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 ABSTRACT 

 This study presents critical buckling of functionally graded soft ferromagnetic porous 

(FGFP) rectangular plates, under magnetic field with simply supported boundary 

condition. Equilibrium and stability equations of a porous rectangular plate in transverse 

magnetic field are derived. The geometrical nonlinearities are considered in the Love-

Kirchhoff hypothesis sense. The formulations are compared to those of homogeneous 

isotropic plates were given in the literature. In this paper the effect of pore pressure on 

critical magnetic field of plate and the effect of important parameters of poroelastic 

material on buckling capacity are investigated. Also the compressibility of fluid and 

porosity on the buckling strength are studied. 

 © 2015 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 ECHNOLOGY development in field of making materials with functional properties for engineering usages 

including aerospace and medical industries etc., has led lots of researchers to study the behavior of these 

materials with engineering structure like beam, plate and shell. The researchers have conducted vast studies in order 

to investigate the behavior of these materials under mechanical forces and thermal field but rarely any researches 

have been done about the effect of magnetic field on behavior of these materials. Moon and Pao [1] studied the 

behavior of homogeneous rectangular ferromagnetic plates under the magnetic field. They found that when the 

intensity of magnetic field is increased up to a certain degree, the plate becomes instable and buckles. After that, 

other researches tried to formulate this behavior of the plates for example, Zhou and Zheng [2], expressed the energy 

of rectangular magnetic plate with a variation formulation. They compared their own results with the laboratory 

results which were obtained by Moon and Pao. By using this variation formula, they obtained the governing 

equations and behavior of the plate under magnetic field.  

Wentao et al. [3], studied the stability of a thin homogeneous rectangular plate with simple supports under a 

magnetic field. They obtained the critical forces using variation method which was produced by the magnetic field. 

Their results were reasonably close to the results obtained by Moon and Pao. Using Zhou and Zheng’s theory, Zhao 

et al. [4] studied the bending of homogeneous rectangular plate under magnetic field. By changing the angle of the 

magnetic field, deformation of the plate was shown. It was also demonstrated that the plate had the highest stability 

under transverse magnetic field by using FEM (Finite Element Method). Zang et al. [5], examined a rectangular 

plate made of the materials with ferromagnetic properties. They studied the bending and buckling of the plate with 
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the simple support using Zhou and Zheng theory. By using a numerical method, they obtained the critical field for a 

rectangular plate and they compared it with the laboratory results of Moon and Pao. In their article, they showed the 

effect of applied magnetics field’s angle on the plate. Zhao et al. [6], studied the buckling and post-buckling of a 

rectangular plate made of ferromagnetic materials. They examined the plate’s behavior under magnetic field by 

using the classical theory. Studying the pre-buckling and post buckling of the plate, they concluded that by applying 

the transverse magnetic field, the plate buckles and becomes unstable without bending. Zheng and Wang [7] studied 

the behavior of a plate with ferromagnetic and non-linear magnetic properties; they compared the obtained results 

with the results from the linear ferromagnetic properties. Wang et al. [8], presented a variational model for 

expressing the behavior of rectangular plates under thermal and magnetic fields. They studied the thermal and 

magnetic instability of the rectangular plate with a simple support. The magnetic properties of the plate were 

assumed to be fixed in their study. They managed to obtain the stability limits of the plate under the magnetic and 

thermal fields by formulating the stability equations of the rectangular plate and solving the equations. Wang et al. 

[9], investigated stability of the rectangular plate with simple supports under the transverse magnetic field, applying 

Zhou and Zheng’s energy method. Furthermore, they presented the effects of heat on the magnetic force and field. 

