH=T ILZ-- i e L sy ar. 31
2 ; ij { dt 0 dr> }’j OV ij ( dt 0 dr> } J (€2))

In order to obtain the third of the variational equations, we now introduce the vector function N defined as
follows

C=-N,,. (32)

Egs. (9),( 10), (15) and (32), yield

d d’
e &
-N,;=b;&; +b,E; +bu+a0+b; e*+b/ E,*, (34)

where a; is the inverse of the diffusion tensor a; *

Multiplying Eq. (33) by 6N ; and integrating over the region of the body, gives

dN;  ,d’N,
J{%’i [ 7 i’ ]+'Ll:.f }N.de =0, (35)
14

Consider

[yon,av = [(usn ;) av - [uon, av (36)
v 4 v

We know that
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J(;mg ) v ::!.(,ué'Nj JndA. 7

Substituting the value of I( HON ; ) dV  from Eq. (37) in the Eq. (36),we obtain
J
4

[ w08 ,av =[ (6N, )n,dd~[ uoN , jav .
V A vV

(38)
Making use of Eq. (38) in the Eq. (35) yields
dN; ,d’N;
J(uon ; Yy = uoN ; av + [ ay| — L+ ok pN v =0 (39)
4 4 4
Substituting the value of N; ; from Eq. (34) in the Eq. (39), we obtain the third variational equation
[(uoN Yy + [, e, av + [ b 6 av + [ b, se*+af usoav + [ b/ SE, *av +8(F +G)=0, o)
4 v 4 v v v
where the function of diffusion potential F is defined by

F=2(s2av, sF=b [ usuav

5 J-/l > = J# udV 41)

4 4

and the function of diffusion dissipation G is defined by

2 2
G:lja,.j Ay 40 dN, A, 5G=ja,, Wi 0N N ;dv . (42)
2/ dt dr* ; dt dt’

Bliminating integrals [ e,/ 6e*0av [, 002,aV" . [b, use*aV and [b, use,aV from Eqs. (20), (29) and
vV 4 vV vV

(40) with the aid of Egs. (3) and (6), we obtain the variational principle in the following form

5[W +M +H+F+G +ja,u9dV ]ZI(MFI' =Pty = pp U *)ou; dV +J‘(P2f‘i — Pl = pyp U H)ou, *dV
Vv Vv Vv

#[ 8u,+,* 5, M + [ (codprey *59)ad —[060,n dd + [ey, E, 52,7 = [0, 6E av

4 4 4 v v (43)

+I§kijEk * e, dV +jD,. *SE, *dV +IDi5EidV —Iy&NjnjdA —beif(SEi *dy

Vv Vv 14 A 4

+J'(§,,Ei e, *E, *)5e*dV —jr,-féEi *0dV —bejﬁEjdV.

4 14 Vv

On the right-hand side of Eq. (43), we find all the causes, the mass forces, inertial forces, the surface forces, the
heating and the electric potential and the chemical potential on the surface 4 bounding the body.
Particular Case:
1. In the absence of diffusion effect, our results for the variational principle are similar as proved by Kuang
[37].
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2. In absence of porous piezoelectric effect, our results for variational principle are similar as obtained by
Kumar and Kansal [44].

4 UNIQUENESS THEOREM

We assume that the virtual displacements du, ,0u; *, the virtual increment of the temperature &6 , etc. correspond
to the increments occurring in the body. Then

8141» . aui * . 6(9 .
Su; =———dt =i, dt ,Su, *= di =i, *dt, 50=—"dt =6dt , etc. (44)
ot ot ot

and Eq. (43) reduces to the following relation

j_t W +M +H +F +G +Ia,u0dV =j(p1f; —puyil; = pry i, ¥, AV +I(p2fi — Py = py i ¥, *dV

Vv 14 14

[0, b, 80, A + [ (copvey *gad = [0, dd + [eyy Eyyav = [0r,E av

4 4 A v 14 (45)
[y Ex *éy @V +[D,*E, *av + [DEav = [ uN nyda = [ w E, *av

14 14 V A 14
+J(§,.E',, e, *E %)i*dV —jrifEi *gdV —bejEjdV.

