
 

© 2018 IAU, Arak Branch. All rights reserved.                                                                                                    

Journal of Solid Mechanics Vol. 10, No. 2 (2018) pp. 435-449 

Thermoelastic Fracture Parameters for Anisotropic 
Plates 

S. Kebdani 
1,*

, A. Sahli 
1,2

 , S. Sahli 2
 

1
Laboratoire de Mécanique Appliquée , Université des Sciences et de la Technologie d’Oran , Alegria 

2
Laboratoire de Recherche des Technologies Industrielles , Université Ibn Khaldoun de Tiaret , Alegria  

Received 24 March 2018; accepted 20 May 2018  

 ABSTRACT 

 This paper deals with the determination of the effect of varying material 

properties on the value of the stress intensity factors, KI and KII, for anisotropic 

plates containing cracks and subjected to a temperature change. Problems 

involving cracks and body forces, as well as thermal loads are analysed. The 

quadratic isoperimetric element formulation is utilized, and SIFs may be 

directly obtained using the „traction formula‟ and the „displacement formula‟. 

Three cracked plate geometries are considered in this study, namely: (1) a plate 

with an edge-crack; (2) a plate with a double edge-crack; (3) a plate with 

symmetric cracks emanating from a central hole. Where appropriate, finite 

element method (FEM) analyses are also performed in order to validate the 

results of the BEM analysis. The results of this study show that, for all crack 

geometries, the mode-I stress intensity factor, K∗I decreases as the anisotropy 

of the material properties is increased. Additionally, for all these cases, K∗I 

decreases as the angle of orientation of the material properties,  , increases 

with respect to the horizontal axis. The results also show that BEM is an 

accurate and efficient method for two-dimensional thermoelastic fracture 

mechanics analysis of cracked anisotropic bodies. 

.                                     © 2018 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 VER the past couple of decades, anisotropic materials have become more commonly used in the aerospace 

industry as a primary structural material in applications such as satellites and aircraft. In the aerospace industry, 

a major design consideration is the presence and behavior of cracks. As a result, much research has been conducted 

in the past two decades to study cracked anisotropic structures subjected to various types of mechanical loads, and 

much is now known about their behavior. However, in many cases, these structures are also subjected to thermal 

loads. There has, however, been very little research done to determine the effects anisotropic material properties 

have on the fracture behavior of a cracked body subjected to a temperature change. The goal of the present study is 

to examine some of these effects.  

The early groundwork for linear elastic fracture mechanics (LEFM) analysis in plane anisotropy was performed 

by [1] used the modified mapping collocation (MMC) method to express the stresses and displacements in the crack-

tip vicinity in terms of the mode-I stress intensity factor (SIF) for a two-dimensional anisotropic body [2] used the 
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MMC method to determine the mode-I stress intensity factor, KI, for a plane orthotropic body with a central-crack, 

while [3] also used the same technique to analyze a plane orthotropic body with a slant-crack. Although [4] had 

presented, for the first time, a BEM formulation for plane anisotropy, no fracture mechanics analysis was carried out 

at this time[5] followed this groundwork with an alternative formulation for two-dimensional anisotropic fracture 

mechanics based on modified Green's functions. This new formulation had the distinct advantage that the crack 

itself did not need to be modeled. However, it was only applicable to straight cracks and relatively simple geometric 

configurations. 

Most major work in the area of two-dimensional LEFM analysis of anisotropic bodies in more recent years has 

been split between two main groups, the dual boundary element method (DBEM) along with its various forms, and 

the sub-regioning approach. DBEM [6]; [7] is a single domain approach, which instead of sub-regioning the solution 

domain, models the tractions on one crack face, and displacements on the other, to avoiding discontinuities which 

arise here. [8] Propose two quantitative thermoelastic strain analysis (TSA) experimental methods to determine the 

surface strain fields in mechanically loaded orthotropic materials using the spatial distribution of temperature 

gradient measured from the surface. The general applicability of the BEM algorithm for fracture mechanics 

applications is demonstrated by three crack problems with slanted cracks in [9]. [10] Develops the Somigliana type 

boundary integral equations for fracture of anisotropic thermoelastic solids using the Stroh formalism and the theory 