Considering Van Carmen’s theory, they demonstrated the mechanical behavior of the plate and their results were 

also evaluated by using FEM. Magnetic properties of the plate have been considered as a function of temperature in 

their article. Zhou et al. [10], examined a rectangular plate with simple supports under magnetic and thermal fields, 

applying buckling and post-buckling energy method. They established the bending and buckling of the plate under 

angles of applied magnetic field, with use of a numerical method. They also showed that the plate buckles without 

transverse deformation while it is under the magnetic field. Zheng and Wang [11], formulated the behavior of a shell 

made of ferromagnetic materials, considering the energy method. Using FEM, they showed the behavior of the shell 

under the magnetic field. Er-gang et al. [12], studied the buckling of a rectangular plate under the magnetic field and 

they achieved the effect of plate’s symmetrical and asymmetrical deformations on the critical load. The dynamic 

stability of ferromagnetic plate under transverse magnetic field and harmonic external force were studied by Wanga 

and Lee [13]. The effect of Lorentz’s dynamic forces and the forces originated from the simultaneous stagnation 

magnetic field on dynamic stability of the rectangular plate with simple supports have been investigated. To express 

the plate’s deformation, the classical theory has been applied by Wanga and Lee [13]. Dai et al. [14], studied a FGM 

cylinder with magnetic properties under a uniform magnetic field. Using Lorentz’s forces, they obtained the stresses 

in the cylinder due to the magnetic field. Bhangale and Ganesan [15], obtained the behavior of a sandwich plate with 

a layer which was made of the materials with functional properties using FEM. Xing [16], obtained the natural 

frequencies of the ferromagnetic beam with a circular cross-section, utilizing  Zhou and Zheng’s energy method. 

They presented a dynamic model in order to calculate the beam’s behavior under the transverse magnetic field. 

Raikher et al. [17], studied deformation of a circular membrane under transverse magnetic field which was made of 

a ferromagnetic material. The critical magnetic field for the circular membrane with ferromagnetic properties was 

also obtained. Kankanala and Triantafyllidis [18], examined the buckling of the ferromagnetic rectangular block 

under a uniform transverse magnetic field. Jin et al. [19], presented a model of the magnetic field and the magnetic 

forces which were caused by the magnetic field. They compared the model and the forces with Zhou and Zheng’s 

model.  

The porous materials are composed of two elements: the body is consisted of the solid phase and the other 

element is either liquid or gas. This kind of materials are frequently found in nature, such as wood, stone, and layers 

of dust. For many years, porous material structures, such as beams, plates, and shells, have been widely discussed in 

structural design problems. The problem of deflection and buckling of the poro plates has been studied by many 

authors. For example, the buckling of a fluid-saturated porous slab under axial compression was considered by Biot 

[20]. He investigated the pore compressibility effect on critical buckling load and expressed that the critical load is 

proportional to the pore compressibility. He showed the lower and upper critical value for a rectangular plate, more 

over he provided identical behavior which was derived by analogy for a thermoelastic slab with a critical range 

between isothermal and adiabatic buckling. Jabbari et al. [21, 22] studied the buckling of a porous circular plate 

based on classical plate theory. They investigated the effect of porosity and pore fluid properties on the critical 

buckling load. The effect of a piezoelectric plate, which was added to the circular plate, on the stability of the 

circular plate was studied. Buckling of porous beams with varying properties was described by Magnucki and 

Stasiewicz [23]. They used shear deformation theory for solving the critical load. In this work, the effect of porosity 

on the strength was investigated as well as the buckling load of the beam. Magnucki et al. [24] investigated bending 

and buckling of a rectangular plate made of foam material. He obtained some findings about the poro/nonlinear 

symmetric distribution plate. Buckling of a circular porous plate with varying properties and simply supported 

boundary conditions was described by Magnucka-Blandzi [25].  Javaheri and Eslami  [26] reported mechanical 

buckling of rectangular functionally graded plates (FGM) based on the classical plate theory (CPT). Jabbari et al. 
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[27-28] investigated on thermal buckling analysis of porous circular plate and investigated on the effect of different 

parameters on the thermal buckling load. Khorshidvand et al. [29] investigated on the effect of sensor actuator 

patches on critical buckling load for porous circular plate. Magnucki et al. [30] investigated on theoretical and 

experimental study of a sandwich circular plate under pure bending. 