14 Vv Vv

Now
o . e oK

J.(Pnui U+ P U 50 + oy U0, * 4o U 0, *)dV = (46)
14

where K:EI('D“ U, W,+20, 0% 0+ py, 0¥ 0, ¥)dV, is the kinetic energy of the body enclosed by the volume V.
v

We also have

M +F+af uoav = lj(re2 b 1 +2a0u)dV . @)
V 2V

Using Eqgs. (46) and (47) in the Eq. (45), we obtain

(;i W +H+K +G +lj(re2+by2 +2a0u)dV :J-plFi u, dv +J-p2fi u, *dv

! 2V v V

+J'(h,.5ul. +h, * S0, *)dA +J'(c0¢5+c0 * §*)dA —IejjnjdA +Ie,.jk E é,dV —IQTjEjdV (48)
A A A V 14

[ G B #é,av + (D, *E, *av + [D,Eav —[uN ;n,da - [ ub E, *av
Vv Vv vV A Vv

+J.(§iEi +e; *Ei *)e*dV _J-TifEi *odv __[ybjEjdV'
4 v v
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The above equation is the basis for the proof of the following uniqueness theorem.
Theorem: There is only one solution of the Egs. (12)-(17), subject to the boundary conditions on the surface A

_ — _ _ _ f_ ok ko k) Ky o %
h; =0;n; =hyy , 0=0 ,co=D;n; =coy, h; *=0*n; =h,\*, co*=D; *n; =cy*, 4=y

and the initial conditions on the surface at t =0

u; =u,’ , U :uio’ui *:ui *0 > l:li *:ui *0’9:60a9:é0’¢:¢0a ¢:¢0’¢*:¢*0’ ¢* :é*onu:,uonu:/ao

1 14 1

where hil,hil*,6’1,001,c01*,u[0,ﬁ[0,ui *0,11[ *0,00,6’0,¢0,¢0,¢*0,¢*0,,u0,,£10 are known functions. We assume that

the material parameters satisfy the inequalities

Ty>0,7,>0,7°>0,p,>0,p0, >0,y >0, (49)

Cyint L

iR .a; and my; are positive definite.

Proof: Let ui(l), 0(1),ui #D ,¢(1),¢*(1),/1(1),...and ui(z), 9(2),ui H2) ,¢(2),¢*(2),,u(2),...be two solutions sets of
Egs. (1)-(13). Let us take

1 2 1 2 1 2 1 2 1 2 1 2
u zui()_ui( )’ u; *=u, *()_ui #( ),gz oD g ), ¢*=¢*()_¢*( ), y=,u()—,u( ) and ¢=¢()_¢( ). (50)

1

The functions u; ,u; *,6,¢and ¢* satisfy the governing equations with zero body forces and homogeneous

initial and boundary conditions. Thus, these functions satisfy an equation similar to the Eq. (48) with zero right hand
side, that is,

;i W +H +K +G +%I(m92 +b 11 +2a0u)dV |=0. (51)
t
vV

Since, we have L; =L and a; =a; .Therefore, from Egs. (31) and (42), we obtain

di:TOJ.L[jJ,»deV +L 5 Lydidav |, (52)
dt dr| 2
4 vV
and
0
L _fay NN v+ = [a,N N jav | (53)
dt dr| 2

vV

Substitution of Eqgs. (52) and (53) in the Eq. (51), yield

d 1 5 ) T 7 .. 70 .. ..
W K [0 b 2000V + =0 [ Ly T ydv 4 [agN N v T Ly v
Vv Vv Vv Vv

dt (54

+[a;N N av =0,
vV

Using the inequalities (49) in Eq. (54), we obtain
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T, .. 0 -
j—t W+K +%J.(r¢92+by2 +2atp)dV +=20 [ Ly Jydv + 5 [ayN N v |<o. (55)
4 Vv Vv

We thus see that the expression

1 T, .. TO -
WK+ [0 +bu +2abudv +=00 [ Ly J,av + = [ayN N jav (56)
Vv Vv Vv

Is a decreasing function of time. We also note that the expression I(r@z +b 11> +2a6u)dV  occurring in the
4
expression (56)is always positive, since by the laws of thermodynamics Nowacki [33-36].

0<a®<ré. (57)

Thus, the expression (56) vanishes for ¢ =0, due to the homogeneous initial conditions, and it must be always
non-positive for ¢ >0. Using inequalities (49) and (55), it follows immediately that the expression (56) must be
identically zero for ¢ > 0. We thus have ¢=¢*=u, =u,*=0=p=¢; =¢*=0,; =0*=0.

