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 ABSTRACT 

 In the present study, the transient stress distribution caused by a break in the fibers of an 

adhesive bonding is investigated. Transient stress is a dynamic response of the system to 

any discontinuity in the fibers from detachment time till their equilibrium state (or steady 

state). To derive the governing dynamic equilibrium equations shear lag model is used. 

Here, it is assumed that the tensile load is supported only by the fibers. Employing 

dimensionless equations, initial conditions and proper boundary conditions, the 

differential-difference equations are solved using explicit finite difference method and the 

transient stress distribution is obtained in the presence of discontinuities. The present work 

aims to investigate the transient stress distribution in a single-lap joint, caused by the fiber 

breakage in a single layer of the adhesive joint. For this purpose, the effect of different 

number of broken fibers (including mid fiber) in the adherend on load distribution in other 

intact filaments, the location of fiber breaks in the adherend, and the effect of adhesive 

length is studied on the overall joint behavior. The results show that a the fiber is broken 

away, the amount of initial shock (maximum load) into the fiber and thus the dynamic 

overshoot is reduced. Maximum amount of shock in the lateral fibers is broken at this 

point due to breakage in the thirteenth fiber maximum axial load and shock are introduce 

to the fourteenth fiber. 
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1    INTRODUCTION 

 N engineering applications, properties combinations are often required. Since no substance can be found that 

have all the properties of the desired materials, we must seek another solution and the key to this problem is the 

use of composites. For example, in the aerospace industry, materials are required that while having high strength, 

they are lightweight and have good abrasion resistance. These materials are obtained by locating one or more 

discontinuous phase (fiber) into a continuous phase (matrix). Fiber must be having a very high tensile strength, in 

other words, the bulk of the force will be tolerated by the fiber [1]. In fact, the polymer matrix while protecting the 

physical and chemical damage transmits load to the fiber and its modulus must be lower than the fiber 

modules. Given the wide spread use of adhesive joints, composites in various industries, studying the behavior of 

these materials, particularly in the face of defects such as holes and cracks are of utmost importance. 

In a structure made of composites, when any cracks or discontinuities are caused in the fiber loads must be 

tolerated by the fiber will be transferred through the matrix to the adjacent normal fiber that will makes stress 

concentration around discontinuities. Pickett et al [2] examined the elastic adhesive stresses for joints in R. F. P. 
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Structures. Unlike the work done in the past, which mostly considered the solution of closed form of adhesive stress 

distribution in joints, in this study, two classical technique and the theory of finite element to analyze the stress 

distribution in single-lap, two-lap and pipe-shaped joints are used. When using classical analysis, solving the derived 

governing differential equations require a numerical method which here the procedures has been expressed for when 

the finite difference numerical method is used. The results showed the agreement and overlapping of responses 

obtained from the two methods. Nedel et al [3] have examined the coefficient of stress concentration near a broken 

fiber in a single carbon–Epoxy composite. Its symmetry-oriented analysis showed that the stress concentration factor 

for all modes in the adjacent fiber is predicted less than 1.10 by Hedgepeth. Rajabi et al [4] have examined the 

effects of stress concentration in the single-lap adhesive joints of composites using ABAQUS. The results of this 

modeling showed that significant changes in stresses occur in the thickness of the adhesive layer near the end of 

joint length. Wang et al [5] using experimental results and the finite difference method, have examined the 

distribution of stress - strain around the trailing edges overlapping in a single - lap joint made of the composite 

material. The results showed that a remarkable overlapping exists between the finite element results and 

experimental results.  Beylergil et al [6] conducted a numerical and experimental analysis on composite single-lap 

joints whose research was done for two types of joints. The first type, the normal and traditional single-lap joint 

without adhesion and in the type II, fiber rods were also considered. The results showed that the fiber improved the 

ultimate strength and time accuracy of joint damage and these experimental results have an acceptable overlapping 

with the numerical results. Challita et al [7] have offered an analytical model for double-lap joints for the response 

to the harmonic forces. The model considered is based on the improved model of Shear-Lag, and they compared the 

simple and improved mode of Shear-Lag with the finite element model. The results showed that the improved 

Shear-Lag model is closer than other models to the finite element model. Mokhtari et al [8] have investigated the 

effect of layer stiffness, its thickness as well as fibers being multi-direction on the stress distribution in two lap 

adhesive joining by applying three-dimensional finite element analysis in ABAQUS. In this modelling, the nonlinear 

behavior of the adhesive is also considered and six laminated with different orientation of the fiber were used which 

composite material made from Carbon-Epoxy, Bern-Epoxy, Graphite-Epoxy and Aramid - Epoxy. Results of the 

modeling showed that with changes in stiffness and the direction of the fibers in the material, the maximum stress 

was significantly reduced and the shear stress can be reduced using hybrid composites. 

