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 ABSTRACT 

 In this paper, the closed form analytical expressions for the displacement field due to 

a cylindrical inclusion in a thermoelastic half-space are obtained. These expressions 

are derived in the context of steady-state uncoupled thermoelasticity using 

thermoelastic displacement potential functions. The thermal displacement field is 

generated due to differences in the coefficients of linear thermal expansion between a 

subregion and the surrounding material. Further, comparison between displacement 

field in a half-space and in an infinite medium has been discussed. The variation of 

displacement field in a half-space and its comparison with an infinite medium is also 

shown graphically.                                © 2017 IAU, Arak Branch.All rights reserved. 

 Keywords: Displacement field; Thermoelastic half-space; Potential functions; 

Cylindrical inclusion, Uncoupled thermoelasticity. 

1    INTRODUCTION 

 HERMOELASTICITY is the extension of theory of elasticity to include thermal effects. The theory of 

thermoelasticity is concerned with the interaction between thermal field and elastic bodies. The study has begun 

with Duhamel (1837) and Neumann (1885), who postulated the equations of linear thermoelasticity for isotropic 

bodies. Goodier [1] studied the static problem of uncoupled thermoelasticity by employing the method of 

superposition using displacement potential functions.  

With the help of Goodier’s method, Mindlin and Cheng [2] obtained the thermal stress in a semi-infinite solid 

with traction free surface for the centre of dilatation using Galerkin vector stress function. The result was then 

applied to the case of a spherical inclusion in the semi-infinite body. Yu and Sanday [3] derived the elastic solution 

for a centre of dilatation in a plate in terms of Galerkin vectors using method of images and applied it to the solution 

of thermally induced deformations and stresses. Hemayati and Karami [4] presented a formulation of two-

dimensional boundary element method analysis for steady state, uncoupled thermoelastic problem. Nowinski [5] 

obtained the biharmonic solutions to the steady state thermoelastic problems in three dimensions. Wang and Huang 

[6] studied some thermoelastic problems in the half-space by using general solutions of the elasticity based on the 

Boussinesq solution.  

Seremet et al. [7] has derived new Green’s function and new Poisson’s type integral formula for a boundary 

value problem in thermoelasticity for a half-space with mixed boundary conditions. Kedar et al. [8] obtained the 

expressions for the thermal stresses in a semi-infinite solid circular cylinder subjected to an arbitrary initial heat 

supply on the lower surface. The results were obtained in a series form in terms of Bessel’s functions. Davies [9] 
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derived the elastic field due to a non-uniform temperature or a coherently misfitting inclusion in a semi-infinite 

region from the corresponding field in an infinite region. 

Boundary value problems in the uncoupled thermoelasticity have been discussed by several researchers (Sen 

[10]; Arpaci [11]; Rokne et al. [12] and Chao et al. [13] etc.). Researches in the field of thermoelastic state of 

structures and their elements are an urgent problem of solid mechanics. Thus the study of thermoelastic deformation 

has been of practical importance in a wide range of disciplines. The most important discipline is geosciences, where 

the static solution of thermoelastic deformation has been applied to geothermal fields, volcanoes and cracks. 

In the present paper, we have studied the deformation of a thermoelastic half-space due to a cylindrical inclusion 

in context of steady-state uncoupled thermoelasticity as in Wang and Huang [6]. Following the method opted by 

Davies [9], we obtain the displacement field for an infinite region from which the corresponding fields can be 

derived in the semi-infinite region. The expressions for the displacement field are derived for the plane strain 

problem using thermoelastic displacement potential functions. These results are in good agreement with the results 

obtained by Wang and Huang [6] .The variation of displacement components are also shown graphically. 

2    THEORY 

In the linear theory of thermoelasticity, the total strain can be written as the sum of mechanical and thermal strains 

(Sadd [14]): 

 
( ) ( )M T

ij ij ije e e   (1) 

 

in which for an isotropic material, the thermal strain takes the form 
( )T

ij ije T  ,where α is the coefficient of 

linear thermal expansion, T is temperature difference, ij is Kronecker delta. Then the generalized Hooke’s law 

including the thermal effects for the plane strain problem can be written as, 

 

2 2 (1 )
2 .

1 2 1 2
ij ij ij kk ije e T

  
   

 


  

 
 

 

(2) 

 

Substituting the above relation together with total strain-displacement relations in the equilibrium equations, 

without body force, one can write the Navier’s equation as, 

 

2 1 2(1 )
( . ) ,

1 2 1 2
T




 


     

 
u u  

 

(3) 

 

where ije and ij are the components of strain and stress tensor respectively; u is displacement vector; λ and µ are 

Lame’s constants;   is Poisson’s ratio. 

