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 ABSTRACT 

 In the present investigation the disturbances in a homogeneous transversely 

isotropic magneto-Visco thermoelastic rotating medium with two 

temperature due to thermomechanical sources has been addressed. The 

thermoelasticity theories developed by Green-Naghdi (Type II and Type III) 

both with and without energy dissipation has been applied to the 

thermomechanical sources. The Laplace and Fourier transform techniques 

have been applied to solve the present problem. As an application, the 

bounding surface is subjected to concentrated and distributed sources 

(mechanical and thermal sources). The analytical expressions of 

displacement, stress components, temperature change and induced magnetic 

field are obtained in the transformed domain. Numerical inversion techniques 

have been applied to obtain the results in the physical domain. Numerical 

simulated results are depicted graphically to show the effect of viscosity on 

the resulting quantities. Some special cases of interest are also deduced from 

the present investigation.                          

                                                 ©2018 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 URING the past few decades, widespread attention has been given to thermoelasticity theories that admit a 

finite speed for the propagation of thermal signals. In contrast to the conventional theories based on parabolic-

type heat equation, these theories are referred to as generalized theories. Because of the experimental evidence in 

support of the finiteness of the speed of propagation of a heat wave, generalized thermoelasticity theories are more 

realistic than conventional thermoelasticity theories in dealing with practical problems involving very short time 

intervals and high heat fluxes such as those occurring in laser units, energy channels, nuclear reactors, etc. The 

phenomenon of coupling between the thermomechanical behavior of materials and magnetic behavior of materials 

has been studied since the 19
th

 century. Chen and Gurtin [7], Chen et al. [8] and Chen et al. [9] have formulated a 

theory of heat conduction in deformable bodies which depends upon two distinct temperatures, the conductive 

temperature   and the thermo dynamical temperature T. In case of time independent situations, the difference 

between these two temperatures is proportional to the heat supply, and in absence of heat supply, the two 
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temperatures are identical. For time dependent problems, the two temperatures are different, regardless of the 

presence of heat supply. The two temperatures T,    and   the strain are found to have representations in the form of 

a travelling wave plus a response, which occurs instantaneously throughout the body (Boley and Tolins [4]).The 

wave propagation in two temperature theory of thermoelasticity was investigated by Warren and Chen [46]. Arani, 

Salari, Khademizadeh and Arefmanesh [1] have discussed magneto thermoelastic transient response of a 

functionally graded thick hollow sphere subjected to magnetic and thermoelastic fields. Khademizadeh, Arani and 

Salari [25] have studied stress analysis of magneto thermoelastic and induction magnetic field in FGM hallow 

sphere. Singh and Bala [43] have discussed propagation of waves in a two- temperature rotating thermoelastic solid 

half- space without energy dissipation. Green and Naghdi [16] postulated a new concept in thermoelasticity theories 

and proposed three models which are subsequently referred to as GN-I, II, and III models. The linearized version of 

model-I corresponds to classical thermoelastic model (based on Fourier's law). The linearized version of model-II 

and III permit propagation of thermal waves at finite speed. Green-Naghdi's second model (GN-II), in particular 

exhibits a feature that is not present in other established thermoelastic models as it does not sustain dissipation of 

thermal energy [17]. In this model the constitutive equations are derived by starting with the reduced energy 

equation and by including the thermal displacement gradient among other constitutive variables. Green-Naghdi's 

third model (GN-III) admits dissipation of energy. In this model the constitutive equations are derived by starting 

with the reduced energy equation where the thermal displacement gradient in addition to the temperature gradient is 

among the constitutive variables. Green and Naghdi [18] included the derivation of a complete set of governing 

equations of a linearized version of the theory for homogeneous and isotropic materials in terms of the displacement 

and temperature fields and a proof of the uniqueness of the solution for the corresponding initial boundary value 

problem. 

A comprehensive work has been done in thermoelasticity theory with and without energy dissipation and 

thermoelasticity with two temperatures. Youssef [49] constructed a new theory of generalized thermoelasticity by 

taking into account two-temperature generalized thermoelasticity theory for a homogeneous and isotropic body 

without energy dissipation. Quintanilla [37] investigated thermoelasticity without energy dissipation of materials 

with microstructure. Kumar and Devi [27] discussed magneto thermoelastic with and without energy dissipation 

Half-Space in contact with Vacuum. Several researchers studied various problems involving two temperature e.g. 