Mousavitabar [9] has examined the compound single-lap joint located on the tensile edge. In this work, in 

addition to the shear stress generated in the adhesive layer, the distribution of axial load in single layers is also 

examined. The analysis conducted in this paper is based on the Shear-Lag theory and modified Shear-Lag and 

ultimately the values extracted from the solution were compared with the values obtained from numerical software 

ANSYS. The results showed that in the composites where the elasticity modulus of the matrix is lower, the values 

obtained has a proper overlapping with numerical solution, but when modulus of the matrix is high, the theory of 

modified Shear-Lag suggests detailed answer than Shear-Lag theory. Daniali [10] has calculated the values of stress 

concentration factor for both single-layer and double-multilayer adhesive joints in the cracks existence. The results 

showed that the cracks existence create the maximum shear stress concentration in the adhesive layer neighboring 

the middle of crack edges and the maximum concentration of tensile stress in the fiber at the crack tip. 

If in a joint made from composite materials, one or more fiber is broken, after a certain time, the joint reaches 

equilibrium. From the moment of detachment of fibers to before the moment of balance in it, transient stress 

distribution in the desired structure is created. To obtain the static and dynamic stress concentration factor in a single 

layer with infinite dimensions made of composite material, Hadgepath [11] extracted relationships based on the 

Shear-Lag theory. Then, he used a solution similar to the static solution for dynamic modes, but due to the solution 

complexity he could not solve the equations for more than three broken fibers. Mirshekari [12] has obtained the 

transient stress distribution in a variety of composites influenced by crack. Results showed that increasing the 

number of broken fiber, stress concentration factor increases in composite material. 

As explained in the overview of research, studies conducted in the field of transient stresses are only related to 

the single layer and multilayer composites. Purpose of this study is to investigate the transient stress distribution 

caused by fiber breakage in a single layer number one in single-lap adhesive joint. For this work, the effect of 

different numbers of fiber breakage on the adhesive joint, the impact of displacement of starting point of 

discontinuity in the perpendicular on fibers, impact of adhesive and non-adhesive changes of length on composite 

material and finally the effect of changes of the distance between the fiber on adhesive joint behavior have been 

studied. 
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2    THEORITICAL FOUNDATION OF TRANSIENT STRESS DISTRIBUTION IN ADHESIVE JOINT 

In tensile single-lap adhesive joint, two single-layers are connected by an adhesive layer and the tensile load applied 

on the edges is static. Since the load applied from either side is not located on one direction, bending stress is created 

and caused by the unevenness. This bending is ignored in this research. In Fig. 1, a single-lap joint made of the 

composite material can be seen in two single layers are connected by the adhesive layer. As indicated in Fig.1, the 

discontinuity is created in adhesive area of one of the single-layers and in single-layer number one. 

 

 

 

 

 

 

 
 

Fig.1 

Single-lap composites bonding in presence of adhesive 

layer. 

 

 

In Fig. 2, the two-dimensional deformed view of the adhesive bonding is shown. 

 

 

 

 

 

 

 
Fig.2 

Figure of adhesive bonding on x z page and deformed 

model of adhesive. 

 

 

Using the definition of shear stress, Eq. (1) is extracted for the shear stress applied to the fiber from the adhesive 

layer. In this regard, G is the shear modulus of the adhesive layer,   thickness of the adhesive layer, 1u  axial place 

shift in single-layer number one and 2u  axial place shift in a single layer number two. 
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Due to the amount of displacement along y and z against the displacement amount is negligible along x, so in this 

equation, the change of displacement along z than x are ignored and replacement is assumed linear in direction with 

the adhesive layer thickness. 

