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 ABSTRACT 

 The present study is concerned with the variational principle and plane wave 

propagation in double porous thermoelastic infinite medium. Lord-Shulman theory [2] 

of thermoelasticity with one relaxation time has been used to investigate the problem. It 

is found that for two dimensional model, there exists four coupled longitudinal waves 

namely longitudinal wave (P), longitudinal thermal wave (T), longitudinal volume 

fractional wave corresponding to pores (PV1), and longitudinal volume fractional wave 

corresponding to fissures (PV2), in addition to, a transverse wave (S) which is not 

affected by the volume fraction fields and thermal properties. The different 

characteristics of the wave such as phase velocity and attenuation quality factor are 

computed numerically and depicted graphically. Some special cases are also deduced 

from the present investigation.  

                                             © 2017 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 HE constitutive equations for thermoelastic material, which express the relations between the stress, the strain 

and the temperature change, were first introduced by Biot[1]. With Biot’s theory, many solutions for thermal 

response caused by the change of temperature have been developed by numerous investigators. However, it involves 

a paradox that the thermal disturbances propagate at infinite speeds. In recent years increasing attention has been 

made to remove this paradox and to develop the generalized theory of thermoelasticity, which was found to give 

more realistic results than the coupled or uncoupled theories of thermoelasticity, especially when short time effects 

or step temperature gradients are considered. The theory of generalized thermoelasticity with one relaxation time 

was first introduced by Lord and Shulman [2], who obtained a wave-type heat equation by postulating a new law of 

heat conduction instead of the classical Fourier’s law. Hetnarski and Ignaczak [3] have presented a review on the 

generalized theories of thermoelasticity. A comprehensive work has been done in the generalized theories of 

thermoelasticity with one relaxation time by different investigators by considering different problems Porous media 

theories play an important role in many branches of engineering including material science, the petroleum industry, 

chemical engineering, biomechanics and other such fields of engineering. Biot [4] proposed a general theory of 

three-dimensional deformation of fluid saturated porous salts. Biot theory is based on the assumption of 

compressible constituents and till recently, some of his results have been taken as standard references and basis for 

subsequent analysis in acoustic, geophysics and other such fields. Another interesting theory is given by Bowen [5], 
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de Boer and Ehlers [6] in which all the constituents of a porous medium are assumed to be incompressible. The fluid 

saturated porous material is modeled as a two phase system composed of an incompressible solid phase and 

incompressible fluid phase, thus meeting the many problems in engineering practice, e.g. in soil mechanics. One 

important generalization of Biot’s theory of poroelasticity that has been studied extensively started with the works 

by Barenblatt et al. [7], where the double porosity model was first proposed to express the fluid flow in hydrocarbon 

reservoirs and aquifers. 

The double porosity model represents a new possibility for the study of important problems concerning the civil 

engineering. It is well-known that, under super- saturation conditions due to water of other fluid effects, the so called 

neutral pressures generate unbearable stress states on the solid matrix and on the fracture faces, with severe 

(sometimes disastrous) instability effects like landslides, rock fall or soil fluidization (typical phenomenon 

connected with propagation of seismic waves). In such a context it seems possible, acting suitably on the boundary 

pressure state, to regulate the internal pressures in order to deactivate the noxious effects related to neutral pressures; 

finally, a further but connected positive effect could be lightening of the solid matrix/fluid system. Wilson and 

Aifanits [8] presented the theory of consolidation with the double porosity. Khaled, Beskos and Aifantis [9] 

employed a finite element method to consider the numerical solutions of the differential equation of the theory of 

consolidation with double porosity developed by Aifantis[8]. Wilson and Aifantis [10] discussed the propagation of 

acoustics waves in a fluid saturated porous medium. The propagation of acoustic waves in a fluid-saturated porous 

medium containing a continuously distributed system of fractures is discussed. The porous medium is assumed to 

consist of two degrees of porosity and the resulting model thus yields three types of longitudinal waves, one 

associated with the elastic properties of the matrix material and one each for the fluids in the pore space and the 

fracture space. Beskos and Aifantis [11] presented the theory of consolidation with double porosity-II and obtained 

the analytical solutions to two boundary value problems. Khalili and Valliappan [11] studied the unified theory of 

flow and deformation in double porous media. Aifantis [13-16] introduced a multi-porous system and studied the 

mechanics of diffusion in solids. Moutsopoulos et al. [17] obtained the numerical simulation of transport phenomena 

by using the double porosity/ diffusivity continuum model.  Khalili and Selvadurai [18] presented a  fully coupled 

constitutive model for thermo-hydro –mechanical analysis in elastic media with double porosity structure. Pride and 