of analytic functions. Stress intensity factors, KI and KII, for inclined cracks are determined in a uniaxially-loaded 

orthotropic graphite–epoxy composite using measured temperatures and least-squares by [11]. [12] Develop a new 

computational method based on the equivalent domain integral (EDI) for mode-I fracture analysis of orthotropic 

functionally graded materials (FGMs) subjected to thermal stresses. The formulation for DBEM is complicated, but 

the ability to model cracks without subregioning makes this method very well suited to the study of crack 

propagation. For the straightforward determination of SIFs only, the sub-regioning, or multiple domain, approach is 

still the simplest. With this method the sub-regioned body is analyzed, and the stresses and displacements near the 

crack-tip can be used to determine the SIFs with the now well established 'traction formula' and/or 'displacement 

formula' [13]. It should be noted that other methods have been proposed for calculating SIFs which may also be 

applicable to two-dimensional anisotropic LEFM, such as the Jk integral [14,15], weight functions [16], and a 

singularity subtraction technique [17]. They are mathematically more involved and require significant modifications 

and implementation into a BEM computer code. 

There has been relatively little amount of work done in the area of two dimensional thermoelastic fracture 

mechanics analysis for anisotropic bodies using BEM. This is due to the presence of extra volume integrals in the 

integral equations which arise when thermal effects are present, and the subsequent difficulty in transforming these 

volume integrals into surface integrals. In elasticity analysis, thermal loads are often treated as 'pseudo-body forces' 

because their terms appear together with those for body forces in the governing differential equation [18]. The 

presence of volume integrals, however, destroys the main feature of the boundary element method as a boundary 

solution method, and therefore, transformation of these domain integrals is necessary to restore the method to a truly 

'boundary-only' technique. This transformation was first achieved for body force loading by [19, 20] when they 

developed the exact transformation method (ETM) for body forces in two-dimensional anisotropy in BEM, and 

applied the formulation to analyze crack problems. Note that body forces have also been treated earlier using the 

particular integral method (PIM) [21], but for anisotropy, the approach is an approximate one. [22] Subsequently 

developed a direct domain mapping technique to solve two-dimensional anisotropic field problems in BEM.  

This work facilitated the transformation of the thermoelastic domain integral into surface integrals by [23] when 

they developed the ETM for two-dimensional thermoelastic anisotropy in BEM. This formulation was extended to 

allow for determination of interior point stresses [24], and employed for fracture mechanics analysis [25]. Other 

attempts using BEM to deal with anisotropic thermoelasticity have been made by [26]; and [27] using PIM, but this 

method is not general and has not been applied to crack problems. 

This paper presents results of two dimensional thermoelastic fracture mechanics analysis of cracked anisotropic 

bodies using the BEM based on the exact transformation method (ETM). Problems involving cracks, body forces, as 

well as thermal loads are analyzed. The quadratic Isoperimetric element formulation is utilized, and stress intensity 

factors (SIFs) may be directly obtained using the 'traction formula' and the 'displacement formula'. Only the case of 

uniform temperature distribution was considered in this study. The effect of varying material properties and varying 

material orientation of these material properties on the value of the SIFs for cracked rectangular plates under mode-I 

conditions is investigate. 

 



437                           Thermoelastic Fracture Parameters for Anisotropic Plates            

© 2018 IAU, Arak Branch 
 

2    ANISOTROPIC STRESS AND DISPLACEMENT FIELD NEAR A CRACK TIP 

The stress and displacement expressions in the neighborhood of the crack tip in homogeneous anisotropic media 

under a plane stress condition with zero body forces are given by [28] as: 
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where Re  denotes the real part of the complex function between brackets. 
1 2
,s s  and their conjugates are roots of the 

fourth order characteristic equation 
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where the 
ij

a  are the elastic compliance coefficients, which can be written in terms of Young's moduli 
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E , Poisson's 

ratios 
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v  and shear moduli 
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G . For an orthotropic material, 
ij
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3    TWO-DIMENSIONAL ANISOTROPIC THERMOELASTICITY  

In what follows, lower case p and q are used to denote points within the domain,  , and upper case P and Q are 

used to denote points on the boundary, S. The BIE for anisotropic thermoelasticity has the same form as equation for 

isotropic thermoelasticity. However, the equivalent body force term for isotropy is replaced by the equivalent body 

force term for anisotropy, 
i

X   namely, 
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where i,j denote Cartesian components, and ( , )
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U P Q  represent the traction and displacement 

fundamental solutions at a boundary point Q due to a unit load placed at location P. The term ( )
ij
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function of the geometry variation at the boundary point P. 