2.1 Extracting the equations governing the adhesive region 

The purpose of this chapter is to derive the displacement of fibers differential equations in single layer number one 

and two. In Fig. 3, the free-body diagram of fiber elements number n and matrix between fiber number n and 

1n  in the single-layer adhesive region number one and two is given. 

It should be noted that in Fig. 3, , ,f m zxd d   and zx   are respectively the fiber thickness, matrix thickness, shear 

stress exerted on the fibers and the matrix from the adhesive layer. 
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(a) 

 
(b) 

Fig.3 

Free-body diagram of a single-layer in adhesive area. a) single-layer numbers one, b) Single Layer Number two. 

 

Shear stress imposed by the adhesive cause applying a shear force on the matrix. This is due to assuming the 

displacement in matrix linear, the shear stress yx  is proved in it, so this force is divided equally between the two 

fibers connected to the matrix. In Eq. (2), how to transfer the shear force has been expressed. In this equation, 1( )nF  

represents the force transferred from the matrix to the fiber and , ,n n nu u   and n   are the displacement of the fiber 

and matrix number n in the single layer number one and two respectively. 
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In equation obtained, the displacement changes in matrix in the direction x are assumed linear relative to y. Due 

to the shear stress induced by the adhesive layer in connecting with the fiber, a force is imposed on it equal to 

( )zx n fd dx   , so the equivalent force from the adhesive on the fiber n can be achieved from the sum of these 

forces and transferred forces as Eq. (3). 
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   (3) 

 

with applying desired changes in the force imposed on the fiber and matrix, shear force exerted by the adhesive is 

removed from the matrix and finally the two-dimensional free-body mode of fiber and matrix is obtained as in Fig. 

4. According to this figure, the dynamic equilibrium equation along x for single layer adhesive region of fiber 

number one can be expressed as Eq. (4). 

 

 

 

 

 

 

 

 

 
 

Fig.4 

Free-body diagram of the fiber and matrix in a single layer 

adhesive area number one after force transmission from 

matrix to the fiber. 
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In Eq. (4), m is the mass per length of the fiber, 1,( )yx n n   is the shear stress imposed by the matrix which is 

located between fiber number 1n   and n Shear stress applied to the fiber from the matrix will be obtained 

respectively, from the Eqs. (5) and (6) by considering a linear shift in it and the tensile force in the fiber with its 

axial displacement. 
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Due to the shift in the linear matrix, it is assumed that the shear stress exits imposed by the fiber matrix number 

1n   and n will be extracted from the Eq. (7). 
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Using Eqs. (1), (3), (6) and (7), Eq. (4) (which represents the dynamic equilibrium equations of fibers in single-

layer adhesive areas number one) is rewritten in terms of displacement of fibers as the Eq. (8). 
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Since two free edge fibers are in close proximity of a matrix, so the differential equation governing the two is 

different from the rest of the fibers in each layer. In Eq. (8), u represents the displacement along x for fiber existing 

in single layer number one and v represents the displacement in x direction for existing fibers in single-layer number 

two. With a procedure the same as the previous section, the dynamic equilibrium equations are extracted for a single 

layer, number two in Eq. (9). 
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In adhesive areas, due to the existence of shear stress caused by adhesives, fibers dynamic equilibrium 

differential equations in two single-layer numbers one and two are interdependent and must be solved 

simultaneously. The number of equations obtained for the adhesive area is 2N . 

2.2 Making the equations governing the adhesive areas dimensionless 

A series of dimensionless parameters used in Eqs. (10) to (18) have been introduced in making the differential 

equations of displacement of the adhesive area dimensionless. 
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Closed dimensionless form of equations governing the adhesive area is as Eq. (19). 
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where the vector   ,w w   and w  are defined as Eqs. (20) to (22) respectively. 
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Matrixes M and E existing in Eq. (19) are unit matrixes to dimensions 2 2N N . Due to the different algorithms 

of side fibers with other fibers are extracted with writing the first three sentences for each single layer matrix L as 

Eq. (23). 
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where 1L  to 4L  each are matrix N N  and are defined as follows. 