The present paper deals with critical buckling of FGFP rectangular plates, under magnetic field with simply 

supported boundary condition. It was assumed that properties of FGFP materials were changed through thickness 

according to power law functions and its behavior followed poroelastic relationship. Furthermore, its pores were 

saturated with fluid and there was no electric field, charge distribution or conduction current. General equilibrium 

and stability equations were derived by applying energy method and calculus of variations based on the classical 

plate theory. Then, closed form solutions for the rectangular plates under transverse magnetic field are obtained. 

2    DERIVATION OF THE GOVERNING EQUATIONS    

We consider a thin rectangular porous plate Fig. 1, length a , width b  and thickness h  under traverse magnetic 

field. The system coordinate ( , , )x y z is established on the middle of this plate. The material properties are assumed 

to vary through the thickness according to the following power law distribution (see Fig. (1)).The functional 

relationship between G  and z  for porous plate is assumed as three different tips [21] 

A - poro/nonlinear nonsymmetric distribution with shear modulus [21] 

 

0 1

π h
G(z)=G 1-e cos z+

2h 2

    
    

     
           

 

   (1) 

 

B - poro/nonlinear symmetric distribution with shear modulus [21] 
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C - poro/monotonous distribution with shear modulus [21] 

 

 0 1G(z)=G 1-e                (3) 

 

where 1e  is the coefficient of plate porosity 10 < <1e , 1G  and 0G  are the shear modulus at = /2z h  and = /2z h ,  

respectively.  0G  is shear modulus for perfect plate, ( 0 1G G ). The relationship between the modulus of elasticity 

for 0j   and 1  is = 2 (1 )j jE G  .  

2.1 Basic equations 

The linear poroelasticity theory of Biot has two features [20]:   

1. An increase of pore pressure induces a dilation of pore.  

2. Compression of the pore causes a rise of pore pressure.   

The stress-strain law for the poroelasticity is given by  
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where 
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Here,  p is pore fluid pressure,  M is Biot’s modulus, λ is Lame's parameters,    is drained Poisson’s ratio, which 

is assumed to be constant across the plate thickness,  u  is undrained Poisson’s ratio < < 0.5u  ,   is the Biot 

coefficient of effective stress 0 < <1 . The Biot coefficient 
0

( )
( = 1 )

G z

G
   indicates the effect of porosity on the 

solid constituents of poroelastic plate and it shows the effect of generated stresses in the pores on the poroelastic 

material in undrained condition,  sB  is the Skempton coefficient, the pore fluid properties is introduced by the 

Skempton coefficient,    is variation of fluid volume content, and kk  is the volumetric strain. The two 

dimensional stress-strain law for plane-stress condition in the Cartesian coordinates for the undrained condition 

( = 0  and = uK K ) is given by  
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uK  is undrained bulk modulus. Where the constants 1A , 1B  in terms of the constants 1C , 2C  are 
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(12) 

 

 

According to the Love-Kirchhoff hypothesis, based on the classical plate theory, the strain components at 

distance z  from the middle plane are given by Javaheri and Eslami [26]  

2xx xx xx yy yy yy xy xy xyzk zk zk                       (13) 

 

where the z -axis is assumed positive outward. Here, ( , , )xx yy xy   are the engineering strain components in the 

median surface and ( , , )xx yy xyk k k are the curvatures which can be expressed in terms of the displacement 
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components. The relations between the middle plane strains, the curvatures, and the displacement components 

according to the Sanders assumption are [26]  
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(14) 

 

where ( , , )u v w  represent the corresponding components of the displacement of a point on middle surface of plate.  