(Kumar, Sharma and Garg [31]; Kaushal et al [23]; Kaushal Sharma and Kumar [24]; Kumar and Mukhopdhyay 

[29]; Ezzat and Awad [13]; Ezzat [14]; Sharma and Marin [41]; Sharma and Bhargav [41]; Sharma, Sharma and 

Bhargav [42]). Different authors have discussed different types of problems in viscoelasticity. Freudenthal [15] 

pointed out that most solids when subjected to dynamic loading exhibit viscous effects. The Kelvin -Voigt model 

[45] is one of the macroscopic mechanical models often used to describe the viscoelastic behavior of a material. This 

model represents the delayed elastic response subjected to stress where the deformation is time dependent. Iesan and 

Scalia [21] studied some theorems in the theory of thermo-viscoelasticity. Borrelli and Patria [5] investigated the 

discontinuity of waves through a linear thermoviscoelastic solid of integral type. Corr et al. [10] investigated the 

nonlinear generalized Maxwell fluid model for viscoelastic materials. Pal [35] studied the problem of torsional body 

forces in viscoelastic half-space. Effect of viscosity on wave propagation in anisotropic thermoelastic medium with 

three-phase-lag model was discussed by Kumar, Chawla and Abbas [26]. Effect of rotation, magnetic field and a 

periodic loading on radial vibrations thermo-viscoelastic non-homogeneous media was investigated by Basyouni, 

Mahmoud
 
and Alzahrani [3]. Hilton [19] analyzed coupled longitudinal 1–d thermal and viscoelastic waves in media 

with temperature dependent material properties. Yadav, Kalkal and Deswal [47] investigated a state space problem 

of Two-Temperature generalized thermo-viscoelasticity with fractional order strain subjected to moving heat source. 

Sharma, Kumar and Lata [39] have studied the problem of disturbance due to inclined load in transversely isotropic 

thermoelastic medium with two temperatures and without energy dissipation. 

In view of the fact that most of the large bodies like the earth, the moon and other planets have an angular 

velocity, as well as earth itself behaves like a huge magnet. It is important to study the propagation of thermoelastic 

waves in a rotating medium under the influence of magnetic field. So, the attempts are being made to study the 

propagation of finite thermoelastic waves in an infinite elastic medium rotating with angular velocity. Several 

authors (Das and Kanoria [11]; Kumar and Kansal [28]; Kumar and Rupender [30]; Atwa and Jahangir [2]; 

Mahmoud [33]; Sarkar and Lahiri [38]; Othman [34]; Lofty and Hassan [32]) have studied two-dimensional problem 

of generalized thermoelasticity to study the effect of rotation. In spite of all these investigations, no attempt has been 

made yet to study the response of thermomechanical sources in transversely magneto-Visco thermoelastic solid with 

two temperature and magnetic effect and in contact with vacuum in the context of Green Naghdi theories of type-II 

and type-III. The components of normal displacement, normal stress, tangential stress and conductive temperature 

subjected to concentrated normal force, uniformly distributed force and linearly distributed source are obtained by 
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using Laplace and Fourier transforms. Numerical computation has been performed by using a numerical inversion 

technique and the resulting quantities are shown graphically. Some particular cases are also discussed.   

2    BASIC EQUATIONS 

Following Ezzat [14], the simplified Maxwell's linear equation of electrodynamics for a slowly moving and 

perfectly conducting elastic solid are 
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Maxwell stress components are given by  

 

0 ( )ij i j j i k k ijT H h H h H h     (5) 

 

where  
0

H the external applied magnetic field intensity vector,  h  the induced magnetic field vector,  E  the 

induced electric field vector, j the current density vector,  u is the displacement vector, the magnetic and electric 

permeabilities respectively, 0  and 0  are magnetic and electric permeability respectively , ijT  the component of 

Maxwell stress tensor and ij   the Kronecker delta. 