2.3 Deriving the equations governing non-adhesive parts 

In non-adhesive areas, there is no shear stress due to adhesive and since the shear stress of displacement links the 

single layer of fibers number one and two together, so in this region solving the differential equations of two single-

layer displacement is independent from each other. With the same trend as adhesive region, closed and 

dimensionless form of dynamic equilibrium equations number one and two are given respectively, in the relations 

(24) and (25). 
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where the matrixes E   and M   are unit matrix of dimensions N N , using dimensionless parameters introduced, 

the matrix L   is obtained from the Eq. (26). 
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2.4 Initial conditions and boundary conditions 

Initial conditions in adhesive bonding include two stages before rupture and the moment of discontinuity in fiber. 
Initial conditions before the discontinuity is such that the load in all fibers is equal to P (Tensile load applied to the 
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fiber away from the discontinuity) and the dimensionless form of the initial condition is expressed in Eq. (27). 

 

( ,0) 1nP        (27) 

 

The next initial condition is the discrete time of fiber that at this point, each fiber is at rest and its instantaneous 

velocity is considered as Eq.(28). 

 

( ,0) 0nU








 

    

    (28) 

 

Boundary conditions are related to the moment after detachment of fibers which for normal and broken fibers 

two quite distinct conditions are established. In detached fibers, the boundary conditions are such that the force 

exerted on them at the location of the detachment is equal to zero and is expressed as relation (29). 

 

(0, ) 0 ( 1)nP s n s b           (29) 

 

In Eq. (29), dislocation is started from the fiber  s and the number of detached fibers  is equal to b. In normal 

fibers, the situation is different. According to the fact that the dimensionless load on the right edge is equal to one 

and on the left edge is equal to zero, using the backward difference form at the edge of imposing load and the form 

of leading difference in free edge, initial displacement of normal fibers are obtained at the point where is the same 

length of the discontinuity place. 

2.5 Solving the governing differential equations 

As it is obvious from the relations (19), (24) and (25), fiber displacement differential equation is second-order and 

with two variables. To solve the differential equation obtained, the explicit finite difference method is used [13]. 

Due to the fact that the displacement values in addition to place are also dependent to the time, overall the fiber 

displacement vector is expressed as ,i j
nu  in which terms subtitle n expresses the fiber number and superscripts i and 

j represent the number of displacement step and time step respectively [14]. 

In adhesive area, since the displacement of two single layers is related to each other, so the differential equations 

must be solved simultaneously. For solving differential equations, adhesive area are divided into two parts of 

separate right and left discontinuities that finally by applying the boundary conditions at detachment place of the 

fiber, two single-layer adhesive area displacements is obtained in form of vector w. Considering the form of central 

difference form for the second displacement and time derivative, Eq. (19) can be expressed as Eq. (30) to calculate 

the amount of displacement in the new time period. 
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      (30) 

 

To calculate the 
,i j

nw  and 
, 1i j

nw 
, the initial conditions and for calculating 

1,i j
nw 

, boundary conditions are 

used. Considering these conditions, the displacement vector in the first and second spatial step are obtained as the 

the Eqs. (31) and (32). 

 
2,1 1,1 2 ,1 2 1,1,..., 1 2N N

n n n nW W W W n N            (31) 

 
,2 ,1 1 2i i

n nW W n N        (32) 

 

Using the initial and boundary conditions, the amount of displacement of the fibers in the first spatial step is 

extracted from the Eqs. (33) and (34). 
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    (34) 

 

where tS  is the number of time steps. 

Using relations (31) and (32), the displacement values are obtained in two first time stages. To calculate the 

amount of displacement from the third time on, if 1i  , the relations (33) and (34), and otherwise, the fiber 

displacement values are obtained from the Eq. (30). Non-adhesive single-layer displacement vectors number one 

and two are also extracted the same as the trend of adhesive area. 

2.6 Calculating the stress concentration factor and shear stress 

Stress concentration in composite materials is defined as the ratio of load to the first normal fiber following the 

discrete fibers in the place of creating discontinuities (
(1, )

n r

j

f b
P


) to the load on the same fiber and at a distance away 

from the location of the discontinuity (in case of dimensionless it is equal to one) and its dimensionless form is 

expressed as the relation (35). 
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    (35) 

 

In Eq. (35), the index n rf b  represents the number of desired fiber. 

Dimensionless form of shear stress in the matrix where the above and down fibers are normal and are placed 

before discrete fibers is calculated from the relation (36). 