2.2 Equilibrium and stability equations 

The total potential energy V is the sum of the strain energy sU  and the potential energy of the magnetic energy mU .  
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where E
ij  is elastic strain. Elastic strain energy for porous materials is comprised of elastic strain energy for solid 
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Here,  1 sB  is relation between drained bulk modulus and undrained bulk modulus, sB  is coupling 

between pore fluid effects and macroscopic deformation. Substituting  1 sB  in the Eq. (17) gives 
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where kk  and E
kk  are volumetric stress and elastic strain, respectively. Substituting Eqs. (10) and (18) into Eq. 

(16) gives strain energy for the undrained condition 
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The magnetic energy functional for the system as follows [2] 
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In which   is the magnetic scalar potential which satisfies = H , where ( )V w  and ( )V w , respectively, 

represent inside and outside regions of the deformed ferromagnetic plate with displacement vector denoted by w,  

is a 3D gradient operator,  n  is a unit vector outward normal to the surface s of the ferromagnetic plate,  0s  denotes 

a closed surface which surrounds and is far away from the ferromagnetic medium, B is magnetic induction vectors   

(relationship between magnetic induction vectors and magnetic field vectors for linear magnetic materials is, 
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0= rB H   ), 0  and r  (constant for the entire plate) denote the magnetic permeability of vacuum and the 

relative permeability of the ferromagnetic plate, respectively.  

Integrating Eqs. (19) and (20) with respect to z  from 
2

h
z   to 

2
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mq  is an equivalent magnetic force, which exerted on the plate is given by Zhou and Zheng [2] 
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  is the susceptibility of the ferromagnetic medium ( = 1r   ).  

Applying the Euler equations for total functional of mq  in Eq. (21), we obtain 

  

, , , , , , ,= 0 = 0 2 = 0x x xy y y y xy x x xx y yy xy xy mN N N N M M M q          (25) 

 
2 2= 0 = 0         (26) 

 

where xM , yM  are bending moments,  xyM  is twist moment, xN , yN  are mid-plane internal force,  xyN  is 

shearing force, which can be expressed as:  
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The stability equations of the rectangular plate are derived using the adjacent equilibrium criterion [27]. 

We assumed  0u  ,  0v  and 0w  as the displacement components of the equilibrium state and 1u , 1v and 1w  as 

the virtual displacements corresponding to a neighboring state. The displacement components of neighboring state 

are 
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The magnetic field is divided into two parts [1]:  

1. The magneto-statics solution for the undeformed plate  

2. The magneto-statics solution for the deformed plate.  
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According to the adjacent equilibrium criterion in the neighboring state of equilibrium, the stability equations are 
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equilibrium and neighboring states as: 
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Considering all of these mentioned above, and substituting relations (29), (30) and (31) into Eqs. (25) and (26) 

collecting the second order terms, the stability equations are obtained as:  

 

1, 1, 1, 1, 1, 1, 1,= 0 = 0 2 = 0x x xy y y y xy x x xx y yy xy xy mN N N N M M M q          (32) 

 
2 2

1 1= 0 = 0         (33) 

2.3 Magnetic buckling analysis 

Consider a rectangular plate, subjected to a uniform transverse magnetic field 0B . Thus, for this case of discussion 

of stability equations is satisfied and the first to third of Eqs. (32), based on the displacement components yield 
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2 1, 3 1, 2 1, 3 1, 2 1, 1, 3 1,

2 1, 3 1, 2 1, 3 1, 2 1, 1, 3 1,

3 1, 4 1, 3 1, 4 1, 3 1, 4 1,

3 1, 3 1,

( ) 2 = 0

( ) 2 = 0

2

2 (

xx xxx xy xyy xy yy xyy

yy yyy xy xxy xx xy xxy

xxx xxxx xxy xxyy yyy yyyy

xyy xyy

A u A w B v B w C v u C w

A v A w B u B w C v u C w

A u A w B v B w A v A w

B u C u

     

     

    

   1, 4 ,) 4 = 0xxy xxyy mv C w q 

 

 

       

(34) 

 

For a rectangular plate which is simply-supported at both edges: 

 