This proves the uniqueness of the solution to the complete system of field equations subjected to the electric
potential-displacement-temperature-chemical potential initial and boundary conditions.

Particular Case: In absence of porous piezoelectric effect, the results obtained are similar as derived by Kumar
and Kansal [44].

5 RECIPROCITY THEOREM

We shall consider a homogeneous anisotropic elastic body under the effect of porous piezothermoelastic occupying
the region V' and bounded by the surface 4. We assume that the stresses O'U-,O'* and the strains &; ,E® are
continuous together with their first order derivatives whereas the displacementsu; ,u; *, temperature 6
concentration C, chemical potential x and the electrical potentials ¢,¢* are continuous and have continuous
derivatives up to second order, for x €V +4,¢ >0. The components of surface tractions, the normal component of
the heat flux, the normal component of the chemical flux and electric displacements at regular points of OV, are
given by respectively.

_ K ok _ _ *_ % _
hi—o'ij"jahi =o*n;,q=q; -n;,p=n;-n;,co*=D; *n;, co=D;n;, (58)

To the system of field equations, we must adjoin boundary conditions and initial conditions. We consider the
following boundary conditions:

u; (x,0)=U; (x,2), O0x 1) =1(x 1), Plx 1) =eg(x,t), plx,1)=¢(x,1)

(e ,1) =g *(0,0),0; *(x,0)=U, *(x 1) (59)
Forall x €4, ¢ >0, and the homogeneous initial conditions
u; (x,0)=1, (x,0)=0 ,0(x,0)=0(x,0)=0 ,u, *(x,0)=1, *(x,0)=0, (60)

and ¢(x,0)=gd(x,0)=0, p*(x,0)=¢* (x,0)=0, u(x,0)=4ux,0)=0, forall x eV ,t =0.
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We derive the dynamic reciprocity relationship for a generalised porous piezothermoelastic diffusion bounded
body V, which satisfies Eqs (1)-(17), the boundary conditions (59) and the homogeneous initial conditions (60), and
are subjected to the action of body forces F;(x,t),f; (x,t), surface tractions A; (x,t),h; *(x,t), the heat flux
q(x,t) the chemical flux p(x.,r)and the surface charge densitiesc,(x,t),c,*(x,t). We define the Laplace
transform as:

F o)=L D=1 (xoode™dr, (61)
0

Applying the Laplace transform defined by the Eq. (61) on the Egs. (1)-(17) and omitting the bars for simplicity,
we obtain
Constitutive relations:

Oy =Cyjry &1~ £y —0t; 0+mye* =Gy By * by, (62)
D, =& E; +ey 6 +7,0+8, 6% +A E *+b, 1, (63)
E, =—¢,, @i,j,k,l=1,23) (64)
0'*:mij & -G, E; —aijf¢9+Rg*—ei *E; *—b,-jf,u, (65)
D, *=y e +1 O+ A E; + &, *E *+e, *e*+b/ (66)
E; *=—g¢*,, (i.j,k,l=1,23) (67)
—q;; =Tos PS, (68)
pS = e; +7,E; +r¢9+aijfg*+z'ifEi *+au,-n; ; =sC, (69)
=1, =sC, (70)
C=b;c; +b,E; +bu+a0+b; e*+b/ E,*, (71)

Equations of motion:

o, ; +ok; —Pnszui_Plzszui*=Os (72)
OF +pof s = Pras” W= pyps 0 F=0, (73)
Equations of heat conduction:

-K; 0, :(1+z'0s)ql- (74)
Equations of chemical potential:

—ay *,uJ :(1+ros)77i (75)
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Gauss equation:

D, . =0 (76)

i,i

D' * :0 (17] :132’3) (77)

i

We now consider two problems where applied body forces, electric potential and the surface temperature are
specified differently. Let the variables involved in these two problems be distinguished by superscripts in

parentheses. Thus, we have u'(l) U, D ,9]( e* ]( o g ¢(1) ¢*(1) D" for the first problem and
u, .y, *(2)”91'/( ), e¥?, J( ), oD 0D gD 3+ 1D for the second problem. Each set of variables satisfies the
Egs. (62)-(77).