 
(2, ) (2, )

1 2n n

j j
xy f f

S U U
 

       (36) 

 

To calculate the shear stress generated in the adhesive, the same longitude points of two fibers are used as in 

single layer number one and two as in Eq. (37). 

 
(2, ) (2, )

n n

j j
xy f f

S U V        (37) 

 

The ratio of maximum stress concentration factor to stress concentration factor in the static mode are called 

dynamic overshoot which is shown with r . The parameter is calculated in Eq. (38). 

 

max( )

( )

r
r

r s

K

K
   

     

    (38) 

 

where ( )r sK  is the stress concentration factor in static mode. 
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3    RESULTS 

Calculating the stress concentration factor, axial load and shear stress in the adhesive joint requires the adhesive 

composites properties and adhesive that in this study, the desired composite material has a fiber made of glass and 

matrix made of epoxy and the values in Table 1. is used for extracting graphs. 
 

 

Table 1 

Mechanical properties of composite and adhesives used. 

Type of material Material Modulus of elasticity ( )GPa  

Fiber Glass 74 

Matrix Epoxy 1.28 

Adhesive Epoxy phenolic 1.11 

 

In single layer modeling and connectivity, a geometry is intended which specification is given in Table 2. 

 
 

Table 2 

The geometry of the desired compound. 

Specifications Size 

Length of each layer 250 mm 

Length of overlapping area 50 mm 

Layer thickness 0.1 mm 

Thickness of the adhesive 0.1 mm 

Fiber and matrix width 0.1 mm 

load applied to each edge 100 Newton 

The number of fibers in each single layer 25 

 

Since in reference [11], the values of static stress concentration factor for cases where there is discontinuity in 

the middle of a single-layer composite, therefore, to verify the solution method, we first review the results of this 

case. In Fig. 5, the stress concentration factors is drawn for the case of fiber discrete is traced from the middle of 

single-layer. 
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Fig.5 

Diagram of stress concentration factor n terms of time in a 

single layer, for a condition that the discontinuity is created 

in the middle of the plate. 

 

In Table 3., the static and dynamic stress concentration factor (the maximum value of stress concentration factor) 

obtained in Fig.5 are given. 
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Table 3 

Results of single-layer discontinuity in the middle of the plate. 

The number 

of broken 

fiber 

Dynamic stress 

concentration factor 
The converged value 

Static stress concentration 

factor [11] 
Rate of method difference 

1 1.55 1.34 1.33 0.75% 

3 2.06 1.82 1.83 0.54% 

5 2.40 2.21 2.22 0.45% 

7 2.77 2.53 2.55 0.78% 

9 3.08 2.82 2.84 0.71% 

 

As it is clear from Table 3., the values of converged stress concentration factor are significantly overlapped with 

static stress concentration factor values extracted from reference [11], thus this result is confirming the accuracy of 

the numerical method used in this research. In Fig. 5, to demonstrate the accuracy of the solution, the dimensionless 

unit is considered as 30 units. Since some of the figures depicted in the next sections, the difference between the 

curves is negligible, so for more clarity in rest of diagrams, the dimensionless time is considered equal to 15 units. 

The purpose of this section is to examine the results of composite single-lap in adhesive joint. To derive the 

equations governing adhesive joint, the reference [10] is used and the results obtained for composite structures are 

based on the values in Table 1. and Table 2. In Fig. 6, the graph of axial load applied to the crack tip fiber (fiber 

discrete) for different numbers of discrete fibers is shown for a state where the discontinuity is created in the middle 

of the adhesive area. The curves obtained indicate that increasing the number of discrete fibers, the axial load 

applied to the fiber, and as a result the stress concentration factor in adhesive joint also increases. 
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Fig.6 

Diagram of the axial load applied to the fiber in connection 

for a discontinuity in the middle of the adhesive area. 

 

 

In Table 4., the maximum load applied to the fiber at the tip of the discontinuity location is provided for single-

layer composite and adhesive joint. 

 
Table 4 

The maximum load applied to the fiber in tip of discontinuity location for lamina and adhesive joint. 