In Eq. (8) the displacement fundamental solution ( , )
ij
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and the corresponding traction fundamental solution is, 
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i
n  are the components of the unit outward normal at the field point q; and 

ij
A  are complex constants obtained 

from the following matrix equation, 
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where        1 1 1 2 2 2 1 2
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jk
  is the Kronecker delta. 

Substituting 
i

X   in to Eq. (8) along with the additional thermal traction term, results in the integral equation for 

thermoelasticity, which, in the absence of body forces, can be written as, 
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where, 
k

n  is the unit outward normal at field point Q,   is the temperature change, and, 
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And 
kl

  are the coefficients of linear expansion. 
ijkl

C  are the material stiffness coefficients. In order to realize the 

full advantages of the boundary element method, it is important to transform the domain integral in Eq. (12) into 

surface integrals, thus rendering the equation a boundary only equation. This transformation has been achieved only 

quite recently through a direct domain mapping technique [22, 23]. In this method, the domain integral is mapped 

into a new coordinate system, 
i

x , such that the new 
i

x -coordinate system is related to the original Cartesian 

coordinate system by the following transformation, 
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volume integral can now be expressed as, 
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The variables are now defined in the new mapped coordinate system, and 
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The volume integral in Eq. (16) is analytically transformed into the following surface integral, 
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Thus, the resulting BIE for two-dimensional anisotropic thermoelasticity by the exact transformation method 

(ETM) can be expressed as, 
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The integrals in Eq. (23) pose no numerical problems because they are weakly singular at most. However, care 

must still be taken to avoid discontinuities which arise due to the geometry of the domain. It has been shown [29, 

19] that such discontinuities can be avoided provided that,  

a)    For a simply connected convex domain, the range of functions involving z are limited such that, 
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b)    For a simply connected but non-convex domain, the range of functions involving z are limited such that, 
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where, [0,2 ]  is the angle between the outward normal and the 
1x -axis. 

c)    For multiply connected domains, the domain is cut into infinitesimal strips, resulting in an extra line 

integral in Eq. (23) such that it now becomes, 
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where, m is the number of times that the domain is intersected by the negative 
1 -axis, and 1( )jL  is defined as, 
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Eq. (27) is analytically exact for any physical domain. However, for thermoelasticity problems, temperature data 

is required along the negative 
1 -axis for every source point along the boundary. This is highly undesirable since it 

greatly increases the amount of computation required for the problem solution. Fortunately, this line integral can be 

avoided altogether through the selective use of sub-regioning to transform the multiply connected domain into a 

finite, and generally small, number of simply connected non-convex domains, so that the much more simple 

argument of Eq. (25) can be employed (see Fig. 1). The form of the discretized BIE, and the numerical procedures 

for solving it are the same for anisotropy as they are for isotropy, hence they will not be elaborated on further. 
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Fig.1 

A multiply-connected domain divided into two simply connected 

non-convex sub-regions. 

 

4    TWO –DIMENSIONAL LINEAR ELASTIC FRACTURE MECHANICS ANALYSIS  

The BIE method for two-dimensional homogeneous anisotropic thermoelasticity discussed in the previous section 

can be applied to the analysis of crack problems without requiring any approximation or further modification. All 

that is required are special 'crack-tip' elements to model the crack, and appropriate formulae to calculate the stress 

intensity factors from the computed displacements and tractions. 

In order to model anisotropic problems with a general crack, sub-regioning of the solution domain may be 

employed. The sub-regions are chosen such that the crack, of arbitrary orientation, lies along the sub-region 

interface. The nodes at this interface boundary are bonded along the un-cracked portion, and are free along the crack 

face (see Fig. 2).  

 

 
  

 

 

 

 

 

 

Fig.2 

An arbitrary cracked body after sub-regioning. 