Using the assumption o; =0 ; , we obtain

J’ o, Ve, Pav + I o *D g+ g I o, Oy, P + J’ o* Wy, * @ gy

(78)
=I<%< <2>) dav +J‘(U*(1> u, *(2) _dV _‘[ng,_j(l)ui(Z)dV _ja*,i(l) u, ¥ gy
V Vv ot v v

Using the divergence theorem in the first term of the right hand side of Eq. (78) yields

joiimgii(z)dlf +IO'*(1)€*(2) dv =J.O'U-(l)ui (z)njdA +I0*(l) u, #2) n;dA —J‘O'U-J(l)ui(z)dV

vV A A Vv (79)
—J.O“* Wy #D gy

Eq. (79) with the aid of Egs. (58), (72) and (73) gives

j(a P+ ey = j(h D g g, ¥y, ¥y +J'(p1 @y T Oy @y 2y H0y Oygy
V . ' (80)
+ J( p ?fi(l)ui #(2) _ plzszui(l)ui #(2) Py 2ui (D) u, *(2)) JV

4

A similar expression is obtained for the integral J.(O' (1) +0*? e¥DYaV, from which together with the Eq.

4
(80), it follows that

0,V -5 Pe. V4 o) g4 _ @ o ygy | (g, Oy, @ —p @y O pp # Dy D _pp #(2)y Dygg
iy i i } 1 l
V ' (81)
DS ), 1 2 2 1
+JP1(E()ui( ) _F @y Oygy +IPsz()ui #D) g @y #0)gp

vV

Now multiplying Eqs. (62), (65) by ¢; 5*( ) and & 5*( ) for the first and second problems respectively,

subtracting and integrating over the region V, we obtain
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J‘ (0,05, —0, 5,0 4+ 540 42— o20)yqy J‘ I CHLPHC P PR 4
4
_ J‘ o, (0, -6, ")y - J‘ ¢ (g, Qe g Ogxyqy — J‘ Cn @028,V =g 0 g Oy
4 (82)
_J‘ei *(¢ *,i (@) =0 _¢*,i @ 6‘*(2))dV _J‘al_jf (g(l)(9 #2) _ 9@, *(D)dV _J‘eijk (¢,k( )gl_j(l) _¢,k (l)sy-(z))dV
4 v 4
J.{blj (,Ll(l) ﬂ(Z)gij(l)) +bi/'f (,U(l)g %(2) _ﬂ(Z)g *(D)}dV
v
Using the symmetry properties of ¢, , we obtain
1 1 2 2 1 2, ( H,.
J'(O,U P ) __‘[eyk(¢,k(>gl_j<>_¢’k<>gl_j< NV
4
_ J oy (0Vs, 2 ~0P,May - J' ¢ (9, PerV —g Ogs@qy J‘ Con 87,2 8,0 —g%, O g, Oay
v % (83)
_Jei * (¢ *,i (@) g+ _¢*,i ) 8*(2))dV _J-al_jf (9(1)8*(2) —9D gD av
v
_J.{bii (ﬂ(l)gij(Z) _/J(Z)gij (1)) +bi/'f (,u(l)g *(2) _/u(2)g *(D)}dV
v
Equating Egs. (82) and (83), we get the first part of the reciprocity theorem
J'(h Iy, @ _pp @y Oy #D . +2) _p @)y Dy +J'p (F O, @ — @y Oy
v
+J'p2 (,Vu, ¥ _f Oy Oygy — _Iei/'k @ Pe, 0=, Ve, Prav - J‘a (OWe, 0@ g,O)ay
v
@) 5D _ g () 5(2) £ @, £ ), @ (84)
j £ (8, Pe*0 g, Ve Dyay j@,k @* 2, =%,V 8,y
_J.ei * (¢ *’l_ 2) c %D _ ¢*,i @ c *(2))dV _ J.aij/ (9(1)8 %(2) —9(2)8 *(D)dV
v 4
I{blj ('u(l) lu(Z)g[j (1)) +bijf (,u(l)g %(2) _,u(Z)g (1) )}dV
4
Eq. (84) contains the mechanical causes of motion F;,f; and A, ,h; *.
Using Eq. (69), Eq. (68) reduces to
(85)

—q;; =Tos (&5 +7,E; +r0+ay I e*41) E, *+au).