Berryman [19] studied the linear dynamics of double –porosity dual-permeability materials. Straughan [20] studied 

the  stability and uniqueness in double porous elastic media. Svanadze [21-25] investigated some problems on 

elastic solids, viscoelastic solids and thermoelastic solids with double porosity. Scarpetta et al. [26,27] proved the 

uniqueness theorems in the theory of thermoelasticity for solids with double porosity and also obtained the 

fundamental solutions in the theory of thermoelasticity for solids with double porosity. Kumar et al.[30-33] studied 

the plane wave propagation in different thermoelastic media.  

In the present paper, we have derived the variational principle for thermoelastic material with double porosity 

structure for Lord-Shulman model. In addition to this, we have discussed the propagation of plane waves for 

thermoelastic material with double porosity structure with one relaxation time. Effect of porosity and relaxation time 

is shown graphically. Some special cases of interest are also deduced. 

 

 

2    BASIC EQUATIONS 

Following Lord and Shulman [2]; Iesan and Quintanilla [32], the field equations and the constitutive relations for 

isotropic homogeneous thermoelastic material with double porosity structure with one relaxation time can be written 

as: 

2.1 Constitutive relations 

ij ijrs rs ij ij ijt c e B D T       (1) 

  

, ,i ij j ij jb      (2) 

 

, ,i ji j ij jx b      (3) 

 

1 3 1ij ijB e T          (4) 
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3 2 2ij ijD e T           (5) 

 

0 ,i iT q     (6) 

 

1 2ij ije aT          (7) 

2.2 Equations of motion 

,ji j i it f u    (8) 

2.3 Equilibrated stress equations of motion 

, 1j j g        (9) 

 

, 2j jx l       (10) 

2.4 Heat conduction equation 

0 ,i i ij jq q K T    (11) 

 

where   and   are Lame’s constants,   is the mass density;    3 2 t     ; t  is the linear thermal 

expansion;
* C is the specific heat at constant strain,   iu  is the displacement components;  ijt  is the stress tensor; 

1 and 2  are coefficients of equilibrated inertia;  
i is  the components of the equilibrated stress vector associated 

to pores; 
ix  is  the components of the equilibrated stress vector associated to fissures;   is the volume fraction 

field corresponding to pores and   is the volume fraction field corresponding to fissures; ijK  is the components of 

thermal conductivity, 
0 is the thermal relaxation time, 

if  is the body force per unit mass, 1 and 2 are coefficients 

of equilibrated inertia, g is the extrinsic equilibrated body force per unit mass associated to macro pores, l is the 

extrinsic equilibrated body force per unit mass associated to fissures, ( )ijrs rsij jirs ijsrc c c c    is the tensor of elastic 

constants and 1 1 2, ,  , , ,b d b     are constitutive coefficients;   ij is the Kronecker’s delta; T is the temperature change 

measured form the absolute temperature  0 0 0T T  ; a superposed dot represents differentiation with respect to 

time variable t. 

3    VARIATIONAL PRINCIPLE 

The principal of virtual work with variation of displacements for elastic deformable body with double porosity is 

   1 2

, , ,

(f u ) ( ) ( )i i i i

V A

ij i j i i i i

V

u g l dV L u M N dA

t u dV

              

    

         

    

 


 

 

 

(12) 

 

On the left hand side, we have the virtual work of body forces , ,if l g  ; inertial forces 1 2, , ;iu      surface 

forces ,M ,ji j i i i iL t n n N x n    whereas on the right hand side, we have the virtual work of internal forces.  