 

with the crack being modeled using quarter-point elements at the crack-tip, the stress intensity factors can be 

obtained directly from the computed displacements and tractions at the nodes of these elements, using either the 

'traction formula', 
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or the 'displacement formula', 
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as derived by  [13]. In Eqs. (28) and (29) the superscripts indicate the nodes of the crack-tip elements as shown in 

Fig. 3. The computed traction at the crack-tip, A

jt 
is related to the physical traction, 

A

jt  as follows, 
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and 

 

11 22 21 12[ ] ( )Det D D D D D      (31) 

 

where 
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   (32) 

 

The displacement formula requires significantly more computation than the traction formula, and is known to be 

more sensitive to the size of the crack-tip element, l [13]. However, the use of both formulae provides a useful cross-

check of the results, and good agreement can also be an indicator of good mesh design. 

 
  

 

 

Fig.3 

Node symbols for crack-tip elements. 

5    THERMOELASTIC FRACTURE MECHANICS ANALYSIS IN PLANE ANISOTROPY   

The goal of the present study is to determine the effect of varying material properties on the value of the stress 

intensity factors, IK  and IIK , for anisotropic plates containing cracks and subjected to a temperature change. This 

section outlines the scope of the parametric study carried out to examine these effects.  

For the two-dimensional anisotropic thermoelastic fracture mechanics study performed here, the basic physical 

problem is that of a rectangular plate with a crack, whereupon the crack opens as a result of a uniform temperature 

drop. The plate is constrained in the vertical direction along the top and bottom edges, and constrained in the 

horizontal direction at the middle of the bottom edge (see Fig. 4). These boundary conditions allow the plate to 

expand or contract in the horizontal direction but not in the vertical direction, while also eliminating rigid body 

motion in the numerical analysis. In all cases, the plates are cooled by a temperature of 100 C , and the height to 

width ratio, H/W, is 2 (see Fig. 4). 

 

 

 
  

 

 

 

 

 

 

 

 

Fig.4 

Boundary conditions for problem analysis. 
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The three basic types of cracked plates investigated in this study are (a) an edge cracked plate (see Fig. 5), (b) a 

plate with a double edge-crack (see Fig. 6) and (c) a plate with symmetric cracks emanating from a circular hole (see 

Fig.7). Also, for the BEM analysis, relative crack lengths considered are / 0.1,0.2,0.3,0.4,0.5a W  , where 'a' is the 

crack length.  

 
  

 

 

 

 

 

 

 

 

Fig.5 

Plate with an edge-crack. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 

Fig.6 

Plate with double edge-crack. 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 

Plate with symmetric cracks emanating from a central hole. 

 

5.1 Material properties 

For two-dimensional anisotropy in plane stress, four elastic constants are normally required to fully define the 

material, namely 11 22 12, ,E E G and 12v . In order to reduce the number of runs required in the parametric study, an 

alternative method of representing the material properties was used [2], whereby these four elastic constants can be 

related to a pair of new material parameters, 
1  and 

2 , as follows, 
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In anisotropy, the angle between the global Cartesian coordinate system, and the material principal Cartesian 

coordinate system, is very important in defining the properties of a material. The range of this material property 

angle,  , was chosen to be between 0 and 90 degrees, and the following five values are considered, 

0,30,45,60,90  . 

So far, thermal properties have not been represented for the parametric study. This requires the creation of a third 

material parameter representing the ratio of the material coefficients of linear expansion, 
11  and 

22 , in the 

principal directions. This parameter, which will be called 
3  for convenience, is defined as, 

 

22

3

11





  

    

   (34) 

 

Therefore, 
11  is set to be 60.01 10 / /m m C  throughout this study. In order to determine the effect of 

varying
3 , the stress intensity factors were computed for numerous values of

3 , for 0,45,90   and for the 

material parameter extremes, 
1 2[ , ] [2,0.5]    and

1 2[ , ] [7,1]   . The stress intensity factors, 
IK  and

IIK , are all 

normalized to produce the normalized stress intensity factors, *

IK  and *

IIK , defined as follows: 
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   (35) 

6    NUMERICAL RESULTS AND DISCUSSION 

This section presents the stress intensity factor (SIF) results obtained from the parametric study outlined in the 

previous section. The general trends resulting from variation of the material parameters 
1  and

2 , which are used to 

define the anisotropic properties of the material, are first presented. These parameters are directly related to the 

material elastic constants, and thus will give an indication of the overall effect that variation of the mechanical 

properties has on the SIFs for anisotropic plates under thermal loads. The results of varying the orientation of the 

material properties are presented next, and the effect on the value of the SIFs is discussed. This is followed by a look 

at the effect of crack length on the SIFs for each plate geometry.  