Now, taking the divergence on both sides of Eq. (74) and using Eq. (85), we arrive at the equation of heat

conduction, namely

0
f(Ki/Q_ ) (s +7o8 )To(allgl/+z'E +r¢9+a ¥+ E, *+ap), (86)

To derive the second part, multiplying Eq. (86) by 6 and 6 for the first and the second problems

respectively, subtracting and integrating over V, we get
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@ (2) (@) (1) — 2 [OF:163) 2)gM
J’((qu_, ) 0% (K0, 0 )dV =G +7 )Ty (5,007 2,00 )av
Vv Vv

+(s +75 )T, j 7, (EV0P BP0V )dv +(s +745°)T, j a; (640 0P —£+ oV )av (87)
Vv
+(s + 708 )TOJ- P (£ 20 0D —E, %@ 00 )av +(s + )T, I (400 -0 )ay
Vv vV
Now

(&0, ),,- 0% =(k,;0,00%) -

i
»

Kij ‘9,]‘(1)‘9,1'(2) and (Kij ‘9,]'(2)) ' om :(Kij ‘9,1'(2)9(1)) _Kij 9,]‘(2)0,1‘ O (88)

i
p

Eq. (87) with the help of Eqgs. (58), (59), (88) and the divergence theorem can be written as:

I(qu)n(z) _q<2>,7(1>)dA - (s +r0s2)T0.[ay (gij(ng(z) _g[j<2>9(1>)d,/
A vV

—(s + 708 )T, j 7, (B0 —E,20" )av —(s + fosz)Toja,.jf R N (89)
14

(s + 7y )Toj (E A 0P —E, ¥ 00 )ar —(s + 75 )Tj (4V0® = @0 )ar
Vv

The Eq. (89) constitutes the second part of reciprocity theorem which contains the thermal causes of motion 7
and ¢. From Egs. (70), (71) and (72), we obtain the equation of chemical potential

o , ,
——(ay *u; )=(s +7°57) by &, +b, E,; +aO+bu+b;” £*+b] E,*). (90)

i

To derive the third part, multiplying Eq. (90) by ,u(z) and ,u(l) for the first and second problems respectively,
subtracting and integrating over ¥, we obtain

J.((ay.*y,j“))[y@)_(%*ﬂ,j(z)) (")dV (s+ros2)jb (1)ﬂ(2) fz)y“’)dV

Vv

+(S+T0S2)J'{ E(l) @ _g® a))}dV +(s+‘ros2)J. 9(1> @ _g® (‘))dV 91)
+(S+TOS2)I{by g*m PpC) ﬂ(l))+bl_f (El- D @) g ) <1>)}dV

Consider

@, M

(a "y m) ﬂ<2>:(a[j *”’/(1)”(2))i_a"f’ #4000, and(a u <2)) 1= (a u P ) —ay * PO 92)

Eq. (91) with the aid of Eqs .(58), (59), (92) and the divergence theorem yields
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J'(p(l)gm _p(Z)ga))dA - (s +Tosz)'[bﬁ (giia)ﬂm _%j(Z)ﬂ(l))dV
A vV

—(s +TOS2)J'bi (¢,i(2)ﬂ(l) —ﬁi(l)ﬂ(z))dV —(s +T052)J'a(0(1)'u(2) —Q(Z)y(l))dV (93)
14 Vv

(s +7%2) J‘ {bij/’ ( g3 4O _ 0 ) "y ( o, O 4@ _gx @ 4O )} av.
V

The Eq. (93) constitutes the third part of reciprocity theorem which contains the chemical causes of motion
¢ and p.

To derive the last part, multiplying Eqs. (63), (66) by E, D E ; #2 and E ; W E ; #D for the first and the second
problems respectively, subtracting and integrating over V, we get

.[(Di(l)Ei(Z) _p,Dg,Wyp D p «> _p «Of *m)dV =I€gk (e, VE,® — 2, O, Oy
vV

vV
+ I o/ (OVE, ¥ _g®E «Vyqp 4 J‘ 7. (0VE,® —9@E Oyay + J‘ C(e* V) E@ _g¥@ g Oy

v v v (94)
+I@i #(e* D) g+ _gx@ ps0ygp +J.§sz (e, VE, *® —g, Pp, Oyay

4 4

n J’ b, (UVE, @ — D E, Dy + J‘ b (UVE, ¥ @, #D gy
Vv Vv

Eq. (94) with the aid of Eq. (64) and (67) yields

1 2 2 1 1 2 2 1 1 2 2 1
J'(Di()Ei( VD, @E,O p KD KD _p D) g *(>)dV - _jeijk (0, -2, P, Vyay