The uncoupled heat conduction equation for the steady state temperature field (T) with Q as heat supply and 0  

as the thermal conductivity can be written as, 

 

2

0

.
Q

T



   

 

(4) 

 

The solution of inhomogeneous Eq. (3) can be expressed as, 

 

,c p u u u  (5) 

 

where c
u  is the complementary function satisfying the corresponding homogeneous Eq. (3) and p

u represents the 

particular solution of the displacement field generated by the temperature field (T). 
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According to Goodier’s method (Timoshenko and Goodier [15]), the displacement 
( ) ( )

u r for an infinite solid is 

given by 
( )   u , where the potential function   satisfies the Poisson’s equation: 

 

2 1
( ),

1
T


 




 


r  

 

(6) 

 

Then the function   is obtained as, 

 

31 1 ( )
( ) ( ),

4 1

T
d


 

 

 


 
r

r r
r r

 
 

(7) 

 

where     2 2 2 1/2, , , , [( ) ( ) ( ) ]x y z x y z             r r  is the distance between the points  , ,x y z  

and  , ,   .      

Now according to Davies [9], the displacement within the semi-infinite region 0z   with traction free surface in 

terms of displacement or strain components for an infinite region in Cartesian coordinates are given by: 

 

( ) ( ) ( ) ( ) ( )(3 4 ) 2 ( , , ),x y zz u u u
z

    
    


u u u  

 

(8) 

or  

 
( ) ( ) ( ) ( ) ( )(3 4 ) 2 ( , , ),xz yz zzz e e e        u u u  (9) 

 

where bar represents that the sign of z is changed. 

3    FORMULATION AND SOLUTION OF PROBLEM 

 

We consider the plane strain problem of a cylindrical inclusion in the upper half-space ( 0x  ) having different 

coefficient of linear thermal expansion to that of the half-space but have same elastic constants as in Wang and 

Huang [6]. Due to this difference in the coefficients of linear thermal expansion between a sub region and its 

surrounding material, say 0 , the thermoelastic displacement field is generated. The axis of the cylinder is taken 

parallel to the surface of half-space and the center of axis is located on the line x h and 0y  . The radius of 

cylinder is ‘a’, where h a and the surface 0x   is traction free surface as shown in Fig.1.  
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Fig.1 

A cylindrical inclusion in a half-space. 
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Then according to Wang and Huang [6], the thermoelastic potential function 
 

satisfying the following 

Poisson’s equation, when the temperature of the semi-infinite region increases 0T  is given by,  

 

2

0 0

1 1

1 1
T T

 
  

 

 
  

         

for  
1 ,R a  

 

(10) 

 

and 

 
2 0 

       

for  
1 ,R a  (11) 

 

where 
2 2 2

1 ( )R x h y  
 
is the distance of the point ( , )x y from ( , 0)h . Then, function   for this problem is taken 

as (Wang and Huang [6]), 

 

2

1

1

4
KR 

    

for  
1 ,R a  

 

(12) 

 

and 

 

2 11 1
ln

2 2

R
Ka

a


 
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      

for  
1 ,R a  

 

(13) 

 

where  

 

0 0

1
.

1
K T










 

 

(14) 

 

Now Eqs. (8) and (9) for the plane strain problem in xy-plane are written in the form: 

 

( ) ( ) ( ) ( )(3 4 ) 2 ( , ),x yx u u
x

   
    


u u u  

 

(15) 

 

or 

 
( ) ( ) ( ) ( )(3 4 ) 2 ( , ).xx yxx e e       u u u  (16) 

 

The displacement field in an infinite region and that at the image point for exterior points 1( )R a of the 

cylindrical inclusion is obtained from 
( )   u  on using Eq. (13), 

 

( ) 2

2

1

1 ( , )
,

2

x h y
Ka

R

 
u  

 

(17) 

 

( ) 2

2

2

1 ( , )
,

2

x h y
Ka

R

  
u  

 

(18) 

 

where ( , 0)h is the image of point ( , 0)h and 
2 2 2

2 ( )R x h y    is the distance of the point ( , )x y from ( , 0)h . 

The corresponding strain components in the infinite region and those at the image point are, 
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Substituting Eqs. (17)-(18) and (21)-(22) into (16), the displacement components in the thermoelastic half-space 

for exterior points 1( )R a can be expressed as: 

 
2

2

2 2 2 4

1 2 2 2

1 (3 4 )( ) 1 2( )
2 ,

2
x

x h x h x h
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(23) 
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(24) 

 

Also for the interior points 1( )R a , 

 
2

1

int 2 2

1

1 1
.