It is important to note that, in general, only the results for the mode-I normalized stress intensity factor, *

IK , are 

plotted and discussed. Values for the mode-II normalized stress intensity factor, *

IIK , were typically an order of 

magnitude smaller than *

IK  and are therefore only of secondary importance.  

6.1 Effects of material properties, 
1  and 

2  

These results are shown for the edge-crack case in Figs. 8 and 9. It can be seen from these graphs that, in all cases, 

for values of  
3  greater than +5, or less than -5, the normalized stress intensity factors change very little. Therefore, 

any results obtained should be directly applicable to all materials with 
3  greater than +10, or less than -10. 

Therefore, for the purpose of efficiency, only the case of 3 30   is considered for further analysis. 

The variations of the normalized stress intensity factor, *

IK , with varying values of 
1  and 

2  for a uniformly 

cooled plate can be seen in Figs. 10-11. From these figures one can clearly see that regardless of material property 

angle,  , or relative crack length, /a W , the normalized SIF, *

IK and *

IIK decreases as either of the material 

parameters, 1  or 2 , is increased. Note that independently increasing either material parameter 1  or material 

parameter 2  corresponds to an increase in the “degree of anisotropy” of the material properties. Therefore, it is fair 

to say that, in general, the normalized stress intensity factor, *

IK and *

IIK decreases as the material becomes “more 

anisotropic” and this is true of all three crack cases in this study. 
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Fig.8 

Variation of the normalized stress intensity factors, *

IK  with (a) 

normalized crack length, /a W , and (b)  material parameter 
3 , 

for a uniformly cooled plate with an edge-crack; 
145 , 2   , 

2 0.5  . 

  

 

 
 
 
 
 
 
 

Fig.9 

Variation of the normalized stress intensity factors, *

IK  with (a) 

normalized crack length, /a W , and (b)  material parameter 
3 , 

for a uniformly cooled plate with an edge-crack; 190 , 2   , 

2 0.5  . 
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Fig.10 

Variation of the normalized stress intensity factors, *

IK  and *

IIK  

with material parameter
1 , for plate with symmetric cracks 

emanating from a central hole. 
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Fig.11 

Variation of the normalized stress intensity factors, *

IK  and *

IIK  

with material parameter 2 , for plate with symmetric cracks 

emanating from a central hole. 
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6.2 Effects of material property angle,   

The variation of normalized SIF, *

IK , with varying material property angle,  , for various material properties and 

crack lengths is shown in Figs. 12 and 13. Before discussing the results, it is important to recall the physical 

boundary conditions which are applied to the plates (see Fig. 4). As described in the previous section the plates are 

constrained at the top and bottom edges, and it is this constraint which induces the crack to open as the plate is 

cooled. When 0  , 
11E  is oriented in the horizontal direction, and 

22 is oriented in the vertical direction. This 

means that when 0  the plates are most stiff in the horizontal direction, and maximum shrinkage of the plates is 

occurring in the vertical direction which is the least stiff. As   increases, both 
11E  and 

22 are rotated 

counterclockwise until 90  , where now 
11E   is vertical, and 

22 is horizontal. Therefore, 90  corresponds to a 

condition of maximum stiffness in the vertical direction and maximum shrinkage in the horizontal direction. For all 

three crack cases, the general trend observed is that the normalized SIF, *

IK , is maximum at 0  and decreases in 

a sinusoidal fashion to a minimum value at 90  . The maximum value at 0  is expected in this situation since 

it corresponds both to maximum vertical shrinkage and minimum vertical stiffness. Thus the crack opens by the 

maximum amount, yielding the maximum value of *

IK . At 90  , the opposite situation arises. When 90  , 

shrinkage occurs mainly in the horizontal direction where the plate is free to expand and for contract. There is the 

minimum amount of shrinkage in the vertical direction, and the maximum amount of stiffness in that direction, 

resulting in relatively low stresses at the crack-tip, and the minimum value of *