1 1 1 1

1 1 1 1

1 1 1 1

( ,0) = ( , ) = (0, ) = ( , ) = 0

( ,0) = ( , ) = (0, ) = ( , ) = 0

( ,0) = ( ,0) = (0, ) = ( , ) = 0y y x x

w x w x b w y w a y

v x v x b u y u a y

M x M x M y M a y

 

      

 

 (35) 

 

where  

 

1 3 1, 1, 3 1, 1,

1 3 1, 1, 3 1, 1,

= ( ) ( )

= ( ) ( )

x x xx y yy

y x xx y yy

M A u w B v w

M B u w A v w

  

  
 

      

(36) 

 

The functions for displacements that satisfy the governing equations and boundary conditions are 

 

1 1

1 1

1 1

= cos( )sin( )

= sin( )cos( )

= sin( )sin( )

u U x y

v V x y

w W x y

 

 

 

 

 

    (37) 

 

where 

 

2 2= , = , = , , = 1,2,3,...
m n

k n m
a b

 
     

 

 

 

1U , 1V and 1W are constant coefficients. The following boundary conditions for the magnetostatic potential from 

the continuity of the corresponding field vector components are obtained: 

 

, ,

0 0 0

= , = , /2

= ,

r n n on h

B on s

    

 

   





 
 

      

(38) 

 

The functions for magnetic scalar potential that satisfy the magnetic governing equations and boundary 

conditions are  

 

0 0
0 0

0 0

0 0
1 1 1 1

0 0

= =

cosh( ) sinh( )exp ( /2 )
= [ ] = [ ]

sinh( /2) cos( /2) sinh( /2) cos( /2)

r

r r r

B B
z c z c

B Bkz kz k h z
w w

kh kh kh kh

 
  

 
 

    

 

 

 




 

 

 

          

(39) 

 

where c is constant. Substitution of Eqs. (30) and (39) into Eq. (24) yields  

2
1 0 1=mq q B w      (40) 

 

where 
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2

1
0

2 sinh( /2)
= [ ]

sinh( /2) cos( /2)r r

k kh
q

kh kh



   
 

         

(41) 

 

Substituting Eqs. (37) into the stability equations and using the kinematic and constitutive relations, yields a 

system of three homogeneous equations for 1U , 1V and 1W . 

 

1

1

1

[ ] = 0ij

U

K V

W

 
 
 
 
 

 

         

(42) 

 

In which ijK  is a symmetric matrix with the components as follows: 

 
2 2

11 2 2

12 2 2

3 2
13 3 3 3

2 2
22 2 2

3 2
23 3 3 3

4 4 2 2 2
33 4 4 4 1 0

=

= ( )

= ( 2 )

=

= ( 2 )

= ( ) (2 4 )

K A C

K B C

K A B C

K A C

K A B C

K A B C q B

 



  

 

 

   





 



 

   

 

     

       

 

      

 (43) 

 

For a nontrivial solution of Eq. (42), the coefficients of functions must be set to zero setting | |= 0ijK  , the value 

of the 0B  is found as: 

 

2 4 4 2 2 1
0 4 4 4

1 2

1
= [ ( ) (2 4 ) ]

P
B A B C

q P
        

          

(44) 

 

where 

2 2
1 12 13 23 11 23 22 13

2
2 12 11 22

= 2

=

P K K K K K K K

P K K K

 


 

          

(45) 

 

By substitution ( =1, =1m n ), the critical magnetic field for magneto-poroelastic plate buckling obtained. 