The constitutive relations for a transversely isotropic thermoelastic medium are given by 

 

ij ijkl kl ijt C e T   (6) 

 

Equation of motion for a transversely isotropic thermoelastic medium rotating uniformly with an angular 

velocity n , where n is a unit vector representing the direction of axis of rotation and taking into account 

Lorentz force 

 

, { ( ( )) (2 ) }ij j i i i it F u u u          (7) 

 

The heat conduction equation, following Chandrasekharaiah [6] and Youssef [48] is 

  
*

, , 0ij ij ij ij ij ij EK K T e C T       (8) 

 

The strain displacement relations are 

 

, ,

1
( ) , 1,2,3

2
ij i j j ie u u i j    

 

(9) 

 

where  0 0( )i iF  j H  are the components of Lorentz force. ij ijkl ijC   and  ,ij ijT a    
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* *, ,ij i ij ij i ij ij i ijK K K K       , i  is not summed ( )ijkl ijkl klij jikl ijlkC C C C C   are elastic parameters, ij  

is the thermal elastic coupling tensor, T is the temperature, 
0T  is the reference temperature, 

ijt  are the components 

of stress tensor, 
kle   are the components of strain tensor, 

iu  are the displacement components,    is the density, 

EC is the specific heat, 
ijK  is the materialistic constant, *

ijK  is the thermal conductivity, 
ija are the two temperature 

parameters, 
ij  is the coefficient of linear thermal expansion,   is the angular velocity of the solid. 

3    FORMULATION AND SOLUTION OF THE PROBLEM 

We consider a homogeneous perfectly conducting transversely isotropic magneto-Visco thermoelastic medium in 

contact with vacuum permeated by an initial magnetic field  
0

H acting along y-axis. The rectangular Cartesian co-

ordinate system  ( , , )x y z   having origin on the surface (z=0) with z-axis pointing vertically downwards into the 

medium is introduced. The surface of the half-space is subjected to thermomechanical load.  

         
               H = (0, H0, 0)                            0 

 x   

 

 y                                          
                                  

                              E1(x, 0, t) = E1
0 (x, 0, t),      h(x, 0, t)= h0 (x, 0, t) 

                               

 

 

 z 

Co-ordinate system and geometry of the problem 

 

Following Kumar [31], we also assume that 

 

(0, ,0)   (10a) 

 

From the generalized Ohm's law 
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The current density components 1j  and 3j are given as: 
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In the vacuum, contacting the transversely isotropic thermoelastic half-space, the system of equations of 

electrodynamics is 
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0 0div h  (13) 

 

where 0 0,h E  are the induced magnetic and electric field vectors respectively in vacuum and 0 0,   are magnetic 

and electric permeability respectively. The above equations reduce to 
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where c is velocity of light given by

0 0

1
c

 
 , and 2  is the Laplacian operator. In this case, Maxwell stress 

becomes  

 
0 0 0 0
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0

ijT  are the components of Maxwell stress in vacuum. Following Slaughter [44], using appropriate 

transformations, on the set of Eqs. (6)- (7), we derive the basic equations for transversely isotropic thermoelastic 

solid. The components of displacement vector u, v, w and conductive temperature   for the two dimensional 

problem have the form 
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Eqs. (7) and (8) with the aid of (16) ,yield 
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Assuming that the viscoelastic nature of the material is described by the Voight [45] model of linear 

viscoelasticity (Kaliski [22]), we replace the elastic constants  11 12, 13 33 44,  , ,  C C C C C   by 11 12 13 33 44, , , ,   C C C C C . 

Following Kumar [31], 11 Q
t

 
 

  
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  where   

11 12, 13 33 44,  , ,  C C C C C   (25) 

 

We assume that medium is initially at rest. The undisturbed state is maintained at reference temperature. Then 

we have the initial and regularity conditions are given by 
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To facilitate the solution, following dimensionless quantities are introduced: 
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Making use of (26) in Eqs. (17)- (20), with the aid of Eq. (25) after suppressing the primes, yield  
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Apply Laplace and Fourier transforms defined by 

 

   
0

, , , , stf x z s f x z t e dt


   

 

(31) 

    1, , , ,ˆ i xf z s f x z s e dx




   
 

(32) 



                                                            Transversely Isotropic Magneto-Visco Thermoelastic Medium ….                 422 

© 2018 IAU, Arak Branch 

On Eqs. (27) - (30), we obtain a system of homogeneous equations in terms of , ,u w  and 0h which yield a 

non-trivial solution if determinant of coefficient      ,  ,  ,   Tu w h vanishes and we obtain the following characteristic 

equation 
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The roots of the Eq. (31) and (32) are λ , ( 2, )1, 3i i  , the solution of the Eqs. (33) and (34)  satisfying the 

radiation condition that , ,u w  and 0 0h as z  , can be written as: 
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where 
id  and 

il are coupling constants and given by 
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4    BOUNDARY CONDITIONS 

On the half-space surface ( 0)z   normal point force and thermal point source are applied. The appropriate 

boundary conditions are 
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   0
33 33 33 1 1ψt T T F x t     (39) 

 

31 0t   (40) 

 

2 1( ) ( ) 0F x t at z
z


 


 


 

 

(41) 

 

where 1F  is the magnitude of the force applied,  2F  is the constant temperature applied on the boundary, 1( )x  

specifies the source distribution function along  x axis. 