Vv 14
__[Tif (9(1)¢ *,i (2) _9(2)¢ *,i (D)dV _ J-Ti (‘9(1)¢,i (2) _9(2)¢,i O YAV _J‘é’i (e (1) % @) _ %2 ¢7i(1))dV
v v v 95)
_J.e_ *(5*(1) p* @) _ (2 p* -(1))dV _J-é/"k (g_k(1)¢* (2 _g'k(2)¢* -(1))dV
i S N ij J 5l J o
14 14

_Ibl_ (/‘(1)¢,i 2 _:u(2)¢,i (U)dV + J.bif ('u(l)¢ *,i 2 —ﬂ(2)¢ *,i (O] YAV .
V V

Also, using (64) and (67), we have

I ( D,VE @ _p@p W p «p +2 _p 2 g« )dV - J’ ( D,®p,® D,y ) dv

+I(D‘ 2 gx O _p +0 gx gy
v

Now

2 1 2) (1 2) 41 1 2 1) (2 1) (2
Di()c/ﬁ,i()=(Di()¢()) D, Py Di()¢,i()=(Di()¢“) D, Vg,

K i

2 1 2 1 2 1 1 2 1 2 1 2
D[ *()¢*,l()_(D[ *()¢*())l D[ *J()¢*() s D[ *()¢*,i()_(D[ *()¢*())l D[ *,[()¢*()

Using Eqgs. (76), (77), (97) and divergence theorem in Eq. (96), we obtain
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j ( D,VE,® _p@E 0 p 0 g s0 _p +2p *a))dV - J‘ (( Di<2)¢<1>)_ _( Di(])¢(2)) | jdV
S J
V V

D, i (1)¢(2) -D, i (2)¢(1) yV +J.((Di(2)¢*(1)) ‘ _(Di (1)¢*(2)) A )dV +J(Di *,i(l) ¢*(2) -D, *,i(Z) ¢*(1) 14 (93)

1
i

14 4

+

:J.(D.(2)¢(1)n. —D-(l)¢(2)n< +D. *2 ¢*(1) n —D. *D ¢*(2) n. )dA.
A

Eq. (98) with the aid of Eq. (58), gives

I(Di(l)Ei(Z) —Di(Z)Ei(l) +D, #(1) E, #(2) -D, x(2) E, () )dV :J.(Co(z)(b(l) _co(l)¢(2) +¢ +(2) ¢>x<(1) -, () ¢*(2) )dA. ©9)
v 4

From Egs. (95) and (99), we have

2) (1 1) (2 2 1 1 2 1 2 2 1
I(CO( 10— W@ 1o ¥ g o+ gl >)dA :_J.ei/'k (08, % 6, P, V)av

A 4
__[Tif (9(1)¢*,i(2) _0(2)¢*,i(1))dV _ _[Ti (9(1)%(2) _9(2)¢’i(1))dV _J-é/i (& (1) ¢,i(2) e ¢,i(l))dV
v v v (100)
_J.e_ *(5*(1) p* @) _ o2 $* -(1))dV _J.’/;"k (g'k(1)¢* (2 _g'k(2)¢* »(1))dV
i N N iji J 5l J st
14 Vv

_J-bl_ (:u(l)¢,i(2) _#(2)¢’i “’)dV +J.bif ('u(l)¢ *’[(2) —#(2)¢ *,i m YAV .
V Vv

The Eq. (100) constitutes the last part of reciprocity theorem which contains the electric potentials ¢, ¢ * and
surface charge densitiesc,c, * . Eliminating the integrals

J‘a’ljf (a*(l) 9 _ g+ 9(1))dV ’J.aij (8y(1)6(2) _gij(z)a(l))dV’ J'eijk (gjk(1)¢,i ) —£, (2)¢’i(1) v .
V V V

Ifl_f @Vg*, @ —gPgx Oy ’J'Tl_ 09, -6 g Oyay ,J‘ei # (54D gx O _ g2 g Oygy
4 4 4

J.é(k (6, Vg% @ —g. Dgx )y J.‘;‘ (e*D ¢ @ _ x4 Oygy

Ul J N J N > 1 Sl N °

14 14

From Egs. (83), (88), (92) and (100) with the aid of Eq. (64) and (67), we obtain

s 78 )(1+ 2%, J‘ (h, D, @ — Dy O # 0y #@ g +@ w0y 4 J‘ p(F,Vu, @ — Dy Wygy
A

vV

s (L4 7g8)(1+ 25T, J‘ py(f; O, ¥ —f @y # Dy 4 J‘ (co<1>¢<z> g QP 1y ¥ g* @ e *<2)¢*(1>)dA (101)
vV A

+(1+Tos)j(q(l)n(2) —q(z)n(l))d/l +(1+TOS)T0I(p(1)§(2) —p(z)g(l))dA =0.
Y Y

This is the general reciprocity theorem in the Laplace transform domain.