Introducing dimensionless form for crB  as * 0

0 0

= (cr

B
B

G 
. The value of the *

crB  is found as:  

* 4 4 2 2 0.51
4 4 4

21 0 0

1
= [ ( ) (2 4 ) ]cr

P
B A B C

Pq G
   


     

          

(46) 

3    RESULTS AND DISCUSSION     

In this paper, investigating the stability of FGFP rectangular plates with simply supported boundary condition under 

magnetic field contributed to achieving the effects of poroelastic plate properties on critical magnetic field 
*( )crB such as pores compressibility, pores distribution, plate thickness, shear modulus and plate magnetism 

characteristics. The plate shear modulus varies with pore distribution across thickness direction in symmetric and 

non-symmetric conditions (Fig. 1). Shear modulus decreases by increasing the porosity therefor the plate would be 

more unstable under applied magnetic field. Fig. 2 shows that increasing the poroelastic plate porosity decreased the 
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critical magnetic field. Also, this figure shows the maximum stability for homogenous isotropic condition. By 

substituting 1( = 0)e  into Eqs. (8) and (43) the critical magnetic field for homogenous isotropic plate is obtained as: 

 
3 3

* 0.5

2

(1 )( sinh( /2) cosh( /2))
= [ ]

12 sinh( /2)(1 )

r
cr

r

k h kh kh
B

kh

 

 

 


 

          

(47) 

 

This result is similar to Wang’s (2003) result for homogenous isotropic plate.  

The Biot coefficient indicates the effects of porosity and pores distribution. In considered plate, pores varies in 

thickness direction and pores distribution influenced on resistance of plate against the force of magnetic field. Fig. 3 

shows the effect of pores distribution on critical magnetic field *( )crB . Porous plate with symmetric pores has higher 

strength than other cases. The poro/monotonous distribution plate has lowest resistance against the applied 

transverse magnetic field. The effect of pores distribution on plate resistance against the magnetic field, increases 

with thickness increasing. Furthermore the homogenous/isotropic plate has highest resistance than other cases. In 

porous materials, Skempton coefficient introduces the saturated fluid compressibility. If the compressibility of the 

fluid is high, the Skempton coefficient would be zero ( 0)sB   and when the fluid is incompressible, the Skempton 

coefficient would be one ( 0)sB  . Hence, with respect to the fluid compressibility the Skempton coefficient 

changes between two values 0 and 1, (0 < <1)sB . In Fig. 4, the effect of the Skempton coefficient on stability of 

poroelastic plate is shown. As seen in this figure, by decreasing the Skempton coefficient the stability of plate 

decreases. Also, by increasing the Skempton coefficient, the stability of plate increases and behavior of the plate 

bears resemblance to that of homogeneous isotropic plate. It can be seen in this figure that plate becomes unstable 

with lower applied magnetic field, when magnetic permeability ( r ) rises. This figure shows that changes in 

mechanical properties plate are more influential than changes in magnetic properties plate on critical point. In this 

article, the effect of porosity on changes in magnetic properties plate is disregarded because existing of cavity on 

ferromagnetic plate causes slight change on amount of ( r ) and by regarding those changes in magnetic properties 

plate has negligible influence on critical field, the effect of changes in magnetic properties plate can be disregarded 

and only pursue its effect on mechanical properties.  

 

  
 

  

  
Fig.1 

The scheme of thin rectangular FG plate made of porous soft ferromagnetic. 
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Fig.2 
* 3( 10 )crB   vs. thickness to length ratio of the plate, and 

for the cases of coefficient of plate porosity 

1[ = 0.0,0.3,0.5,0.7,0.9]e  and 4= 0, =10rB  ,  with 

= 0.3 . 

 

 

 

 

 

 

 

Fig.3 

Critical magnetic field * 3( 10 )crB   vs. thickness to length 

ratio of the drained plate, and for the cases of 

poro/nonlinear nonsymmetric distribution, poro/nonlinear 

symmetric distribution and poro/monotonous distribution 

with 
4

1 = 0.5, =10re  , and homogenous/isotropic. 

  

 

 

 

 

Fig.4 

Critical magnetic field * 3( 10 )crB   vs. Skempton 

coefficient of the porous plate, and for the cases of 

magnetic permeability of plate 4 4 4 4[ =1 10 ,3 10 ,5 10 ,8 10 ]r     , 

with = 0.3 . 