The number of broken fiber Crack-tip fiber in adhesive joint (N) Crack-tip fiber in lamina (N) 

1 0.557   6.243 

3 0.607   8.249 

5 0.629   9.645 

7 0.637 11.082 

9 0.639 12.321 

 

From the diagrams in Fig. 6 and maximum values of the axial load applied to the fibers in a single layer and 

adhesive joint given in Table 4., it can be concluded that in adhesive joint a remarkable amount of loads applied to 

fiber are absorbed by the adhesive. As a result of it, the amount of axial load and the stress concentration factor in 

adhesive joint composite are too low. 
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In Table 5., the values of dynamic overshoot are given using Eq. (38) for three fractures of fiber in a single layer 

and adhesive joint and their values were compared. 

 
Table 5 

Dynamic overshoot values in a single layer and adhesive joint. 

The number of broken fiber The amount of dynamic overshoot in single-layer  The amount of dynamic overshoot in 

adhesive joint 

1 1.156 1.089 

3 1.133 1.077 

5 1.089 1.071 

 

The values obtained from Table 5. indicate that the amount of dynamic overshoot in single-layer is greater than 

adhesive joint. Due to the fact that in this connection, there is an adhesive layer, it is expected that less shock is 

imposed to the system by fiber breakage. By reducing the numerical distance between the values of the dynamic and 

static stress concentration factor, dynamic overshoot is reduced for adhesive joint to composite single-layer that the 

results in Table 5. indicate the problem. 

The purpose of this section is investigating the effect of displacement of discontinuity start point in the direction 

perpendicular to the fibers. In Fig. 7, the axial load distribution in the fiber tip of crack is given for four different 

starting points. In all graphs, the number of broken fibers is considered one number and location of fracture in the 

middle of adhesive area. 

 

Time

A
xi

al
L

oa
d

(N
)

0 2 4 6 8 10 12 14

0.45

0.5

0.55

0.6

f
n

= 1

f
n

= 24

f
n

= 3

f
n

= 13

f
n

: First Broken Fiber

 

 

 

 

 
 

 

 

 

 

 

Fig.7 

Diagram of load distribution in terms of time for 

displacement of discontinuity starting point. 

 

In Table 6., the values of maximum load applied are given for four different starting points. 
 

 

Table 6 

The values of the dynamic stress concentration factor and the maximum load applied to the fiber as a result of the displacement 

of discontinuity starting point. 

The first broken fiber The maximum applied load (N) 

1     0.587 

24   0.584 

3     0.557 

13    0.557 

 

The values obtained from Table 6. indicate that however the starting point of discontinuity goes to the top edge 

and bottom edge, the amount of load applied and as a result the stress concentration factor increases. Another point 

that can be obtained from this table is that distribution of load in the fibers away from the edge and close to the 

middle of the plate has little variation and has almost equal values. 

In Fig.8 and Fig. 9, respectively, the graphs of adhesive shear stress generated in the matrix and adhesive are 

given for two different starting points. The diagrams obtained indicate that by taking away from the top and bottom 

edges, the amount of shear stress generated in the adhesive and matrix is reduced. 



                                                                  The Effect of Fiber Breakage on Transient Stress Distribution …                              454 

 

© 2015 IAU, Arak Branch 

One of the important factors in the stress distribution of joint is the adhesive and non-adhesive zone length 

change which is discussed in this section and purpose is to examine the effect of length of adhesive zone on the 

applied load and shear stress in the matrix and adhesive. Graph of applied load to the fibers is shown in Fig. 10. It 

should be noted that the adhesive area are considered respectively five centimeters, eight centimeters and ten 

centimeters and in all three cases, the length of discontinuity is considered as constants and are assumed to have a 

number of broken fibers. 
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Fig.8 

Diagram of shear stress in matrix for different 

discontinuity starting points. 
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Fig.9 

Diagram of shear stresses in the adhesive for different 

discontinuity starting points. 
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Fig.10 

Diagram of the effect of changes in adhesive zone on the 

load applied to the fiber crack tip. 

 

In an adhesive connection, since by increasing the adhesive area, more length of the fibers is in contact with the 

adhesive, so a greater amount of load applied to the fibers is absorbed by the adhesive and thereby increasing the 

adhesive area length, the amount of load applied to the fiber decreases. Due to the fact that stress concentration 
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factor is related to the amount of load in the fiber tip in discontinuity location, thus reducing the load applied, this 

factor is also decreased which diagrams obtained from Fig. 10 illustrates this issue. 