For applying inverse Laplace transform on the Egs. (83), (88), (92), (100) and (101), we shall use the
convolution theorem
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LN FEGE)=[f -Og@dE=[e-&) (GM&, (102)
0 0

and the symbolic notation

o x.6) 0T (9
PE o )=1+7 oF
2
/\(f):l.i,.(z-o+TO)af(ax§9§)+TorO 6_}(‘6?255)’

B(f)=1+1,

(103)

Egs. (83), (88), (92) and (100) with the aid of Eq. (102) yield the first, second, third and last parts of the
reciprocity theorem in the final form

[ 00 =u @084, 20 ot =, * (x Enaéad+ [ [ pE Ot =0, O Ea éav
40 Vo

[ [0 Ot =, O @ enaédy = [eg 0,V xt =02, P (x O Edv
Vo Vo

+[ [, @Vt -06, 2 o ar + [ [a) @@ -0)e® (v oy (104)
Vo Vo

[ [6nos® =0, P onaay [ [e,#g%, 0 (it =02 (x, 60 dV
Vo Vo

t t
[ [, 10t =818, D x g ar + [ [, u et =86 (. xagav =S3,
Vo Vo

0B (2, x,6) s
o¢

jtqu(x £ =P (w6 &dd T, j tja,,ﬂ“)(x,r -9

(2)
T J'J' 0Vt - §)Md§dV +T ” 0 (x t - §)Md§dV (105)

o o¢
o) B
+T0'”z-if 9(1)(x,t—§)Md§dV ‘TOH.G[HU)(XJ—@ 0B (u (x’é))}fde 512,
x o 7% o¢
t t a @ i
[J(rV e -0 opéan -[ [b,u . —5)Wd gy
A0 Vo
Vv
vV

00 (¢, (x,£)) i 00 (¢*,? (x,8)
() _ i S, _ oL 106
b, (x,t=&) oz d&dv +J-jbi w(x,t=¢) o7 d&dv (106)

+

P
L

(2) *(2)
au™ (et - 5)%&”/ J.J.bf 21Dt — §)8Q(66—§(x§))d§dV =57,
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and
[ [t =090, 0 ot - 0972 (v, 0 + [ [0, 5, = D)z P e car
40 Vo
+ j [ 0.0 -00% . onear +[ o/ 92,0 (x.0 -0 ncav
" e (107)
#[fe *07, 0 =00 . oméav +Hc,jk¢* O (ot = £, O ) £dv
Vo

+ j jg 0.0t —E)e* (v, Exd EdV =51
Vo

Here S g indicates the same expression as on the left-hand side except that the superscripts (1) and (2) are
interchanged. Finally, Eq. (101) with the aid of Eq. (102) gives the general reciprocity theorem in the final form

J-].hi(l)(x,t—f)a/\(u oE o

@ #(2)
JJ[pIF(l)(x - g)aA(“—g(x‘f))erZfl_(l)(x’t_é)@/\(ui - (x’g))]dgdlf

O O0ABPEE) Ly 8@ (x,8)
+Aj£(co (x.t ‘f)—ag teg*V (x it cf)—ag d&dA

(2) L %(2)
i (x’g))dédA+J.J.hi*(1)(x,t—§)a/\(u[ (xaf))dégdA
40

(108)

+TLJ.J.(‘I(1)(X ! —§)Q(77(2)(x,§)))d§dA +J-j|.(p(1)(x,z ~EB (P (x 35))),]15&4 —si2
040 %

Particular Case: If porous piezoelectric effects are neglected, the results obtained are similar as obtained by
Kumar and Kansal [44].

6 CONCLUSIONS

In this paper, the governing equations for porous piezothermoelastic model are presented in the context of Biot [1]
theory of porousealsticity, thermoelastic theory with one relaxation time and thermoelastic theory with mass
diffusion developed by Biot [2], Lord and Shulman [4] and Sherief et al. [5] respectively. The variational principle,
reciprocity and uniqueness theorems are proved in the above proposed model. The results proved in the above model
are verified from the known results.
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