 

4    CONCLUSIONS 

In the present article, the energy method is used for the buckling analysis of plate made of pore material in 

transverse magnetic field, where derivation is based on the classical plate theory with the assumption of power law 

composition for the constituent materials. The boundary conditions of plate is assumed to be simply supported.  

It is concluded that:  

1. The critical magnetic field ( *
crB ) decreased and the plate will be unstable by increasing the porosity.  

2. The plate behavior tends to incline to homogeneous/isotropic behavior by reducing the porosity.  

3. The critical magnetic field ( *
crB ) will be decreased by increasing the thickness.  

4. Monotonous porosity is more unstable than the symmetric and nonsymmetric porosity. Location of the pores 

in porous materials is impressive on the strength of plate and critical magnetic field.  

5. By increasing the compressibility of fluid within the pores the critical magnetic field will be reduced. 

ACKNOWLEDGMENTS 

The present research work is supported by Islamic Azad University, South-Tehran Branch. 



427       M. Jabbari et al. 

© 2015 IAU, Arak Branch 

REFERENCES 

[1] Moon F.C., Pao Y.H., 1968, Magnetoelastic buckling of a thin plate, Journal of Applied Mechanics 35: 53-58. 

[2] Zhou  Y.H.,  Zheng  X.J, 1997, A general expression of magnetic force for soft ferromagnetic plates 278 in complex 

magnetic fields, International Journal of Engineering Science 35: 1405-1417. 

[3] Wentao Y., Hao P., Dali Z., Qigong C., 1998, Buckling of a ferromagnetic thin plate in a transverse static magnetic 

field, Central Iron and Steel Research Institute 43(19):1666-1670. 

[4] Zhou Y. H., Wang X., Zheng X., 1998, Magnetoelastic bending and stability of ferromagnetic rectangular plates, 

Applied Mathematics and Mechanics 19(7):669-676.  

[5] Zheng X.J., Zhou Y.H., Wang X.Z.,  Lee J.S., 1999, Bending and buckling of ferroelastic plates, Journal of 

Engineering Mechanics 125(2):180-185. 

[6] Zhou Y. H., Wang X., Zheng X., 2000, Buckling and post-buckling of a ferromagnetic beam-plate induced by 

magnetoelastic interactions, International Journal of Non-Linear Mechanics 35: 1059-1065.  

[7] Zheng X.J., Wang X., 2001, Analysis of magnetoelastic interaction of rectangular ferromagnetic plates with nonlinear 

magnetization, International Journal of Solids and structures 38: 8641-8652. 

[8] Wang X., Zhou Y.H., Zheng X., 2002, A generalized variational model of magneto-thermoelasticity for nonlinearly 

magnetized ferroelastic bodies, International Journal of Engineering Mechanics 40 (17): 1957-1973.  

[9] Wang X., Lee J.S., Zheng X., 2003, Magneto-thermo-elastic instability of ferromagnetic plates in thermal and magnetic 

fields, Internatiuonal Journal of Solids and Structures 40 (22): 6125-6142.  

[10] Zhou Y.H., Gao Y., Zheng X.J., 2003, Buckling and post-buckling analysis for magneto-elastic-plastic ferromagnetic 

beam-plates with unmovable simple supports, International Journal of Solids and Structures 40(11): 2875-2887. 

[11] Zheng X., Wang X., 2003, A magneto elastic theoretical model for soft ferromagnetic shell in magnetic field, 

International Journal of Solids and Structures 40(24): 6897-6912.  

[12] Er-gang X., She-liang W., Qian Z., Yi-jie D., 2006, Buckling of an elastic plate in a uniform magnetic field, Natural 

Science Edition , Article ID: 1006-7930(2006)04-0533-05. 

[13] Wang X., Lee J.S., 2006, Dynamic stability of ferromagnetic plate under transverse magnetic field and in-plane 

periodic compression, International Journal of Mechanical Sciences 48(8): 889-898.  

[14] Dai H.L., Fu Y.M., Dong Z.M., 2006, Exact solutions for functionally graded pressure vessels in a uniform magnetic 

field, International Journal of Solids and Structures 43: 5570-5580.  