Here 
jn  is the outward unit normal of .V  

Using the symmetry of stress tensor and the definition of the strain tensor, the Eq. (12) can be written as: 
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   1 2

, ,

(f u ) ( ) ( )i i i i

V A

ij ij i i i i

V

u g l dV L u M N dA

t e dV

              

    

         

    

 


 

 

 

(13) 

 

Substituting the value of , andij i it x  from Eqs.(1),(2)and (3) in Eq. (13), we obtain 

 

   1 2(f u ) ( ) ( )i i i i

V A

ij ij ij ij ij ij

V V V

u g l dV L u M N dA

W E F G H B e dV D e dV T e dV

              

        

         

       

 

  
 

 

 

(14) 

 

where  

 

2 2 2 2

, , , ,

1 1 1 1 1
, , , ,

2 2 2 2 2
ijrs ij rs ij i ij i ij i ij i

V V V V V

W c e e dV E dV F b dV G b dV H dV               
 

 

 

 

We define a vector J (Biot [1]) connected with the entropy through the relation 

 

,i iJ    (15) 

 

On combining Eqs. (6), (7), (11) and (15), we obtain 

 
2

0 0 ,2
0ij i j

d d
T L J T

dt dt


 
   

 
 

 

(16) 

 

, 1 2i i ij ijJ e aT          (17) 

 

where 
ijL , the resistivity matrix, is the inverse of the thermal conductivity .ijK  

Multiplying both sides of Eq.(16) by 
iJ and integrating over the region of the body and using the divergence 

theorem with the aid of (17), we obtain 

 

1 2( ) ( ) 0i j ij ij

A V V V

T J n dA T e dV T dV T dV P Q                 (18) 

 

where  

 

2

2 2

0

0 0 02 2

, ,
2

,
2

V V

i i i i

ij j ij j

V V

a
P T dV P a T T dV

T dJ d J dJ d J
Q L J dV Q T L J dV

dt dtdt dt

 

   

 

   
      

   

 

 

 

 

 

(19) 

 

Substituting the value of  and  from (4) and (5) in relation (14), we obtain  

 

   1 2

1 2

(f u ) ( ) ( )

e (W )

i i i i

V A

ij ij

V V V

u g l dV L u M N dA

T dV T dV T dV E F G H R S U Y

            

      

       

           

 

  
 

 

(20) 
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where 

 

2 21 3 3 2, , ,
2 2

ij ij ij ij

V V V V

R B e dV S D e dV U dV Y dV
   

   
    

      
   

     
 

(21) 

 

Eliminating integrals
1 2, andij ij

V V V

T e dV T dV T dV        from Eqs.(18) and (20), we obtain the 

variational principle in the following form: 

 

1

2

(W ) (f u ) ( )

( )

i i i

V V

i i i

V A A A A

E F G H P Q R S U Y u dV g dV

l dV L u dA M dA N dA T J n dA

      

       

             

     

 

    
 

 

(22) 

 

On the right-hand side of Eq. (22), we find the all the causes, the mass forces, inertial forces, the surface forces, 

the heating potential and equilibrated stress vectors on the surface A bounding the body. 

4    PLANE WAVE PROPAGATION 

We obtain equation of motion, equilibrated stress equations of motion and heat conduction equation, by making use 

of Eqs.(1)-(7) in Eqs.(8)-(11), without body forces, extrinsic equilibrated body forces  and heat source as: 

 

 
2

2

2
,

u
u u b d T

t
      


          


 

 

(23) 

 
2

22
1 1 3 21 1 ,b b u T

t
        


      


  

 

(24) 

 

2
2

2

21 3 2 2 2 ,b d
t

u T        


     


   
 

(25) 

 

 * * 2
0 0 1 0 2 01 .T T T C T K T

t
u      

 
     

 



  

 

(26) 

 

where  *K  is the coefficient of  thermal conductivity ; a superposed dot represents differentiation with respect to 

time variable t . 

 
2 2 2

2

2 2 2
1 2 3 1 2 3

ˆ ˆ ˆ ,i j k
x x x x x x

     
       

     
 

 

 

 

are the gradient and Laplacian operators, respectively. 

For the two-dimensional problem, we take  1 3,0,u u u and define the following non-dimensional quantities as: 

 

' ' ' ' ' '1 1 1 1
1 1 3 3 1 1 3 3 0 1 0

1 1 1 1 0

2 2
' ' '1 1 1 1 1 1

1 1 1 1 1
1 1 1 1

,    ,   , , , ,

  ,   ,  , , 

T
x x x x u u u u T

c c c c T

c c
t t

   
  

   
        

   

     

   
       

   
 

 

 

 

(27) 
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where 

* 2
2 1
1 1 *

2
,

C c
c

K

 





  . Here 1  and 1c  are the constants having the dimension of frequency and velocity 

in the medium respectively.     