2
ext

a K

a R

 
   

 

R
u u  

 

(25) 

 

Eq. (25) is in a similar form for a cylindrical inclusion as in Mindlin and Cheng [2] for the interior 

points 1( )R a of a spherical inclusion. 

Substituting Eqs. (23) and (24) into (25), the displacement components in the thermoelastic half-space for 

interior points 1( )R a  are obtained as under: 

 
2 2 2

2

2 2 4

2 2 2

1
(3 4 )( ) 2 4 ( ) ,

2
x

a a a
u K x h x h x x x h

R R R


 
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(26) 

 
2 2

2 4

2 2

1
1 (3 4 ) 4 ( ) .

2
y

a a
u Ky x x h

R R


 
     

 
 

 

(27) 

 

The results obtained above are in good agreement to those of Wang and Huang [6] for a dissimilar cylinder in the 

interior of a thermoelastic half-space using Boussinesq solution. Now we consider some particular cases of the 

displacement field due to a cylindrical inclusion in the thermoelastic half-space. 

3.1 Surface displacement at the free surface 0x   

Considering traction free boundary i.e. at 0x  , 0.xx xy   This implies, we have 2 2 2 2 2

1 2R R h y R    (say), 

then from Eqs. (23), (24), (26) and (27), the surface displacements in a thermoelastic half-space is obtained as: 
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2

2

( , )
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R
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
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(28) 

 
2
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2

a
y K h y

R


 
    

 
u

    

for

     

( ).R a  
 

(29) 

3.2 Displacement field at point (0,0)  

Further, the displacement components in the thermoelastic half-space at point (0,0)  for exterior points 1( )R a  are 

derived using Eq. (28), 

 
2

(0,0) 2(1 ) ,x

a
u K

h
    

 

(30) 

 

(0,0) 0,yu   (31) 

and using Eq.(29), for interior points 1( )R a , we have 
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2

x

a
u K h

h


 
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 
 

 

(32) 

 

(0,0) 0.yu   (33) 

For a Poissonian half-space 0.25  , the Eqs. (30) and (32) can be reduced into the following form: 

 

0 0

3 3 1
(0,0) ,

5 2 ( / )
xu

a T h a
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0 0

3 1 2
(0,0) .

5 2 ( / )
x

h
u

a T a h a

 
  

 
 

 

(35) 

3.3 Displacement field at a boundary point ( ,0)h a  

From Eqs. (23) and (24) (or Eqs. (26) and (27), we find that the displacement components in the thermoelastic half-

space at a boundary point ( ,0)h a can be expressed as: 

 

2

1 2 ( )
( , 0) 1 (3 4 ) ,

2 2 (2 )
x

a a h a
u h a Ka

h a h a

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  
 

 

(36) 

 

( , 0) 0.yu h a   (37) 

For 0.25  , the Eq. (36) can be reduced into the equation given below: 
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(38) 
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4    COMPARISON OF THE DISPLACEMENT COMPONENTS IN A HALF-SPACE AND IN AN           
INFINITE MEDIUM 

Substituting Eq. (17) into (25), the displacement in an infinite medium for interior points 
1( )R a can be written as: 

 

( ) 1
( , ) ( , ).

2
x y K x h y  u  

 

(39) 

 

Then Eqs. (17) and (39) at the free surface 0x   can be written as: 

 

( ) 2

2

1 ( , )
(0, )

2

h y
y K a

R

 
u

    

for

     

( ),R a  
 

(40) 

 

( ) 1
(0, ) ( , )

2
y K h y  u

          

for

     

( ).R a  
 

(41) 

 

From the equations given above, it is noted that the following relations hold between the displacement in the 

thermoelastic half-space and an infinite medium at the free surface 0x  ,  

 
( )(0, ) 4(1 ) (0, )y y  u u

     

for

     

( ),R a  (42) 

2
( )

2
(0, ) 1 (3 4 ) (0, )

a
y y

R
  

   
 

u u

 
   

for
    

( ).R a
 

 

(43) 

 

Further from Eqs. (40) and (41), the displacement fields in the thermoelastic infinite medium at point (0,0)  for 

exterior points 1( )R a  and interior points 1( )R a  can be expressed as: 

 
2

( ) 1
(0,0) ,0

2

Ka

h

  
  
 

u
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(44) 

 

( ) 1
(0,0) ,0

2
K h  
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 

u

          

for

     
1( ).R a  

 

(45) 

 

For 0.25  , the Eqs. (44) and (45) can be reduced into the equations given below: 

 

( )

0 0

3 1 1
(0,0) ,

5 2 ( / )
xu

a T h a

  
  

 
 

 

(46) 

 

( )

0 0

3 1
(0,0) .