The transverse components of the magnetic field intensity are continuous across the surface of the half- space  

 
0( ,0, ) ( ,0, )h x t h x t  (42) 

 

The transverse components of the electric field intensity are continuous across the surface of the half-space. 

 
0

1 1( ,0, ) ( ,0, )E x t E x t  (43) 

 

Since the relative permeabilities are very nearly unity, it follows from Eqs. (5), (15) and (40) that 

 
0

33 33T T  (44) 

 

and the condition (37) reduces to  

 

33 1 1( ) ( )t F x t   (45) 

 

Applying the Laplace and Fourier transform defined by (31)-(32) on the boundary conditions (39)-(43) and with 

the help of Eqs. (5), (23)-(25), (26), (35)-(38), we obtain the components of displacement, normal stress, tangential 

stress, conductive temperature and induced magnetic field (in vacuum) as: 
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(51) 

 

where   
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where , iid l  are coupling constants and 
i  are the roots of the Eqs. (31) and (32). 

4.1 Mechanical force on the surface of half-space 

Taking 2( 0)F   in Eqs. (46)- (51), we obtain the components of displacement , normal stress, tangential stress , 

conductive temperature and induced magnetic field (in vacuum) due to mechanical force. 

4.2 Thermal source on the surface of half-space 

Taking 1( 0)F   in Eqs. (46)- (51), we obtain the components of displacement, normal stress, tangential stress, 

conductive temperature and induced magnetic field (in vacuum) due to thermal source. 

4.3 Green’s function 

Following Kumar [31], to synthesize the Green’s function, i.e. the solution due to concentrated normal force and 

thermal point source on the half-space is obtained by setting 

 

   1ψ x x  (52) 

 

In Eqs. (39) and (41), applying the Laplace and Fourier transforms defined by (31)-(32) on the Eq. (52) gives 

 

 1
ˆ ξ 1   (53) 

 

Using (53) in (46)-(51), we obtain the components of displacement, stress and conductive temperature and 

induced magnetic effect.  

4.4 Influence function 

The method to obtain the half-space influence function, i.e. the solution due to distributed force/source applied on 

the half space is obtained by setting 

 

 1

1     
ψ

0   

if x m
x

if x m

 
 


 

 

(54) 

 

In Eqs. (39) and (41), the Laplace and Fourier transforms of  1( )x  with respect to the pair ( , )x    for the case 

of a uniform strip load of non-dimensional width 2m applied at origin of co-ordinate system 0x z    in the 

dimensionless form after suppressing the primes becomes 
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1

in
ξˆ

2s m



 

  
 

  ,   0   
 

(55) 

 

The expressions for displacement, stresses and conductive temperature can be obtained for uniformly distributed 

normal force and thermal source by replacing  1 x  from (53) respectively in Eqs. (46)-(51). 

5    PARTICULAR CASES 

i. If * *
1 3  0k k  , 0  and  1 2 3 4 5 0Q Q Q Q Q      in Eqs. (46)- (51), we obtain the resulting 

expressions for transversely isotropic thermoelastic solid without energy dissipation and with two 

temperature.  

ii. If 1 3 0k k  , 1 2 3 4 5 0Q Q Q Q Q      in Eqs. (46)- (51), we obtain the resulting expressions for 

transversely isotropic thermoelastic solid with and without energy dissipation and with two temperature 

without rotation.    

iii. If 1 3 0a a  , 1 2 3 4 5 0Q Q Q Q Q      in Eqs. (46)- (51), we obtain the corresponding expressions for 

displacements, and stresses and conductive temperature for transversely isotropic thermoelastic solid with 

rotation and with and without energy dissipation.  

iv. If we take 11 33λ 2c c   ,   * * *
44 1 3 1 3 1 3 1 3, , , ,c k k k k k k                in Eqs. (46)-

(51) , we obtain the corresponding expressions for displacements, and stresses and conductive temperature 

for  isotropic Visco thermoelastic solid with combined effects of rotation, two temperature and with and 

without energy dissipation.  