The displacement components 1  u and 3u   are related by potential functions 1  and 1   as: 

 

1 1 1 1
1 3

1 3 3 1

,             u u
x x x x

      
   
   

 
 

(28) 

 

For plane harmonic wave, we assume the wave solution as: 

 

     1 1 1 1 1 1 3 3, , , , , , , , exp ( )T T i l x l x t               (29) 

 

where   is the angular frequency and   is the complex wave number.
1 1, , , andT     are undetermined 

amplitude vectors that are independent of time t and coordinates 2 2

1 3 1 3, ; 1x x l l  . Making use of  (29) in (23)-(26) 

with the aid of (27) and (28), we obtain a linear system of four homogeneous equations in four unknowns 

1, , andT   .For non-trivial solution, the determinant of the coefficients 1, , ,
tr

T      vanishes, yields to the 

characteristic polynomial equation in c as: 

 
8 6 4 2

1 2 3 4 5 0B c B c B c B c B      (30) 

 

The cofficients 
1 2 3 4, , ,B B B B  and 

5B are given in the Appendix B.  

 

 2 2

19 1 0a     (31) 

 

 Eq.(31) is uncoupled equation in terms of 
1 . The complex coefficients in (30) imply that four roots of the 

equation may be complex. The complex phase velocities of the longitudinal waves, given by , 1,2,3,4,ic i  will be 

varying with the direction of phase propagation. The complex velocity of the longitudinal waves, i.e. 
R Ic c ic  , 

defines the phase propagation velocity 

2 2

,R I

i

R

c c
V

c


 and attenuation quality factor 

 
 

2

1

2

Img 1

Re 1

i

i

i

c
Q

c

  for the 

corresponding waves. Therefore the four waves in such a medium are attenuating. Corresponding to these roots, 

there exist four waves in descending order of their velocities, namely longitudinal wave (P), longitudinal thermal 

wave (T), longitudinal volume fractional wave (PV1) corresponding to pores and longitudinal volume fractional 

wave  corresponding to fissures (PV2). 

5    PARTICULAR CASES 

Case (i) If 1 3 2 2 0b d          in Eqs.(23)-(26), we obtain the corresponding expressions for 

thermoelastic medium with single porosity.  

Case (i) If 0 0  , in Eqs. (23)-(26), yield the corresponding expressions for thermoelastic medium with double 

porosity  in context of  coupled theory of thermoelasticity. 

6    NUMERICAL RESULTS AND DISCUSSION 

The material chosen for the purpose of numerical computation is copper, whose physical data is given by Sherief 

and Saleh [33] as, 
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10 2 * 3 2 2 1 10 2 * 3 1 1

11 1 3 5 1 3 3
1 0

7.76  10 , C 3.831 10 , 3.86  10 , K 3.86 10 ,

ω 1 10 s ,  0.293  10 , 1.78 10  , 0.1 , 8.954 10t

Nm m s K Nm Ns K

T K K t s Kgm

 

 

     

   

       

        
 

 

 

Following Khalili [34], the double porous parameters are taken as, 

 
10 2 10 2 5 5

2 3

5 2 5 10 2
1 1

5 2 12 2 2 10 2
2 1

10 2 12 2 2
01 2

2.4  10 , 2.5  10 , 1.1 10 , 1.3 10  

0.16 10 , 0.12 10   , 0.1 10

0.219 10 , 0.1456 10 , 0.9 10  

2.3 10   ,   0.1546 ,10

Nm Nm N N

Nm b N d Nm

Nm Nm s b Nm

Nm Nm s

   



 

  

   

  

   

  

       

     

     

     0.1s

 

 

 

The software MATLAB has been used to find the values of phase velocity and attenuation quality factor. The 

variations of these values with respect to angular frequency   have been shown in Figs. (1)-(8) respectively. In all 

these figures, solid line and small dashes line without central symbols correspond to thermal double porous material 

(DP) for LS and CT theory respectively while  solid line and small dashes line with central symbols correspond to 

thermal single porous material (SP) for LS and CT theory respectively.
   

Fig. 1 shows that  values of  phase velocity converges to boundary surface for all  the values of angular 

frequency  for DP in case of LS theory while in case of CT theory it increase slightly with the increase in angular 

frequency  . For SP, it is found that, the values of phase velocity increases monotonically with the increase in 

angular frequency  for both LS and CT theories of thermoelasticity. It is noticed that magnitude values are more 

for CT in comparison to LS theory for DP while a reverses behavior is noticed in case of SP. 