5 2
x

h
u

a T a

  
  

 
 

 

(47) 

 

Now using Eq. (17) or Eq. (39), the displacement field in the thermoelastic infinite medium at a boundary point 

( ,0)h a can be expressed as: 

 

( ) 1
( ,0) ,0 .

2
h a K a  
  

 
u  

 

(48) 

 

For 0.25  , the Eq. (48) can be reduced into the equation given below: 



452                         K.Singh and M.Renu 

© 2017 IAU, Arak Branch 

( )

0 0

3 1
( , 0) .

5 2
xu h a

a T


   

 

(49) 

 

5    NUMERICAL RESULTS AND DISCUSSION 

In this section, the graphical representations of the displacement components at the points (0,0)  and ( ,0)h a
 
for 

exterior points 1( )R a and interior points 1( )R a  of a cylindrical inclusion are obtained by using MATLAB 

software programming. The numerical computations are carried out for 0.25.   Figs. 2 and 3 respectively, show 

the variation of displacement normal to the surface of a thermoelastic half-space at point (0,0) for exterior points and 

interior points. From Fig. 2, it can be seen that displacement decreases rapidly with increasing value of distance 

/h a  and it vanishes for infinitely large values of /h a . From Fig. 3, we observe that the displacement first 

decreases slowly when 1 / 2h a  and attains a minimum value 2 at / 2h a . It then increases rapidly with 

the increasing values of /h a and becomes infinitely large for infinitely large values of /h a . Fig. 4 shows the 

variation of displacement normal to the surface of a thermoelastic half-space at a boundary point ( , 0)h a . From this 

figure, we observe that displacement decreases less rapidly with the increasing value of distance /h a  and it 

approaches the value 0.5 for infinitely large values of /h a . Fig. 5 shows the comparison of displacements normal to 

the surface of a thermoelastic half-space at points (0,0) and ( , 0)h a  for exterior points.  
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Fig.2 

Displacement normal to surface of a thermoelastic half-

space at point (0,0) for exterior points. 
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Fig.3 

Displacement normal to surface of a thermoelastic half-

space at point (0,0) for interior points. 
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Fig.4 

Displacement normal to surface of a thermoelastic half-
space at boundary point ( , 0)h a . 
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Fig.5 

Comparison of displacement components normal to surface 
of a thermoelastic half-space at points (0, 0) and ( , 0)h a  

for exterior points. 

 

In Figs. 6-7 respectively, comparison of displacements normal to the surface of a thermoelastic half-space and an 

infinite medium at point (0,0) for exterior points and interior points are presented. From Fig. 6, we conclude that the 

displacement in the thermoelastic half-space is three times to that of the infinite medium. Also both the 

displacements approach the value zero for infinitely large values of /h a . From Fig.7, it is obvious that displacement 

in the infinite medium increases linearly with the increasing values of /h a  and becomes infinite for infinitely large 

values of /h a . Fig. 8 shows the comparison of displacements normal to the surface of a thermoelastic half-space 

and an infinite medium at a boundary point ( , 0)h a . From here, it is found that the displacement in the infinite 

medium always remains the same with value 0.5 for all values of /h a and this value is approached by the 

thermoelastic half-space for infinitely large values of /h a .  
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Fig.6 

Comparison of displacement components normal to surface 

of a thermoelastic half-space and an infinite medium at 

point (0,0) for exterior points. 
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Fig.7 

Comparison of displacement components normal to surface 

of a  thermoelastic half-space and an infinite medium at 

point (0,0) for interior points. 
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Fig.8 

Comparison of displacement components normal to surface 

of a thermoelastic half-space and an infinite medium at 
boundary point ( , 0)h a . 

6    CONCLUSIONS 

In this paper, we have studied the plane strain deformation of a thermoelastic half-space due to a cylindrical 

inclusion by using thermoelastic displacement potential functions. A complete solution of displacement field due to 

difference in the coefficients of linear thermal expansion between a sub region and its surrounding material is 

obtained. The results thus obtained are in good agreement to the results obtained by Wang and Huang [6] using 

Boussinesq solution. Further, comparison between displacement field in a half-space and in an infinite medium has 

been discussed. The numerical results are also presented in graphical form.  
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