IK . It is expected that if the material 

properties were rotated further, from 90  to 180  , the observed trends would be mirrored, and the normalized 

SIF, *

IK , would increase back to a maximum at 180  , and this cyclic behavior should continue through to 

360  . 
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Fig.12 

Normalized stress intensity factors, *

IK , with varying material 

angle,  , and normalized crack length, /a W , for a uniformly 

cooled plate with an edge-cracks; 
1 23, 0.5   . 
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Fig.13 

Normalized stress intensity factors, *

IK , with varying material 

angle,  , and normalized crack length, /a W , for a uniformly 

cooled plate with symmetric edge-cracks emanating from a 

central hole; 1 2  . 

6.3 Effects of crack length, /a W  

Although the three crack cases analyzed in this study all exhibit the same behavior for varying material parameters, 

1 , and 
2 , and varying material property angle,  , there are some differences in observed trends as it relates to 

crack length. Certain cases exhibit a greater dependence of the normalized stress intensity factors on crack length. 
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The variations of *

IK
 
 and *

IIK  with relative crack length, /a W , for the three crack cases are shown in Figs. 14, 15 

and 16. It can be seen in these figures that there is a trend of decreasing *

IK
 
 and *

IIK  with increasing relative crack 

length, and this trend is generally present for any combination of material properties, 
1 , and 

2 , or material 

property angle,  . It is also evident from the results that, for a given set of material properties, the decrease of *

IK  

with crack length is relatively more dramatic for the geometric cases with a hole or a semi-circular notch. This is 

particularly so at the smaller relative crack lengths where the effects of the stress concentrations of these geometric 

discontinuities are still apparent, and is therefore to be expected.  

It is worth noting that although the normalized stress intensity factor, *

IK  may decrease with increasing relative 

crack length, /a W , the absolute value of 
IK actually increases with crack size in all cases. 
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Fig.14 

Normalized stress intensity factors, *

IK , with varying material 

angle,  , and normalized crack length, /a W , for a uniformly 

cooled plate with an edge-cracks; 
1 23, 0.5   . 
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Fig.15 

Normalized stress intensity factors, *

IIK , with varying material 

angle,  , and normalized crack length, /a W , for a uniformly 

cooled plate with an edge-cracks; 
1 23, 0.5   . 
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Fig.16 

Normalized stress intensity factors, *

IK and *

IIK with varying 

material angle,  , and normalized crack length, /a W , for a 

uniformly cooled plate with double edge-cracks; 1 27, 0.5   . 
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7    CONCLUSIONS 

A two-dimensional thermoelastic fracture mechanics analysis of anisotropic bodies has been performed using the 

boundary element method (BEM). There are a few general conclusions which can be made from the results 

obtained. 

First, as the material becomes 'more anisotropic', or in other words as 
1 , and 

2  deviate further from unity, the 

value of the normalized stress intensity factor (SIF), *

IK , decreases for a given crack size. Second, for the boundary 

conditions used in this study, as the material property angle,  , is increased, *

IK  also decreases in a sinusoidal 

manner from 0  to 90  degrees. It is expected that *

IK  will continue to vary in a sinusoidal fashion from 

90   degrees to 360  degrees. Third, the normalized stress intensity factor, *

IK , in general, decreases with 

increasing relative crack length, for a given set of anisotropic material properties for the geometric cases considered. 

There is an exception however for the plate with the central-crack, where *

IK  was found, for all practical purposes, 

not to change with relative crack length. As expected, the presence of geometric discontinuities such as a hole or a 

notch was found to have a more pronounced influence on the magnitude, and the rate of change, of *

IK , particularly 

at smaller relative crack lengths. 

This study has shown that BEM is a quick and efficient numerical tool for the analysis of two-dimensional 

cracked anisotropic bodies under thermal loads. It has been found to be a much more efficient alternative to FEM for 

such problems. 
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