From Fig. 2, it is clear that values of phase velocity increase monotonically with the increase in the value of 

angular frequency   for both DP and SP model. It is noticed that the values of phase velocity are very close for the 

range 0 1.1   for both models while for the remaining range the values of phase velocity are higher for LS as 

compared to CT theory of thermoelasticity in case of DP and it shows an opposite trend of variation, for SP. 

Fig. 3 depicts that there is a similar trend of variation for both the models. It is found that the values of phase 

velocity decreases for 0 2   and becomes almost stationary for 2  . The difference in the magnitude values 

of phase velocity is very small for both the models. 

Fig. 4 indicates that the trend and behavior of variation are similar for both LS and CT theories of 

thermoelasticity  incase of DP, but the magnitude values are more in case of LS as compared to CT theory. 

From Fig. 5, it is found that for DP, the values of attenuation quality factor decrease with the increase in angular 

frequency  while for SP, it is found that, the values increase slowly as angular frequency  increase. The 

magnitude values are more for CT in comparison to LS theory for SP, while the difference in magnitude values are 

small for 0 6.8   and further the difference in magnitude values  increases for 6.8   in case of DP. 
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Fig.1 

Variation of phase velocity w.r.t. angular frequency (P-wave). 
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Fig.2 

Variation of phase velocity w.r.t.  angular frequency (T-wave). 
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Fig.3 
Variation of phase velocity w.r.t. angular frequency (PV1-

wave). 
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Fig.4 
Variation of phase velocity w.r.t. angular frequency (PV2-

wave). 
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Fig.5 
Variation of attenuation quality factor w.r.t. angular frequency 

(P-wave). 

 

 

Fig. 6 depicts that for LS theory, the value of attenuation quality factor increases sharply for 0 1.0  , 

decreases sharply  for 1.0 1.7  , then increases with small magnitude value for 1.7 2.2  and converges to 

boundary surface for 2.2  , while for CT theory, similar trend of variation is noticed but the magnitude values 
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are smaller for CT in comparison to LS theory . For SP, the value of attenuation quality factor decreases for 

0 1.1   and then converges to boundary surface for 1.1  for both the theories. 

Fig.7 indicates that for DP, the value of attenuation quality factor decreases sharply for 0 0.5  , increases 

sharply for 0.5 1.7  and then converges to boundary surface for the remaining range. For SP, the trend of 

variation is similar for both the theories and also the magnitude values are almost same for both the theories of 

thermoelasticity.  

From Fig.8, it is clear that the values of attenuation quality factor decrease for 0 1.0   and then again 

increase as the value of angular frequency increases in case of DP for both the theories of thermoelasticity. 

 

 

0 2 4 6 8 10

Angular frequency ()

-100

0

100

200

300

400

A
tte

nu
at

io
n 

qu
al

ity
 fa

ct
or

(Q
2-1

)

DP(LS)

DP(CT)

SP(LS)

SP(CT)

 

 

 

 

 

 

 

 

 

 

 

Fig.6 

Variation of attenuation quality factor w.r.t. angular frequency 

(T-wave). 
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Fig.7 

Variation of attenuation quality factor w.r.t angular frequency 

(PV1-wave). 
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Fig.8 
Variation of attenuation quality factor w.r.t. angular frequency 

(PV2-wave). 

 

6    CONCLUSIONS 

In this paper, we have derived the Variational principle and studied the plane wave propagation for thermoelastic 

medium with double porosity under Lord-Shulman theory. The results concluded from the above analysis can be 

summarized as: 
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i) Variational principle is formulated for thermoelastic material with double porosity for Lord-Shulman 

theory. The established results of the paper will be useful for numerical computation based on variational 

principle and provide theoretical basis for modern numerical techniques such as finite element and 

boundary element methods. 

ii) It is found that there exist a set of four coupled longitudinal waves in thermoelastic medium with double 

porosity with one relaxation time. The phase velocities and attenuation quality factors of these plane waves 

are computed and presented graphically with respect to angular frequency. Appreciable effects of porosity 

and thermal relaxation time is observed on each set of the longitudinal waves. 

iii) There also exists one transverse wave, which is not effected by volume fraction fields and thermal 

properties of the body, gets decoupled from the rest of motion. 

The problem though theoretical, but it can provide useful information for experimental researchers working in 

the field of geophysics, earthquake engineering, along with seismologist working in the field of mining tremors and 

drilling into the crust of the earth. 
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