[15] Bhangale R.K., Ganesan N., 2006, Static analysis of simply supported functionally graded and layered magneto-

electro-elastic plates, International Journal of Solids and Structures 43(10):3230-3253. 

[16] Xing-zhe, Wang, 2008, Changes in the natural frequency of a ferromagnetic rod in a magnetic field due to magneto 

elastic interaction, Applied Mathematics and Mechanics 29(8):1023-1032.  

[17] Raikher Yu L., Stolbov O.V., Stepanov G.V., 2008, Deformation of a Circular Ferroelastic Membrane in a Uniform 

Magnetic Field ,Technical Physics 78(9): 1169-1176.  

[18] Kankanala S.V., Triantafyllidis N., 2008, Magnetoelastic buckling of a rectangular block in plane strain, Journal of the 

Mechanics and Physics of Solids 56(4): 1147-1169.  

[19] Jin K., Kou Y., Zheng X., 2010, Magnetoelastic model of magnetizable media, Piers Proceedings, Xi'an, China. 

[20] Biot M.A., 1964, Theory of buckling of a porous slab and its thermoelastic analogy, Journal of Applied Mechanics 31: 

194-198.  

[21] Jabbari M., Mojahedin A., Khorshidvand A.R., Eslami M.R., 2013, Buckling analysis of functionally graded thin 

circular plate made of saturated porous materials, Journal of Engineering Mechanics 140:  287-295. 

[22] Jabbari M., Farzaneh Joubaneh E., Khorshidvand A.R., Eslami M.R., 2013, Buckling analysis of circular porous plate 

with piezoelectric actuator layers under uniform radial compressionInternational , Journal of Mechanical Sciences 70:  

50-56. 

[23] Magnucki K., Stasiewicz P., 2004, Elastic buckling of a porous beam, Journal of Theoretical and Applied Mechanics 

42: 859-868. 

[24] Magnucki K., Malinowski M., Kasprzak J., 2006, Bending and buckling of a rectangular porous plate, Steel & 

Composite Structures 6: 319-333. 

[25] Magnucka-Blandzi E., 2008, Axi-symmetrical deflection and buckling of a circular porous-cellular plate, Thin-walled 

structures 46: 333-337. 

[26] Javaheri R., Eslami M.R., 2002, Buckling of functionally graded plates under in plane compressive loading, ZAMM 

Journal of Applied Mathematics and Mechanics 82(4): 277-283. 

[27] Jabbari M., Hashemitaheri M., Mojahedin A., 2014, Thermal buckling analysis of functionally graded thin circular 

plate made of saturated porous materials, Journal of Thermal Stresses 37: 202-220. 

[28] Jabbari M. , Farzaneh Joubaneh E. , Mojahedin  A., 2014, Thermal buckling analysis of a porous circularplate with 

piezoelectric actuators based on first order shear deformation theory, International Journal of Mechanical Sciences 83: 

57-64. 

[29] Khorshidvand A. R., Farzaneh Joubaneh E., Jabbari M., 2014, Buckling analysis of a porous circular plate with 

piezoelectric sensor-actuator layers under uniform radial compression, Acta Mechanica  225: 179-193. 

[30] Magnuckia K., Jasion P., Magnucka-Blandzib E. , Wasilewicz  P., 2014, Theoretical and experimental study of a 

sandwich circular plate under pure bending, Thin-Walled Structures 79:  1-7. 

http://ascelibrary.org/journal/jenmdt
http://ascelibrary.org/journal/jenmdt
http://www.researchgate.net/journal/1063-7842_Technical_Physics


Magnetic Stability of Functionally Graded Soft Ferromagnetic Porous …                       428 

 

© 2015 IAU, Arak Branch 

[31] Brush D.O., Almorth B.O., 1975, Buckling of Bars, Plates and Shells, McGraw-Hill, New York. 

 