6    INVERSION OF THE TRANSFORMATION 

To obtain the solution of the problem in physical domain, we must invert the transforms in Eqs. (46)- (51). Here the 

displacement components, normal and tangential stresses and conductive temperature are functions of z, the 

parameters of Laplace and Fourier transforms s and   respectively and hence are of the form ( , , )f z s . To obtain 

the function ( , , )f x z t  in the physical domain, we first invert the Fourier transform using 

 

   1ξ
o

1 1
( , , ) ( , , ) cos ξ ξ f ξ

2 2
ˆi x

ef x z s e f z s d x f isin x d 
 

 



 

         

 

(56) 

 

where  ef  and of  are respectively the odd and even parts of  ( , , )ˆf z s  Thus the expression (56) gives the Laplace 

transform ( , , )f x z s  of the function ( , , )f x z t . Following Honig and Hirdes [20], the Laplace transform function 

( , , )f x z s can be inverted to ( , , )f x z t . The last step is to calculate the integral in Eq. (56). The method for 

evaluating this integral is described in Press et al. [36]. It involves the use of Romberg’s integration with adaptive 

step size. This also uses the results from successive refinements of the extended trapezoidal rule followed by 

extrapolation of the results to the limit when the step size tends to zero. 

7    NUMERICAL RESULTS AND DISCUSSION 

Following Dhaliwal and Singh [12], cobalt material has been taken for thermoelastic material as: 
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In case of non-zero value with non-dimensional parameter 1L  . Using the above values, the graphical 

representations of normal displacement, induced magnetic effect, normal stress and conductive temperature for 

transversely isotropic magneto thermoelastic have been investigated for normal force/ thermal source and uniformly 

distributed force/source. Effect of viscosity on the various quantities with distance x has been shown.  

For a particular model of heat conducting transversely isotropic magneto – Visco thermoelastic solid half space, 

we take the values 1 2 3 4 50.5, 0.75, 1.0, 1.5, 2.0Q Q Q Q Q      and for without viscous effect, we take 

 0 1,2,3,4,5 .iQ i    

Solid line represents the transversely isotropic magneto thermoelastic with viscosity (VS). 

Solid line with centre symbol circle represents transversely isotropic magneto thermoelastic without viscosity (W 

VS). 

8    MECHANICAL FORCES ON THE SURFACE OF HALF-SPACE 

8.1 Concentrated force 

Fig.1 shows the variation of normal displacement  with distance x. We notice that the values of  3u  (VS) increase 

smoothly for the whole range whereas 3u  (WVS) first faces an increase for the range 0 2x   followed by a 

decrease for 2 4x   and increases monotonically for the rest.  Fig.2 exhibits the variations of normal stress 33t  

with distance x. We notice that the values of  33t  (VS) decrease monotonically for the whole range whereas the 

trends are oscillatory with descending amplitudes corresponding to WVS. Variations of conductive temperature   

with distance x are examined in the Fig.3 We find that variations of   (VS) increase monotonically for the whole 

range whereas corresponding to WVS, first we find a decrease for the range 0 3x   and then the variations 

increase smoothly for the range 3 7x  followed by oscillatory trends. Fig.4 exhibits the variations of induced 

magnetic effect h with distance x. Here, we notice that the trends of variations corresponding to VS are decreasing 

for the whole range whereas corresponding to W VS the trends are also decreasing for the range  4 10x   and are 

oscillatory for the range 0 4.x   
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Fig.1 

Variation of normal displacement w with distance x 

(concentrated normal force). 
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Fig.2 

Variation of normal stress 33t  with distance x        

(concentrated normal force). 
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Fig.3 

Variation of conductive temperature   with distance x 

(concentrated normal force). 
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Fig.4 

Variation of induced magnetic effect h with distance x 

(concentrated normal force). 

8.2 Uniformly distributed force 

Fig.5 exhibits normal displacement 3u  with distance x. Here, we notice that corresponding to WVS, the variations 

decrease sharply for the range the 0 4x   and increase slowly with vibrations for the rest. Corresponding to VS, 

the trends are oscillatory with varying amplitudes for the whole range. Fig.6 displays the variations of normal stress 
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33t  with distance x. It is seen that with viscosity, trends are oscillatory with small sharp amplitudes whereas without   

viscosity the variations of  33t  increase sharply for the range 0 4x    and follow oscillatory trends afterwards.  