The impact of length change in the adhesive area on shear stress generated in the matrix and adhesive, are 

respectively shown in Figs. 11 and 12. As is clear from the graphs extracted, increasing the length of the adhesive 

bonding, reduces the shear stress in the matrix and adhesive like the axial load and stress concentration factor. 
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Fig.11 

Diagram of the effect of the change of length in the shear 

stress in the matrix. 
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Fig.12 

Diagram of effect of change in length of adhesive zone on 

the shear stress in adhesive. 

 

 

After examining the effect of length change of the adhesive region on the joint, the aim was to evaluate the effect 

of changing the length of the non-adhesive region by considering the length of discontinuity and the adhesive 

constant on the load applied to the fibers which diagram is shown in Fig. 13. 
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Fig.13 

Diagram of the effect of the length change in non-adhesive 

area on the load applied to the fiber. 
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As shown in Fig. 13, increasing non-adhesive area length, the discontinuity area will be away from the edge of 

the applied load and increasing the distance of rupture place from the edge, the load applied to the fiber will be 

decreased. 

Another parameter affecting the axial load applied to the fiber and shear stresses in the adhesive bonding of 

composite materials is the changing the spacing between fibers (matrix width) that in this sector, its effects have 

been studied. In Figs.14, 15 and 16, respectively the impact of the width change of matrix on the graph of applied 

distributed load on the fiber and shear stress in the matrix and adhesive for the case where the fibers fracture 

initiation is number thirteen is shown. 

By increasing the width of matrix, the composite single layer width is increased. Since increasing the adhesive 

zone, the possibility of absorbing force applied to the plate is more, so it is expected that increasing the width of the 

matrix, the load applied to the fiber decreases, that Fig. 14 indicates this issue. With the increase of the adhesive 

region, fiber displacement is less as a result it is expected that shear stress generated in the matrix and adhesive 

reduces which Figs. 15 and 16 show it. Another point that is clear in Fig. 14 is that by increasing the width of the 

matrix, because of the increased surface of the adhesive area, the maximum amount of stress concentration factor 

and as a result shock imposed to the system is reduced after fiber breakage. 
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Fig.14 

Diagram of effect of matrix width change on load applied 

to the fiber. 
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Fig.15 

Diagram of the effect of changing the matrix width on the 

shear stress generated in the matrix. 
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Fig.16 

Diagram of the effect of changing the matrix width on the 

shear stress generated in the adhesive. 
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4    CONCLUSIONS 

In this study, the distribution of transient stress induced by breakdown of fibers was investigated. The results of this 

research are: 

 From the obtained diagrams of the results section it may be perceived that the dynamic effect of fiber 

breakage has been considerable in stress concentration and distribution of load in the composite material. 

 In adhesive joint, a significant percentage of the force applied to the fiber is absorbed by the adhesive. As a 

result, the amount of axial load and the stress concentration factor in adhesive joint are too low than lamina. 

 The amount of dynamic overshoot in single layer is more than adhesive joint. Due to the fact that in this 

joint, there is an adhesive layer, it is expected that by fiber breakage, the system faces less shock. With 

decreasing numerical distance between the static and dynamic stress concentration factor, dynamic 

overshoot will be reduced for adhesive joint than composite single layer. 

 Whatever the starting location of the discontinuity displaced to the top edge and bottom edge the amount of 

load applied and as a result the stress concentration factor will also increase. 

 In an adhesive joint, since by increasing the adhesive area, more length of fibers is in contact with the 

adhesive, so a greater amount of load applied to the fibers absorbed by the adhesive and thereby increasing 

the length of adhesive region, the amount of load applied to the fiber decreases. Due to the fact that the 

stress concentration factor is dependent to the fiber of tip of discontinuity place, thus reducing the load, this 

ratio is also reduced. 

 With increasing non-adhesive area, rupture area will be far from the edge of applying load and with 

increasing the distance of discontinuity from the edge, the load applied to the fiber decreases. 

 By increasing the width of the matrix, composite single layer width is increased. Since increasing the 

adhesive region, the absorption of applied forces to the lamina will be increased, so it is expected that 

increasing the width of the matrix, the load applied to the fiber decreases. 
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