Fig. 7 shows the variations in conductive temperature   with distance x. Here, we find that the trends are 

oscillatory corresponding to both the cases with different amplitudes. Fig.8 gives variations of induced magnetic 

effect h with distance x. Due to viscosity, the trends of variations are oscillatory near the boundary surface whereas 

without viscosity, initially, there is a sharp increase for the range 0 4x   and the trends are oscillatory for the 

rest. 
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Fig.5 

Variation of normal displacement w with distance x 

(uniformly distributed force). 
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Fig.6 

Variation of normal stress 33t   with distance x (uniformly 

distributed force). 
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Fig.7 

Variation of conductive temperature   with distance x 

(uniformly distributed force). 
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Fig.8 

Variation of induced magnetic effect h with distance x 

(uniformly distributed force). 

8.3 Thermoelastic interaction due to thermal sources 

8.3.1 Thermal point source 

Fig. 9 exhibits the behaviour of normal displacement 3u  with distance x. Here we find that the variations 

corresponding to VS increase for the range 0 5x   and decrease for the rest whereas corresponding to WVS, the 

variations follow oscillatory pattern with descending amplitudes. Fig. 10 displays the variations for normal stress 

33t .Here we notice that corresponding to VS, the trends are increasing with oscillations in between. Corresponding 

to WVS, the trends are oscillatory. Fig. 11 displays the variations of conductive temperature   with distance x.  

Here, we find that, corresponding to VS, there is a small increase for the range 0 5x   which is followed by a 

sharp decrease for the rest. Corresponding to WVS, the trends are oscillatory with decreasing amplitudes. Fig.12 

shows the variations of induced magnetic effect with distance x. Here, we notice that corresponding to VS, the 

variations are decreasing whereas corresponding to WVS the trends are oscillatory. 
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Fig.9 

Variation of normal displacement w with distance x 

(thermal point source). 
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Fig.10 

Variation of normal stress 33t  with distance x (thermal 

point source). 
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Fig.11 

Variation of conductive temperature   with distance x 

(thermal point source). 
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Fig.12 

Variation of induced magnetic effect h with distance x 

(thermal point source). 

8.3.2 Uniformly distributed thermal source 

Fig.13 exhibits the trends of normal displacement 3u   with distance x. Here we notice that corresponding to VS, the 

variations are near the boundary surface and are in form of vibrations whereas corresponding to WVS the trends are 
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oscillatory. Fig.14 displays the variations of normal stress 33t .We find that the trends are in form of vibrations 

which corresponding to VS, increase for the range 0 6x   and decrease for the rest  whereas corresponding to 

WVS ,the trends are opposite. Fig.15 shows the variations of conductive temperature   with distance x. Here the 

variations are opposite as discussed in Fig.14. Fig.16 shows variations of induced magnetic effect h with distance x. 

Here, corresponding to both the cases, the variations are similar with change of amplitude and are in form of 

vibrations. 
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Fig.13 

Variation of normal displacement w with distance x 

(uniformly distributed thermal source). 
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Fig.14 

Variation of normal stress 33t  with distance x (uniformly 

distributed thermal source). 
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Fig.15 

Variation of conductive temperature    with distance x 

(uniformly distributed thermal source). 
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Fig.16 

Variation of induced magnetic effect h with distance x 

(uniformly distributed thermal source). 

9    CONCLUSIONS 

It is observed from the graphs that viscosity has a sound impact on the deformation of transversely isotropic 

magneto-Visco thermoelastic solid. With viscosity, the trends of variations are either increasing or decreasing and 

somewhere in the form of vibrations whereas without viscosity the trends are oscillatory. From the figures, it is 

observed that the viscosity decreases the values of normal displacement, normal stress 33t , conductive temperature 

  and induced magnetic effect h due to CNF (Concentrated Normal Force) near the application of the source. For 

UDF (Uniformly Distributed Force), viscosity decreases the value of normal displacement,   and increases the 

value of normal stress 33t , magnetic effect h. Due to thermal source, viscosity increases the value of normal 

displacement w whereas it decreases the value of normal stress 33t ,  and h. For UDTS (Uniformly Distributed 

Thermal Source), viscosity increases the value of normal displacement 3u  and   whereas it decreases the value of 

normal stress 33t , h near the application of source. The results provide a motivation to investigate conducting 

thermoelastic materials as a new class of applicable thermoelastic solids. The results presented in this paper will be 

useful for researchers in material science, physicists as well as for those are working on the development of 

magneto- Visco thermoelasticity and in particular situations as in geophysics, optics, acoustics, geomagnetic and oil 

prospecting etc. The used methods in the present article are applicable to a wide range of problems in 

thermodynamics and Visco thermoelasticity.  
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